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Abstract. We study equilibrium states of a quantum Bose gas using Kubo-Martin-
Schwinger boundary conditions, for a special class of time evolutions, namely the quasi-free
evolutions. Under suitable restrictions, in particular positivity of the elementary excitation
spectrum, we are able to describe the states fulfilling the Kubo-Martin-Schwinger conditions.
In contrast to the Fermi case the solution is, in general, not unique; this is related to a
possible Bose condensation.

§ 1. Introduction

In a previous paper [1], we looked for the solutions of the Kubo-
Martin-Schwinger boundary condition for Fermi systems and for a
special class of evolutions. It is our goal to do a similar study for the
Bose systems.

We shall not discuss the importance of the K.M.S. boundary condition
within the framework of the algebraic description of equilibrium states
of statistical mechanics but only refer to the fundamental papers [2-4],
where one can find the formulation of the K.M.S. boundary conditions
we shall use.

Definition 1.1. Let s$ be a C* -algebra, ί->αf, a homomorphism of
the additive group of reals into ^-automorphisms of s$ : a state ω of ̂
is said to be a K.M.S. state with respect to ί->αf, if, V Ά,Bejtf

tεR-+ω(AatB)

can be extended to an analytic Junction in the strip 0 < Imί < β, continuous
on the boundary and such that

We notice incidentally that a K.M.S. state is automatically an in-
variant state [3, 5].

Equilibrium states of Bose systems have been extensively studied,
especially in the fundamental papers of Araki [6] and Robinson [7]
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their interest lies in the well-known fact that Bose systems can exhibit
Bose-condensation. We shall come back to this point in the last section.

The second section is devoted to notation and definitions, in particular
to those connected with the C*-algebra we shall use and its quasi-free
states.

In a third section we define the quasi-free evolutions and exhibit
necessary and sufficient conditions for the existence of a state fulfilling
K.M.S. boundary conditions (we shall call this the K.M.S. problem).

In the fourth section, we solve the K.M.S. problem completely for
the previous class of evolutions.

In the next section, we look at the limiting cases, i.e. the limits, when
the temperature goes to zero or to infinity, of the states that we have
defined.

§ 2. The C*-Algebra of a Bose System

For Fermi systems, one has a natural choice of C*-algebra, namely
the Clifford algebra built on the one particle states. The situation here
is quite different and for convenience we shall choose as C*-algebra the
one which is described in [8]. For the sake of brevity, we shall only sketch
the construction of this algebra.

Φ ί. The One Particle Space

The one particle space (H, σ) is a real symplectic space, i.e.
i) H is a real linear space

ii) σ is a real bilinear, antisymmetric, non-degenerated form, i.e.

βψ2) = ασ(φ, ipj + βσ(φ, ψ2) ,

Vφ,ψί,ιp2eH V α , j S e R , (2.1)

σ(φ,ψ)= -σ(ψ,φ),

a(φ^ ψ) = 0 , V φ e Ho\p — 0 .

A real linear operator T from H onto H will be said to be symplectic iff

σ(Tφ, Tip) = σ(φ, ψ) V φ, \p e H . (2.2)

As a special case, we can define a complex structure J of H as a symplectic
operator such that

J2 = - 1 , (2.3)

0 V φ e # . (2.4)
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* ii. The Algebra A (H, σ)

One considers the set A (H, σ) of functions with complex values defined
on H which are zero, except on a finite number of points. Equipped
with its natural structure as a complex linear space, with the product

(a.b) (ψ) = Σ *(?>) b(ψ - φ) *-"<*•<"> (2.5)
<p

V α , f o
and with the involution

(2.6)

A (H, σ) is a *-algebra.
A(H, σ) can be generated by the set of δψ, ψ e H defined by:

ψψ=

and satisfying the following canonical commutation relations

δψ.δφ = exp(- iσ(ψ, φ)) δψ+φ Vtp, φ e H . (2.8)

c)0 is the identity of A (H, σ) and the <5v's are unitary elements in zl (H, σ),
namely MV=<V (2.9)
Let ^^(H, σ) the set of non-degenerated representations π of zl(H, σ)
such that the map

π(δλv) (2.10)

is weakly (or strongly) continuous; all these representations are faithfull
and consequently induce the same norm on A (H, σ). The closure A (H, σ)
of A (H, σ), with respect to this norm is a C* -algebra, we choose it as the
C*-algebra of a Bose system.

Let us mention two types of ^-automorphisms of A (H, σ) which will
be important in the sequel. Firstly the one particle ^-automorphisms:
for every symplectic operator T of H (see definition (2.2)) there exists
a unique automorphism ατ of A(H, σ) such that

*τδφ = δτιp V ψ e t f . (2.11)

As a special choice, the group of ^-automorphisms induced by the group
of symplectic transformations Γα:

Tα-cosαl + sinαJ αe[0,2π] (2.12)

where J is a complex structure of H, corresponds, as we shall see later,
to gauge transformations of the first kind, otherwise ocτ corresponds to
generalized homogeneous Bogoliubov transformations.
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Finally, consider χ, a character of H considered as an additive group
then there exists a unique * -automorphism of Δ(H, σ), such that:

αA = X(V>)* φ V φ e H . (2.13)

Such ^-automorphisms occur in inhomogeneous Bogoliubov trans-
formations; e.g. if Q is a linear form on H, one can define

(2.14)

In that case, the *-automorphism (2.13) can be extended to Δ(H, σ).

Hi. Some Special Representations of A (H, σ)

We had chosen A(H, σ) as the C*-algebra of Bose systems in order
to take account of the canonical commutation relations (C.C.R.); let us
sketch the link of this algebra to the (C.C.R.) (see [9]). Let us define
^αo (H, σ) the set of states of A (H, σ) such that

V φ , φ e H (2.15)

is infinitely differ en tiable.
Let πω the corresponding representation constructed a la G.N.S. in

the Hubert space Hω\ continuity of the map

πω(δλψ) \/ιpεH (2.16)

ensures the existence of the unbounded operator Bω(φ\\/ψεH, which
is real linear with respect to ψ e H, densely defined and such that,

πω(δψ) = exp(i JBω(v>)) V φ e H . (2.17)
Moreover one has

Bω(ψ) Bω(φ) - Bω(φ) Bω(ιp) ς 2iσ(y>, φ) IHm (2.18)

and if ξω is the cyclic vector corresponding to ω then all the correlation
/ N \

functions ξω\ f] Bω(φ^ ξω , φt e H, exist.
\ i=l /

(2.18) is not the usual form of C.C.R. Actually let J be a complex
structure of H defined in (2.3) and (2.4), then H can be turned into a
complex Hubert space Hc if one defines

\/ψeHc V α + i j8eC (2.19)

for the multiplication by complex numbers and

hj(ψ,φ) = σ(ψ,Jφ) + ί σ ( ψ , φ ) Vφ, φ e Hc (2.20)

for scalar (hermitian) product.
Moreover, one defines creation and annihilation operators

B% (φ) = Bω(φ) + ίBω(J φ) V φ 6 Hc (2.21)
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which are respectively linear and antilinear in φeHc and satisfy:

B* (φ) B± (ip) - B± (ip) B ± ( φ ) £ Q , (2.22)

B- (ιp) B + (φ) - B+ (φ) B~ (ip) £ hj(ψ, φ) IHω . (2.23)

We shall not detail any longer the correspondance with the usual for-
malism, especially with regard to the action of the ^-automorphisms we
have defined, but we shall come back to the states.

Let ω be a state over Δ (H, σ), it necessarily satisfies the positivity
condition

N \ * / N

Σ *ιO Σ *
/ W

iβH and C eC.
Moreover, if the map

V φ , φ e H (2.25)

is continuous, ω can be extended to a state of Δ(H, σ).
We consider now the quasi-free states of Δ (H, σ), let S be the set

of real symmetric positive scalar products S on H, such that

\σ(ψ9 φ)\2 ^ S(ψ, ψ) S(φ, φ) Vφ, φ e H . (2.26)

The non-degeneracy of σ shows that S e S is strictly positive. Completion
of JhΓ with respect to the norm deduced from S will be denoted by Hs. Let
σ' be the continuous extension of σ to Hs, it still satisfies (2.26) for every
pair of vectors of Hs, and so, by Riesz's representation theorem, there
exists in Hs an operator Ds such that

σ'(ψ, φ) = S(Dsιp, φ) Vφ, φ e Hs, (2.27)

and which satisfies, for the Hubert structure of Hs,

Dί=-Ds, (2.28)

\\DS\\ £1. (2.29)

The polar decomposition of Ds (which holds in the real case) :

(2.30)

furnishes a complex structure J of (1 — E) Hs, where E is the projection
over the kernel of Ds. Notice that

σ'(Eψ, φ) - S(DsEψ, φ) - 0, V φ, φ e /?s (2.31)

and the operator Ds restricted to (1 — E) Hs has an inverse — As which
is not necessarily bounded.
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Quasi-free states are defined out of elements of S by

ω(δv) = exp(-iS(v?,v>)) ψeH,Sε&. (2.32)

As a special case Fock states are defined by those elements of S such
that Ds is a complex structure.

Later on, we shall be faced with the problem of construction of quasi-
free states out of an operator Ds. An important case will be the one
where :

DSH C H . (2.33)

Conversely, we shall need the following result.

Proposition (2.34). Let D be a real linear operator in H such that:

D l σ(ψ, Dφ)= — σ(Dιp, φ) \/φ,ψeH.

D2 -σφφ,φ)^0 V φ e H .

D 3 D is injective.

D 4 Let —A be the mapping of DH-*H, the inverse of D, then

σ(ψ, (A-D)ψ)^0 V v> e DH .

D 5 The bilinear form S : DH x # ->IR defined by

can be extended to a symmetric positive bilinear non-degenerated form Sf

from H x H ->R
Then Sf is in S.

Proof. D 4 shows that the extension D to DHS of D exists, indeed if
ipeDH

S'(ψ, ψ) = S(φ, ip) — σ(ψ, Aip)^ σ(ψ, Dψ) = S'(D ψ,Dψ).

D 1 shows that D is antisymmetric.
Let D' the operator defined on Hs by

D' = DP (2.35)

where P is the projection on DHS . One has

S'(D'ιp,Dφ) = S'(DPψ9Dφ)
Vφ, \p G H

= -S'(Pιp,D2φ)

due to the antisymmetry of D and the fact that
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which implies that

S'(D'ψ,Dφ) = - S'(ψ, D2φ)=- S'(D2φ, ψ)

since D 2φe DH.
Moreover, by D 5,

S'(D'ψ,Dφ) = - σ(Dφ, ψ) = σ(ψ,Dφ)

so that £> = £>' on H, since (D - D)ιpeϊΠP' is orthogonal to DH for
ψ in H. Therefore the bilinear form σ' on #s ,

σ'(ψ,φ) = S'(D'ψ9φ) (2.36)

coincides with σ on H.
Moreover \\D'\\s,£l since ||J5|S^1 on DHS', and S' fulfills the

relation (2.26), hence the result follows.

§ 3. Quasi-free Evolutions and Special Solution of the K.M.S. Problem

We define the class of evolutions that we shall deal with.

Definition (3.1). A quasi-free evolution of Δ(H, σ) is an homomorphic
mapping of the additive group of reals into the group of one-particle
^-automorphisms of A (H, σ) defined in (2.11).

We denote by
Γ, (3.2)

the corresponding homomorphism into the symplectic group of opera-
tors of H.

We shall restrict ourselves however to evolutions which satisfy the
following condition;

E 1 the mapping:

ίeIR-»σ(φ, Ttψ) \/ιp,φeH

is continuous and bounded.

The necessity of these requirements rests on the following remarks.
Remark (3.3). // t—>σ(φ, Ttψ) is not continuous^ there exists no

invariant state ω of Rao(H, σ) such that

is continuous.

The proof is obvious and quite similar to that of the :

Remark (3.4). // the mapping

, Tt\p)
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is not bounded, then there exists no R^(H,σ} invariant state and, conse-
quently, no K.M.S. state.

Proof. Suppose that ω e R^iH, σ) and ω is αrinvariant.
Let πω, Hω, Ωω be the representation in the Hubert space Hω with

cyclic vector Ωω constructed a la G.N.S. Let Bω be the associated field
operator, then

) = ί (Ωω\Bω(ψ) Bω(φ} + Bω(φ) Bω(ψ) \ Ωω) (3.5)

is a symmetric bilinear form. Tt is orthogonal with respect to this form.
Moreover, due to the positivity condition, S satisfies

\σ(ψ,Ttφ)\2^S(ψ,ψ)S(φ,φ} (3.6)

hence we get a contradiction.
Another condition will be necessary:

E 2 the set h in H

h={ψ£H;\/tεR, Ttψ = ιp} (3.7)

is reduced to {0}.

Indeed direct application of the K.M.S. boundary condition implies
that for ip eh and φ e H, φ Φ 0

ω(δψδφδ-ψ) = ω(δφ) (3.8)

so using (2.8)

ω(δφ)(e2ίσ(^φ}-l) = Q V φ e # . (3.9)

If ψ ή= 0, choose a φ e H, ε > 0 such that 0<\λ\<ε implies

0<λσ(φ, ψ)<π
and so

ω(δλφ) = Q ,

that is, ω is not a Weyl state.
The next assumption is a little more difficult to justify within our

general framework; nevertheless, its physical meaning is clear in the
important case of a translation invariant evolution (see Section 6).

E 3 For every ψ and φ in H and every real function f whose Fourier
transform is in 2, there exists an element T(f) ψ in H such that

σ(φ, T(f) ψ) = f f ( t ) σ(φ, Ttψ) dt .
— oo

We assume, moreover, that H is the linear closure of the vectors T(f) ip.

Notice that E 3 is fulfilled if H is σ(H) - quasi-complete (cf. [9],
p. 295 and [10] Prop. 21, Corr. 1).
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With the help of the previous hypothesis, we have the following
well-known lemma (compare e.g. to [4]):

Lemma 3.10 For every φ and ip in H the function

can be extended to an analytic function. Furthermore, if ψ is of the form
T(f) ξ, ξ 6 H, / a real function whose Fourier transform is in &>, then
the function

with ez(ω) — QXp( — 2πizω), realizes the extension.

The next lemma is close to some results obtained in [1].

Lemma 3.11. There exist operators, Uβ, Vβ, Dβ and Z in H, such that
for j3>0

Uβ Σ
i = l ί = l

vp Σ τfoψi= Σ
i = l ί = l

i= 1

i e H and f{ real functions whose Fourier transforms ft are in &. Where

fu'(ω) = <h(2πβω)f(ω)9

fve(ω)=-ish(2πβ ω) /(ω) ,

Notice that fυβJVβJDβ and /z are still real functions with Fourier
transform in 3).

N

Proof. Let us consider ]Γ T(/)) ψt = 0 then
l

Ttt f T(ft\p]=Q V φ e H (3.12)

is the restriction, to u e IR, of an entire function, which is consequently
zero everywhere in the complex plane. If for u = iβ, one looks at the real
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and imaginary parts of this function:

σφ, Σ T(f)ψ=0 V φ e H ,
i = l

, Σ
i=ι

then the result follows from the non-degeneracy of σ.
For Z we consider the derivative at w = 0^of (3.12). This is zero.

The result then follows from the fact that the /k

z's are in ̂ .
In order to prove the existence of Dβ we shall need the following

lemma:

Lemma 3.13. Let Uβ and Vβ be defined as previously;

i) Uβψ = ψoVβψ = Qoψ = Q ψeH,

ii)

iii)

Proof, ii and iii are obvious from Lemma 3.11.
Assume now that Vβψ = Q, then for any real function / with Fourier

transform in 2)
σ(T(f)φ,Vβψ) = Q VφeH

from iii):

The previous equality extends by linearity to every / in 2.
Using the fact that σ(Ttφ,ψ)is continuous, it is the Fourier transform

of a distribution whose support is reduced to zero. Its Fourier transform
is at most a polynomial in ί; the boundedness of σ(Ttφ, ψ) shows that it
is actually a constant

σ(Ttψ,φ) = σ(φ,φ) MteR.

Finally, from the regularity of σ, Ttιp = ψ and ψ = Q.
Now, conversely if Uβψ = ψ one has from Uβ + Vβ=I that

and so since Vβ is injective, ψ = Q.
In order to complete the proof of the Lemma 3.11, it suffices to remark

that:
(Uβ-l)HcVβH

and so one can see that:

D^Vi^V.-I). (3.14)
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The next lemma reveals some interesting properties of Dβ:

Lemma 3.15. The operator Dβ satisfies:

i) σ(Dβψ, φ) = - σ(φ, Dβφ)9

ii) Dβ is injective,

iiϊ) DβTt-TtDβ = Q V i e JR.

The proof of these properties is rather obvious.
We shall need the operator Dβ in order to define an invariant quasi-

free state, but the conditions of Proposition 2.34 are not necessarily
satisfied and we shall make the following restriction on the evolution,

E 4 Dβ satisfies D2 far at least one value β0 > 0 of β.

We shall come back in Section 6 to the physical meaning of this
assumption, but we now give an equivalent condition whose physical
meaning is evident.

E 4' The evolution Tt satisfies

The Condition E4 can be extended immediately to the:

Lemma 3.16. Under the hypothesis E 4

i) Dβ satisfies D2 far every /? > 0,

ii) Dβ satisfies D4 for every β>0.

Indeed E 4 can be written for every finite family φk, k = 1, 2, . . . , N in
H and every finite family fk of real functions whose Fourier transforms

_ JMO^O. (3.17)

One obtains 3.16 i) if one chooses:

th(βπω)
th(β0πω)

with gt real and gi still in 3).
In order to prove 3.16U) one takes

Furthermore, it follows that

and the injectivity of Dβ implies that D^D^ is everywhere defined in H.

= DβoH



130 F. Rocca, M. Sirugue and D. Testard:

We shall need another restriction on the evolution, namely:

E 5 There exists a /?0 > 0 such that Dβo satisfies D 5.

We shall come back in Section 6 to the physical meaning of this
property. As previously, we can extend to every β Condition E 5.

Lemma 3.18. // Dβ satisfies E 5 for a β0 then it satisfies E 5 for every
β>0.

We shall denote by ̂  the extension to H x H of the bilinear form
^ defined on DβH x H by:

, φ) = <r(ψ, 9) Vφ, ψ e H .

The next proposition is quite important:

Proposition 3.19. I f t - * T t satisfies E 1, E 2, E 3, E 4, and E 5, Dβ and
^β satisfy:

i) £fβ is invariant, i.e.

tf(Ttψ, Ttφ) = tf(ip9 φ) M

ii) The mapping

can be extended to an entire function such that

y > 0 tf(Ttψ, φ)\t = iγ = ^β(Uyιp, φ) + i^β(Vγιp, φ) .

iiϊ) The mean (in the sense of Godement [11]̂  of the continuous
and bounded function

£fβ(Tt\p,φ) Vφ, ψeH

is £fβ((I — Pβ)ψ, φ) where Pβ is the projection on D^

iv) The bilinear form on H x H

is in S; and it is the only extension of ^β such that the continuous extension
σ of σ to H^β is regular.

Proof Let us define Tt' through:

Tt'=TtPβ + (l-Pβ) V ί e l R (3.20)

where Tt is the continuous extension to DβH^β of Tt restricted to DβH.
It is an orthogonal operator and
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is a homomorphism of the additive group of reals into the orthogonal
operators of H^'β, so in order to prove i) it suffices to prove that

Tt'H=Tt ίe lR.

First notice that since ί elR->(exp(2ί πωt)— l)cth(πjβω) is infinitely
differentiate, one has: (Tt — l)ψeDβH if ip e H and

p9 Dβφ) - ^β(Pβιp, Dβφ)

= tf(Ttψ - ψ, Dβφ) = &β((Tt - 1) ψ9 Dβφ) .

Hence the result follows.
In order to prove ii) one has for φ = Dβξ e DβH

&*p(Ttψ,φ)= -σ(Ttψ,ξ)

thus the analytic! ty is a consequence of 3.10. Similarly if φ 6 (1 — Pβ]

#>i(T,Ψ, (1 -Pp) ξ) = ,^((Tt-I)ψ, (ί-Pf) ξ)

, - 1) ψ, (l - Pβ) ξ) + tf(Ψ, (1 -P,) ξ)

since (T, — l)ψeDβH. We get the analyticity and the desired expression
if we notice that

Q V φ , ξ e H y > 0

for φeDβH@(l-Pβ)H^.
In the general case, if φ e H*"β and if φn is a sequence in

DβH@(l — Pβ) H^'β converging to φ, the functions

(ί, 7) 6R x IR->^(φn, UyTtψ) + itf(φn, VyTtψ)

converge uniformly on every compact to the same expression with φn

replaced by φ.
Indeed using i) and the fact that

y>0->\\U7ιp\\2 = \\ip\\2 + \\Vyy\\2

is increasing, its derivative

γeTR-»2tf(ψ9 UγVyιp) = 2^β(ιp, UyVyιp)

is positive, hence ii) follows ([12], 9.12.1).

10 Commun math. Phys , Vol 19
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In order to prove iii), let us show that 1 — Pβ is the projection onto
the subspace of H^'β which is point wise invariant with respect to Tt'.
If p ψ = 0, w e H*"β

9 then

Tt'ψ = TtPβ\p + ιp-Pβψ = ιp V ί e l R .

Conversely, if Tt'ψ = ψ, ψ €Hy>β\ the analytic function defined in ii)
vanishes for all real t and therefore everywhere. In particular

therefore ψ is orthogonal to VβH = DβH and Pβψ = Q.
Moreover let M be the mean in the sense of Godement, then the

bilinear form: _ _
(φ, φ)eH^ x H^^M(^(ψ9 Tt'φ))

is continuous, thence there exists an operator C in H^'β such that

tf(ιp,Cφ) = M(ff'ί(ψ9Tt'φ))
with the properties

C* = C = C2 = T/C

Consequently for V ψ e H*"β

9

Tt'Cψ = Cψ

and

On the other hand, if Pβψ = 0, one has Cψ = ψ so

Pβ^l-C

and iii) follows.
In order to complete the proof, notice that

σ'(Pβιp, Pβφ] = σ(φ, φ) Vφ, φ e H

so that cS^eS; moreover σ is non-degenerate since Pβ\H is injective
(cf. E2), PβH is dense in DβH^β and σr\^jj^ is non-degenerate. The
uniqueness comes from the density of DβH in H for the norm induced

by^.
Let us give now the central result of this section :

Theorem 3.21. // £->αf ΐs α quasi-free evolution of A(H9σ) which
satisfies E 1, E 2, E 3, E 4, and E 5, then there exists at least one K.M.S.
state ωβ for every β>Q. It is the quasi-free state defined by

ωβ(δψ) = exp(- \ &%(ψ, ψ)) \/ψ e H .

Proof. The existence of ωβ follows from E 5, the analyticity from 3.19
ii) and 3.10. (Actually the result is stronger: it is an entire function.)
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Moreover, we have the identities:

Se^φ, Uβψ) - σ(φ, Vβψ) = tf(φ, ψ) (3.22)

tf(<P> Vβψ) 4- σ(φ, Uβιp) = - σ(φ, ψ) Vφ, ψ e H (3.23)

hence the result follows.
This theorem means that under suitable conditions on the evolution

(physically on the energy) we have at least one solution of the K.M.S.
problem.

Notice that the uniqueness of ̂  is by no means ensured by the
previous assumptions (cf. D 5 and E5);^β may furnish another possibility.
We shall take advantage of this fact in the next section; in the last section,
we give its physical meaning.

§ 4. The General Solution

In order to get the general solution of the K.M.S. problem in our
case, let us remark that the relations (3.22) and (3.23) only define <7j
on V β H x H , and so if there exist many extensions, there will be no
uniquess for the K.M.S. state. More precisely, we have the theorem:

Theorem 4.1. Let ίeR-»αr, a quasi-free evolution of Δ(H,σ) which
satisfies E l , E2, E 3, E4, and E5; the general solution of the K.M.S.
boundary condition satisfying (2.15) is of the form

ω(δψ) = J exp(- %&β(φ9 ψ) 4- iρ(ψ)) dm(ρ) VψeH
G

where ρ is a real linear form on H, invariant with respect to Tt, and dm(ρ)
is a positive measure of total mass equal to one on a space (E of real in-
variant linear forms on H.

The proof requires some lemmas:

Lemma 4.2. Let ω be a K.M.S. state with respect to t-*ctt; then the
function Φ:f/-»C defined through

ω(δφ) = exp(- $tf(φ9 φ)) Φ(φ) VφεH (4.3)
satisfies,

) Vφ, ψeH, ίeIR (4.4)

conversely, let Φ:H-+<C satisfying (4.4), if ω defined through (4.3) is a
state, then ω is a K.M.S. state.

Indeed, if one uses Theorem 3.21, the K.M.S. boundary condition
implies that ί e!R-»Φ(7Jΐ/; + φ) Vtp, φ e/ί, is the continuous boundary
value of an analytic function in the strip 0<Imί<β which satisfies
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Moreover

Therefore we are in a position to complete the proof by an argument,
identical to that used in (3.13) and in [5] to prove the invariance of the
K.M.S. state.

On the other hand, the converse result is obvious.
The next lemma is very important and, in a sense, is connected to

the usual replacement of the field operators at zero momentum by their
mean value.

Lemma 4.5. The function Φ0 defined by

Φ0(tp) = exp(- i^((l - Pβ) ψ, ψ)) Φ(ψ) V ψ e H

is of positive type, i.e.

)f e H and λt e <C.

Proo/ The positivity of ω implies that

N

Ψi, ψj)) Φ(ψi — ψj) ^ 0

where

hβ(φ9 ψ) = &β(φ9 ψ} + iσ(ψ, φ) (4.6)

Thus, from Lemma 4.2:

N

where [φ ] denotes any convex combination of translated ψi9 i.e.

Pi~] =Σ*k Tt*Ψi 0 ̂  α,^ 1 ΨieH (4.7)

Σ α k = l ί k e lR. (4.8)
k= 1

Finally, we use proposition 3.19 iii) to get the result. By standard argu-
ments, one shows the existence of a compact space d of characters of H
(considered as an additive group) and of a positive measure on Ct of total
mass one, such that

Φ0(ψ) = $dm(ρ) exp(iρ(φ)).
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(In our special case, one can replace the characters by exponentials
of linear forms (cf. 2.14)). Thus

- exp(- '̂(φ, ψ) + \^((\ - Pβ) ψ,

= exp(- ^β(ψ, ψ)) j dm(o)

and Theorem 4.1 follows.
The previous theorem gives some information on the structure of

the state. We now discuss the structure in more detail.
Let us first state the lemma which is a slight generalization of a result

in [6]:

Lemma 4.9. Let πβHβΩβ (resp. π'βH'βΩ'β)be the representation, the
Hilbert space and the cyclic vector constructed out of the state defined
in (4.1) (resp. by ωβ(δψ) — exp( — ̂ <9^(φ, ιp))), then πβ is unitarily equivalent
to the representation

in H' ®L2((£, m), where,

(ψf) (ρ) - exp(iρ(v>)) /(<?) V / e L2(C, m)

and Vρe(L This last representation has for cyclic vector

Finally, using the previous lemma, we have

Theorem 4.10. The decomposition appearing in Theorem 4.1 is the
central decomposition (see [13, 14] ) of the state. As a special case, the
solutions of the K.MS, problem are primary if and only ifm is concentrated
on a point, and every two primary solutions differ only by a gauge trans-
formation of the second kind.

The proof follows from the explicit construction of the representa-
tion (cf. (4.9)) and from the fact that π'β is factorial.

For the sake of completeness, we state a further theorem :

Theorem 4. 11. If the evolution t-+Tt does not satisfy the conditions
El, E 2, E 3, E 4, and E 5, then there exists no solution of the K.M.S.
problem, such that

is twice differ entiable.

Indeed let us assume such a state ω exists; let π, Ω and H be the cyclic
vector, the Hilbert space and the representation constructed in the usual



136 F. Rocca, M. Sirugue and D. Testard:

way. Let Bω(ψ) be the field operator. One has the relation

J (Ω\(Bω(Ttφ) Bω(ψ) - Bω(ψ) Bω(Ttφ))\ Ω) f ( t ) at

(cf. [16]) so that if'} defined by:

2^'(φ, ψ) = (Ω\Bω(φ) Bω(ιp) + Bω(ψ) Bω(φ)\Ω)

is in ® and, moreover, the corresponding operator D satisfies the con-
ditions D 1, D 2, D 3, D 4, and D 5.

§ 5. Limiting Cases

In this section we shall study the behaviour (as β-^ao or /?-»0).
of the states that we obtained in the previous section. These cases cannot
be studied directly by the K.M.S. boundary condition, but nevertheless,
one can expect to get an integral of Fock states for β->oo and the central
state for /?->0(cf. [15]).

More precisely, we first prove

Lemma 5.1. // ί e R-> Tt satisfies E 1, E 2, E 3, E 4, and E 5, then the
mapping

σ(<p, Ttψ) V

is the Fourier transform of a bounded measure μφ^ such that
— μφ>ψ has no mass on {0}.
— The bilinear form on H x H

^co(<P9V) = μφ,v(-ie) (5.2)

where ε is the sign-function, is symmetric, real and invariant.

Proof Existence of μφ ̂  is obvious; the existence of ̂  follows from
the fact that μφ >v has no mass on {0} (cf. E 2); the symmetry of 5̂  follows
from:

ftψ,φ ftφ,ψ ftφ,ψ ' vp ^/

The next lemma is rather obvious.

Lemma 5.4. μDβψ,φ = μψ,φ.i th(πβ.),

th(πβQ.)

Moreover, we have

Lemma 5.5. i) β^ β0^&βo(ιp, ψ) ̂  &β(ψ, ψ),

ii) ^>,φ)^^oo(^V).
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The first inequality follows from

indeed the function

th
ωe!R->l -- .

th πpω

is positive as long as β> β0.
On the other hand, since the extension is unique (cf. Proposition

3.19 iv)

In order to prove the second point, let us remark that

Jim σ(φ, Dβψ) = lim - μDβψ>{p(l)

= lim μ (- i th(π β .))
β — > oo

using Lebesgue's Theorem. So we only need to show that:

σ(ψ9

But

σ(ψ9 Dβιp) ^ &β(Dβιp, Dβιp) ^ &β(ψ9 ψ) ̂  &βo(ψ9 ψ)

Lemma 5.6. lim £f* (φ, ψ) = £f (ψ,ψ) VψeH
β-+<x> H

for ψ = Dβoφ the result follows from a calculation very similar to the
one performed in Lemma 5.5. For the general case, let {/?,-},-=!... be an
increasing sequence going to infinity. One then makes use of the equi-
continuity of the corresponding sequence in 5.6 with respect to tp, of
the continuity of ̂  (with respect to £fβl), and of the density of DβlH
in H (see e.g. [12] 7.5.5 for a similar argument).

It is clear that ίf^ is in S ([12] 3.15.4); Sf^ is moreover strictly positive
(σ is regular).

Lemma 5.7. The linear operator J from H^°° to H5^00 defined by

^oo (Jφ, φ) = σ(ψ9 φ) Vψ,φεH

is a complex structure.

The proof is clear from (5.2) and Lemma 5.5 ii).

Theorem 5.8. Let ωβ the K.M.S. state defined by (4.1); then

limωβ(δψ) = J dm(ρ) exp(- ̂ w(φ, φ) + iρ(\p))
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The proof follows without any difficulty from the previous lemma.
We are still left with the limit /?-»0 of the previously defined states.
We shall need a state which is rather unfamiliar since it does not define
any field operator, namely the central state of A(H, σ).1

Theorem 5.9. The central state ω0 of A (H, σ) defined by

ω0(<5φ) = 0 if

extends by continuity to Δ(H, σ).

Proof. What we have to prove is that for a a e Δ (H, σ)

Actually the result rests on the following inequality:

N

i = 1

then:
|α0| < ||α|| +ε ε>0.

Indeed let J a complex structure of H, and ωλ(λ ̂  1) the state of Δ (H, σ)
such that 2

ωλ(δy) = exp ί - — Sj(ψ, ιp)\ Vφ e H

then given ε > 0, one can choose λ > 1 such that

N I o 2

Σ ί ^ o /
αf exp Sj(Ψi, Ψi

and
|ωλ(α) - α0| < ε

We can now state the theorem (cf. [15]):

Theorem 5.10. Let ωβ defined in (4.1); then

lίm ωβ = ω0

£/i£ ίimiί being understood in the weak sense.

The proof is quite standard.

§ 6. Translation Invariant Quasi-free Evolutions

The aim of this section is two fold: firstly, we shall come back to the
physical meaning of the various assumptions we have made about the
evolution; secondly, we give an application of the previous results to

1 A. Verbeure told us that he got a similar result (private communication).
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the physically important case of translation invariant quasi-free evolu-
tions precisely defined by

Definition 6.1. Let L2(J^n,dx) be considered as a symplectίc space;
the symplectίc form is, as usual,

σ(f,g) = 1 m S d x f ( x ) g ( x ) (6.2)

We shall denote by J0 the complex structure of L2(1RM) corresponding to
the multiplication by L Translation τx ofϊRn by x eϊ^ acts as a symplectic
operator of Z^O^, dx).

Definition 6.3. Let H be a symplectic subspace o/L2(IRn, dx) invariant
under both translations and J0. A quasi-free evolution, corresponding to
the group of symplectίc operators ί elR->7J, is dίagonalίzed iff

TtJQ = JQTt V f e R . (6.4)

It is translation invariant iff:

τxTt=Ttτx W e l R V x e Π V (6.5)

In what follows, we choose for H the space 2 of Fourier transforms
of infinitely differentiable functions with compact support. A quasi-free
evolution, diagonalized and translation invariant is induced by the
following group of symplectic operators

(TJ] (p) = exp(ίω(p) ί) f(p) V/e 2 (6.6)

if we assume E 1 (cf. [17]).

Definition 6.7. p->ω(p) mil be called the spectrum of evolution.

Notice that our choice of H = @ implies that p-»ω(p) is infinitely
differentiable. Another choice of H would give different restrictions
(e.g. H = SS implies that p-»ω(p)e (9M cf. [18]).

One might think that the infinitely differentiability of ω(p) is a
condition too drastic for some physical situations (e.g. for phonons).
In such a case, one may choose for H the subset of elements of 3) whose
Fourier transforms have their supports in the complement of the origin
and so ω(p) is infinitely differentiable only in the complement of the
origin.

Assumption E 1 is then automatically satisfied. E 2 corresponds to
the fact that the set

β = {peKn;ω(p) = 0} (6.8)

is of zero measure.
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Assumption E 3 is realized by our choice of H\ indeed, one can see
that:

(T(f) ψ) (P) = f ~ ψ(p) ψ e H . (6.9)

Hence

Uβψ(p) = ch(βω(p)) ψ(p) ψ e H ,

Vβψ(p) = ~ i sh(βω(p)) ψ(p) ip E H ,

Condition E 4 expresses the "positivity of the energy", namely

ω(p)^0. (6.11)

Notice that ω(p) actually contains the chemical potential μ

= ε(p)-μ (6.12)

so that (6.11) implies:
i) there exists a number such that ε(p)^α,

ii) μ^a.
It is worthwhile to stress that ω(p) > 0 implies that E 5 is automatically
satisfied, indeed DβH = H. Otherwise, the problem corresponding to
this requirement turns out to be the problem of the extension of the
bilinear form -̂

ιp,φ-+Scth(βω(p))ψ(p)φ(p)dp (6.13)

defined on pairs of functions with support contained in the complement
of Q this classical problem is not yet completely solved. One can only

give sufficient conditions; e.g. if P - - can be defined as a principal
ω(p)

value, the extension in (6.13) is given in an obvious way.
On the contrary in those situations where ω(p) goes too rapidly to

zero near a point of Q, one could expect that the corresponding occupa-
tion number would go too rapidly to infinity and the corresponding
density of the non-condensed phase would be infinite.

The condensation phenomena as expressed by Theorem 4.1 can
occur only if Q is not empty and consequently the chemical potential
is equal to the greatest lower bound of ε(p) since then any distribution
concentrated on Q is a linear invariant form.
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