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Abstract. In this paper the quantum theory of ultralocal scalar fields is developed.
Such fields are distinguished by the independent temporal development of the field at each
spacial point. Although the classical theories fit into the canonical framework, this is not
the case for the quantum theories (with the exception of the free field). Explicit operator
constructions are given for the field and the Hamiltonian as well as several other operators,
and the calculation of the truncated vacuum expectation values is reduced to an associated
single degree of freedom calculation. It is shown that construction of the Hamiltonian from
the field, as well as the transition from the interacting to the noninteracting theories entails
various infinite renormalizations which are made explicit.

1. Introduction

In this paper we consider the quantum theory of scalar field models
for which the classical Hamiltonian reads

H = j β πc

2, (*) + i mgφ'W + V[_φcl(x}\} dx .

Here πcl(x) and φcι(x) denote the classical momentum and field, respec-
tively, and x is a point in configuration space (of arbitrary dimension).
Such a theory is ultralocal - differing from a relativistic theory by the
absence of the term \ \_Vφcl(x)~\2 - and it is distinguished by the inde-
pendent evolution of the dynamics at each point of space1. This feature,
at once the key to their solubility, is likewise responsible for the extremely
delicate nature of these models.

The quantum theory of such models does not fit into the canonical
framework whenever there is nontrivial interaction due to the lack of
canonical commutation relations. There is a field operator φ(x) (requiring
a spacial smearing function alone), and a Hamiltonian 2tf, and conse-
quently there exists a time-dependent field

However, there is no φ(x) = i\_3!f, φ(xj] operator. The domains of the
operators φ(x) and 3tf just do not permit φ(x) to be defined. The simple

1 A number of studies of these models have appeared previously [1].
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operator solution we present in Sec. 2 makes these properties quite clear.
This solution is justified in Sec. 3, along with a discussion of the transition
to the noninteracting theory.

For clarity and since the construction of these models is comparatively
simple, we adopt a physical style of presentation. Rigorous demonstra-
tions may be formulated in a straight-forward fashion from well-known
properties of the usual Fock operators.

2. Construction of the Operator Solutions

We begin our construction of the quantum theory by introducing a
family of annihilation and creation operators A(x, λ) and A^(x, λ) defined
over configuration space and for — oo < λ < oo. They fulfill the standard
commutation relation

[A (x, λ\ Aϊ (*', λ')-] = δ(x- xf) δ(λ- λ') ,

and we introduce a ground state |0> for which

Stating that there is only one vector annihilated by all the A(x,λ), we
clinch the fact that the A operators have the usual Fock representation.
We let c(λ) denote a real, even, nowherevanishing function of Λ, and we
define the translated Fock operator

which obviously obeys the relation

[B(x, λ), B^(x', λ')] = δ(x - xf) δ(λ - λ') .

The function c(λ) is not chosen square integrable, but instead we assume
that

Indeed the ill behavior of c(λ) need only occur at λ = 0, and we will
assume for simplicity that all moments of c2(λ) exist. As a suitable ex-
ample it suffices to consider

The field operator for the models in question is given by
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which is self-adjoint when smeared with real test functions f(x). If we set

φ(f) = ί φ ( x ) f ( x ) d x 9

then the expectation functional

£(/) = <0|έ?ίv(/)|0>

- exp{ - J dx J [1 - eίλf(x}~] c2(λ) dλ}

as follows from standard properties of creation and annihilation opera-
tors [2]. The nonsquare integrability of c(λ) ensures that φ(f) has no
point spectrum [3, 2] and specifically that it does not annihilate any
state vector which is evidently undesirable on physical grounds2.

The form of the integral over configuration space in the exponent
reflects the statistical independence of the field at different space points.
This property is in no way lost when dynamical evolution is included,
and is incorporated in our definition of ̂ . We define the Hamiltonian
by

# = J dx J tf(x, λ) {- ~- ~ + v(λ)\ B(x, λ) dλ ,
( 2. Oλ }

= J dx J A\x, λ) I - 1 ^W + "(4 A(χ> λ"> dλ

[ Z U A j

Here, to obtain the second equation we have linked v(λ) and c(λ) such
that

That is, the dynamics and the field representation are linked. The
equality of the two expressions for ffl is seen to be more plausible when
it is recognized that

where

With A > 0 it is clear that 3tf ^ 0. The state |0> is in fact the only state
with eigenvalue zero.

The canonical appearance of the field and Hamiltonian in the "/I space"
is not accidental. Indeed, λ = — i[λ,ά] = (—id/dλ) generates the con-
jugate operator to λ, as with any respectable canonical theory. However,

2 In the model of Streater (Ref. [1]) the field and momentum have "mixed" spectrum,
annihilate a particular state and do not fulfill canonical commutation relations.
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in the field case

= - ΐ f £f(x, /I) (δ/δλ) £(*, λ) dλ

which is not an operator due to our assumptions regarding c(λ). Further-
more,

[_φ(x\ φ(x')~\ = iδ(x - x'} J £f(jt, λ) B(x9 λ) dλ

which is also not defined. Evidently it is the c-number term which diverges
here, being given by

ίδ(x-x')$c2(λ)dλ.

The Heisenberg field operator is, however, well defined. It follows
that

= ί B ^ ( x 9 λ ) λ ( t ) B ( x 9 λ ) d λ .

The well-defined nature of this expression hinges on the condition that
(P = l,2)

ί\λ\p\e-utc(λ)\2dλ<ao

which is evidently true since our "linking" yields

e-ίΛtc(λ) = c(λ)

and we have already assumed that

jμi^c 2 (/i)rf/ι<oo.

Let us consider the expression

^ e-
ίλf(x^eίλf(x}B(x, λ) dλ

c, λ) -

x B(jc, A) dλ .

The ground state |0> is not in the domain of this operator (unless / = 0),
and one even finds that
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Such a property invalidates the relation of Araki yielding the matrix
elements of the Hamiltonian in such states [4]. In addition, the weak
correspondence principle is not available to us to determine a suitable
form for the associated classical Hamiltonian [5].

Various vacuum expectation values may be reexpressed in terms of
"/l-space" calculations. Consider, for example, the two-point function
which becomes

<0| φ(x, t) φ(x') |0> = <0| φ(x) e~i^9(xr) |0>

= δ(x-x')Sc(λ)λe-ί

where use has been made of the fact that

The analog of the spectral weight function ρ(ω) is found from the relation

- \Δ\ (t) = J c(λ) λe~ίMλc(λ) dλ

= ~] e-
ίωtρ(ω)dω/ω.

2 o

Evidently

-j 00

— J ρ(ω) dω/ω = J λ2c2(λ) dλ<ao,
2 o

while
00

J ρ(ω) dω = J c2(λ) dλ = oo .
o

The detailed high energy behavior of ρ(ω) depends on the specific model,
i.e., on c(λ).

More generally, the n-point truncated vacuum expectation values
are given by

<0| φ(xl9 tj φ(x2, t2) ...φ(xn, ίj |0>Γ

= δ(xι — x2) δ(x2 — x3)... δ(xn-1 — xn)

*Sc(λ)λ(tJλ(t2)...λ(tJc(λ)dλ.

Again the details of the multi-time behavior depend on the specific
choice of c(λ).

Evidently the function c(λ) characterizes the theory and determines
all its physical properties. Two functions c(λ) which differ by a propor-
tionality factor lead to the same definition of A and consequently the
same spectrum for ffl (cf., end of Sec. 3). We note also that distinct c(λ)
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lead to unitarily inequivalent representations for φ(x), representations
which may not even be unitarily equivalent in compact regions of con-
figuration space [2].

Another operator familiar in field problems is the space-translation
generator .̂ This operator is characterized by the property that

with a similar relation holding for other local operators. In the present
models this operator has the representation

g> = - i J dx J A*(x, λ) VA(x, λ) dλ

not unlike that in free theories apart from the additional λ integration.
Evidently, [̂ , ^~\ = 0 as is appropriate for a Euclidean invariant theory.
In addition, &> |0> = 0, and |0> is nondegenerate for a noncompact
configuration space.

3. Justification of Assumptions, and Passage to the Free Field Limit

By the very nature of the ultralocal feature of the models under study
it is clear that the expectation functional E(f) necessarily has the form

£(/) = <0| e |̂0> = exp{- fd*Z: [/(*)]} ,

and thus is the characteristic functional of an infinitely-divisible stochastic
variable [5]. With the added symmetry postulate E(- f) = E(f) it follows
that the most general form for L is given by

where σ is odd [6]. Finiteness of L requires only that

For φ(f) to have only an absolutely continuous (ac) spectrum it is
sufficient if either σ has a discontinuity at λ = 0 or J dσac(λ) = oo, or
both [3]. Formally, the discontinuity is such that dσ/dλ = (2μ)~1λ~2δ(λ),
where μ is a factor of proportionality. We thus accept this possibility
and set
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where, as indicated, the second contribution is chosen with an absolutely
continuous σ. The first term LF[/] generates the expectation functional
of the ultralocal, free Fock field φF(x) of mass μ. Indeed the complete
field is the sum of two independent fields,

which has the representation [2]

φ'(x) = T ίAF(x) + Aί(xJ] + J B*(x, λ) λB(x, λ) dλ .

The ultralocal character of the dynamics requires that the appropriate
Hamiltonian ffl' be bilinear in the creation and annihilation operators,
and with any respect for the canonical theory 2tf" takes the form given by

tf' = μ J dxAl(x) AF(x) + J dx J A*(x, λ) AA(x, λ) dλ .

Hence the two components of φ', φF and φ, evolve in time independently
of each other and thus behave as completely independent, uncoupled
fields. We reject such solutions and assume that σ(λ) has no discontinuity
at λ = 0.

Even though we restrict σ(λ) to be absolutely continuous we can
still recover the free theory through suitable limiting operations. For
instance, the characteristic functional for the field φ(f) becomes that of
the free φ F ( f ) if a sequence c*(λ) is taken such that, roughly speaking,
as ;y-*oo,

In such a case higher moments tend to zero, e.g., /14<^(>1)-»0, etc., and

Obviously a number of sequences have this property, one such being
given by

for some suitable initial choice c^(λ) = c(λ) with

(2μΓ1=ίλ2c2(λ)dλ.

In a crude manner of speaking, the sequence cη(λ) has the effect of
collapsing A-space from the whole real line, — oo < λ < oo, to the single
point λ = 0. Whereas any L2 function of λ was previously admitted,
only multiples of the single "function" λc^λ) are ultimately permitted
reflecting the one-dimensional nature of collapsed "/l-space" in the limit
7/-KX). This insight is useful in understanding the transition of the field

22 Commun. math. Phys., Vol. 18
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operator φ(x) to the free operator φF(x). Consider the expression

+ J A(x9 λ) λc(λ) dλ + J A^(x, λ) λc(λ) dλ

which follows from B(x, λ) = A(x9 λ) + c(λ). The last term vanishes in
virtue of our assumption that c(—λ) = c(λ). In the limit f/->oo, the first
(quadratic) term effectively vanishes because λ - indeed |A| - has a
vanishing average in the only allowed λ state, λc^λ). However, the two
linear terms remain, and as η-+oo,

Vΐμ

where

2μ

The analysis of the transition of the general Hamiltonian to the
free field Hamiltonian is somewhat more delicate because of domain
questions. The resultant Hamiltonian must be proportional to $A^(x)
AF(x) dx which does lead to a well-defined canonical operator φF(x)
= —ί[(pF(x),J^p] with proper canonical commutation relations

Now, the Hamiltonians we must consider all have the form

= idxί[bA(x,λtf[bA(x,λ) ]dλ9

where we have used the relation A = l^b. The expectation value of this
expression in states of the form φ(f) |0> is infinite as we have previously
noted, but to win canonical commutation rules we must make an infinite
renormalization as well by the factor $ c2(λ)dλ.

To incorporate these features let us consider the scaled and modified
Hamiltonians

J dx J [bA(x9 A)]t \bA(x9 λ)~] dλ

where
oo — ε

ί
|ε| ε -oo
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excludes a portion of the λ integration about λ = 0. Note this exclusion
occurs in the numerator as well as the denominator. We next evaluate
the expectation of 3Fε in a normalized state of the form φ(f) |0>. The
result becomes

1

2

<0|

f/ 2

ί/2

Ψ2(f)

(x)dx

|o;

ί

>

3
c δA

Jλ 2 C 2 d/

c-]

i f

λc\ dλ

C2dλ

where we have used (2μ)~1 = J λ2c2dλ and have noted the identical
cancellation of the two ε-excluded integrals. Other A-space states lead
to vanishing expectation values as ε-»0. For example, the function
λ2c(λ) [rather than λc(λj] leads to the normalized mean value

f f 2 ί Ύ W v Γ
2 J / w^j£|

J/2(*)dχί

3 _ 1 ; 2 f , ;c δA c / cj dλ

λ4c2dλ | c 2 r fA
|e|

which vanishes as ε->0 since the numerator remains finite. Consequently
the limiting form of J^ε is sensitive to only the single state λc; moreover,
the mean < J>fε> is independent of the shape of c (depending only on the
norm of λc) which permits the limit ?7-κx) to be taken in the collapsing
sequence c2(X) = η*c2(ηλ\ With the scaling, modifying and limiting
operations understood it follows that

AF(x) dx

the prefactor being uniquely - and correctly - given by the fact that

Lastly consider the space-translation generator

&> = - i J dx J A\x, λ) VA(x, λ) dλ .

To achieve the desired limiting form we need only note that the Λ,-space
integration may be replaced with a sum over orthonormal states, the
first of which is chosen as ]/2μλc(λ). This first term in the expansion
gives the desired expression @*F as ?7->oo, and all successive terms give
vanishing contribution in the limit η -> oo due to the collapse of the λ-
space. Consequently we have

g>-*»F = -i\ax Al(x) VAF(x) .

This completes our discussion of the transition from the interacting to
the noninter acting theories.
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For the free theory the states |/>F = exppφF(/)] |0> are coherent
states for which

The two-point function

is the only nonvanishing truncated vacuum expectation value, which
implies that the spectrum of M*F is {0, μ, 2μ, . . .}. It is noteworthy for the
interacting models that the states |/> = expp<p(/)] |0> are "coherent"
in the sense that [2]

The auxiliary field

is self-adjoint when smeared with a real test function h(x,λ), but it is
unphysical because of the appearance of λ. It follows that the two-point
function

<0| Φ(jc, λ) έΓίJfίΦ(jt', λ'} |0> = i <5(* - x') ( λ \ e ~ i A t \ λ r )

where \λ) denotes (5-normalized eigenvectors in the /l-space. All other
truncated vacuum expectation values for Φ(jt, λ, f) vanish, which makes
the simple structure of the theory immediately evident. It follows, e.g.,
that the spectrum of 2tf bears the same relation to that of A as is the
case in the free theory [2]. However, it is the field φ(x, f) which is the
physical field and not Φ(jt, λ, t). Polynomials in φ(x) (at fixed t) span
the same Hubert space when acting on the vacuum as polynomials in
Φ(jt, λ). In addition, the algebra of operators formed from φ(x, t\ \t\ < ε,
is complete (i.e., irreducible).

4. Conclusion

What theory has been quantized? To gain some perspective on this
problem let us consider the class of examples in which

where y(λ) is an even, positive polynomial. Then it follows that
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Our conditions on y(λ) ensure that

an even polynomial with the constant term vanishing. We note that
vQ(λ) generates well-defined local operators; that is

is a self-adjoint operator when smeared with a space-dependent test
function. Consequently,

, _ „ 1 d2 3
0 _ - o _ - y _ _

also generates a valid local operator, namely

Jfo(jc) = J ̂ (x, λ) k0B(x, λ) dλ .

Note that neither of the last two terms making up fc0 generate, by them-
selves, valid local operators, but only in combination. The Hamiltonian
is given by

On these grounds it is not unreasonable to regard i^o(x) as the potential
term and to regard JΓ0(jc) as the regularized kinetic energy term.

In support of this interpretation we demonstrate that the potential
y~0(jt) can be constructed as a polynomial in the field operator φ(x)
in which infinite renormalizations are involved. To see this we first note
that

φ(x) φ(y) = δ(x-y) J B*(x, λ) λ2B(x, λ) dλ + \φ(x) φ(y)l

where ! ! denotes normal ordering with respect to J3f and B. Thus a
suitable and standard kind of limiting operation leads to

Zφ2(x) = J ̂ (jc, λ) λ2B(x, λ) dλ = φ2(x)

where formally Z-1 = (5(0). Observe that this renormalized multiplication
effectively leads to multiplication in "λ-space". In like fashion

Z2»-ι φ2nφ = j ^tfo λ) λ2nB(x, λ) dλ = φ2n(x) ,

which means that

n(*)= Σ"2 B Φ?"W= Σ«2nZ2"-1φ2''(x) = Z-1

n=l n=l
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It is worth noting that choices of c(λ) with different degrees of singu-
larity are also permissible. In particular, c(λ) may be chosen as

where y ̂  [for φ(f) to have an absolutely continuous spectrum], and
y < \ [for φ(f) to be self-adjoint with a spacially-dependent test function].
In these cases the Hamiltonian operator can again be meaningfully
divided into a potential term and a regularized kinetic energy term.

If y g r f the field φ(x) does not become an operator after smearing
with a spacially-dependent test function. Additional smearing over time
may prove adequate and this can be ascertained by a study of the two-
point distribution

- iA'+ (t) = J c(λ) λe-iAtλc(λ) dλ .

However, if space- time smearing makes φ(jc, ί) an operator one may also
work with the auxiliary field

θ(x) ΞΞ φΐp+1(x) = J B*(x, λ) λ2p+1B(x, λ) dλ

which for sufficiently large p will reallow a purely space-dependent test
function. In this case the truncated vacuum expectation values of the
field θ(x, t) may be adopted as the objects of basic interest, and the
formalism of Sec. 2 applies with evident modifications.
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