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Abstract. It is shown that every type {22} vacuum solution of Einstein's equations
admits a quadratic first integral of the null geodesic equations (conformal Killing tensor of
valence 2), which is independent of the metric and of any Killing vectors arising from
symmetries. In particular, the charged Kerr solution (with or without cosmological
constant) is shown to admit a Killing tensor of valence 2. The Killing tensor, together with
the metric and the two Killing vectors, provides a method of explicitly integrating the
geodesies of the (charged) Kerr solution, thus shedding some light on a result due to Carter.

In a remarkable paper, Carter [1] has shown how to integrate the
geodesic equations in a class of solutions of Einstein's equations including
the (charged) Kerr solution [2], thus reducing the geodesic problem to
one of quadratures. Carter's method depends on a peculiar feature of
these solutions, namely that "the Hamilton-Jacobi equation (for the
geodesic problem) can be solved by separation of variables", in a partic-
ular coordinate system [3]. In the present work we obtain an alternative
procedure which achieves the same ends, but which is in some respects
more transparent than Carter's. In addition, our method provides an
explicit integration of all null geodesies in any type {22} vacuum solution.
As yet, however, we have not been able to adapt our method so as to
obtain charged particle orbits.

By a (vacuum) solution we understand a pair (M, gab) consisting of
a 4-dimensional connected Hausdorff differentiable manifold M, and a
pseudo-Riemannian metric gab of signature (H ) defined on M satis-
fying Einstein's (vacuum) gravitational field equations (with or without
cosmological constant). In order to interpret the physical significance of
a vacuum) solution, it is frequently useful to understand the global
nature1 of the spacetime (M, gab). The global analysis of a (vacuum)
solution, however, is usually a difficult task since in most cases gab is
given only locally. A knowledge of four first integrals of the geodesic

1 For example, the nature of singularities [4] and conformal infinity [5].
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equations t° Vc t
a = 0 greatly facilitates the extension of a locally given

spacetime to a maximal inextendible spacetime (and hence the global
analysis of (M, gab)), since in this case an explicit construction can, in
principle, be carried out [6]. Theorems which assert the existence of
first integrals are, therefore, of interest in general relativity.

The spacetime (M, gab) is said to admit a first integral of degree m
if a scalar χ, satisfying t° Vcχ = 0, is defined along any geodesic with
parallely propagated tangent vector ίfl, where χ is of the form
χ = Kaί...flmίαι ... ta™ for some tensor Kaι Λm. The requirement that
χ be constant along geodesies is equivalent to the equation2

PA...αw) = 0. (1)

We shall call a (totally symmetric) solution of Eq. (1) a Killing tensor of
valence m. When m = 2, we shall refer to χ and Kaι ttm as quadratic.

The case m = 1 is well known, and Eq. (1) is then Killing's equation
Ϋ(aζb) = O Moreover, the vector ξa has a direct geometrical interpretation
as the tangent to the orbit of a point of M under the action of a one-
parameter group of isometries of (M9gab):^fξgab = 0. No such direct
geometrical interpretation of Kaι . flw for m > 1 satisfying Eq. (1) appears
to be known.

In certain cases of global analysis, it is sufficient to know the conformal
structure of (M, gab), for example, in the study of conformal infinity [5].
In this case, a knowledge of four first integrals of the null geodesies will
suffice. The spacetime (M, gab) is said to admit a conformal Killing tensor
of valence m if there exist on M tensors Kaι αm and kaι Λm_ 1 such that

'(α-^-αi . ..am) = ^(ααi ... arn-29arn- ιαm) (~)

Eq. (2) is equivalent to the requirement that Kf l l αm / f l l . . . /flm be constant
along null geodesies with parallely propagated tangent vector la. In
particular, for m = 1 we have V(aξb} = φgab for some scalar φ, and the
conformal Killing vector ξa defines a conformal symmetry of (M, gab)
in much the same way that a Killing vector defines an isometry of (M, gab).
Again however, no such interpretation of Kaι ttrn for m > l satisfying
Eq. (2) appears to be known.

It will be observed that any fixed linear combination of symmetrized
outer products of (conformal) Killing tensors is again a (conformal)
Killing tensor, and that the metric itself is a Killing tensor. A (conformal)
Killing tensor which is constructible from the metric and other (con-
formal) Killing tensors in this way will be called reducible, otherwise
irreducible.

2 Round brackets denote symmetrization of the indices enclosed; square brackets
denote antisymmetrization.
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In this paper we investigate the case m = 2, the existence of quadratic
(conformal) Killing tensors, for vacuum solutions whose Weyl tensor3

is of type {22}. We will prove the following:

Theorem 1. Every type {22} vacuum solution (with or without cosmo-
logical constant) admits a quadratic conformal Killing tensor which is
irreducible provided the spacetίme admits fewer than four independent
Killing vectors.

Since every type {22} vacuum solution admits either two or four
independent Killing vectors, it is a consequence of Theorem 1 that four
first integrals of the null geodesies equations for these solutions can be
written down explicitly. More particularly, we also prove

Theorem 2. The charged Kerr solution with or without cosmological
constant [1, 2, 10] admits a quadratic Killing tensor which is irreducible
provided the angular momentum parameter a is not zero.

The proofs consist of explicitly constructing the tensor whose
existence is asserted. The construction follows from the spinor form of
the second Bianchi identity.

Let Cabcd be the Weyl tensor of a vacuum solution. Then since
Rab = Rc

acb = Λgab, where Rabcd is the Riemann tensor and A the cosmo-
logical constant, the second Bianchi identity V[aRbc}de = 0 becomes
VaCabcd = 0. The Weyl spinor ΨABCD = Ψ(ABCD] is defined by4

Cabcd= ^/ABCDεA'B'εC'D' ~^~ SAB£CD^ A'B'C'D'

so the spinor Bianchi identities are

0 (3)

where εAB = -εBA, εA

A = 2, and VCBAB = 0 with SABSA,B, = gab. Let oA,_ιA

be a spinor dyad satisfying OA ι
A = 1. Then the real null vectors la = oAoA>

and na = ιAΐΛ> together with the complex null vectors ma = oAϊA> and
-α = ̂ A' form a nulj tetrad |;α? na^ m«? ̂ «| Qn M ^-j

The Weyl spinor is completely determined by the five complex
scalars Ψ0, ...,Ψ4 of Newman and Penrose [12] defined in terms of
ΨABCD an<i tne spinor dyad oA

9 ι
A. In the case of a type {22} Weyl spinor,

3 See, for example, Pirani [9], Penrose [11].
4 We use "Batelle conventions" for tensors and spinors: see Penrose [11]. Accordingly,

latin indices are just abstract labels which do not take on numerical values; hence, they do
not refer to any coordinate system or tetrad basis. On the other hand, Gothic indices do
refer to tensor or spinor components in the normal way. These conventions allow one to
write the tensor-spinor correspondence without "σ's", e.g., gab = εABεA>B>, δb

a = εA

BεA

B',
gab _ £AB£A'B' rγ^Q spinor "Kronecker delta" is written εA

B to avoid possible confusion in
raising and lowering its spinor indices.
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Ψ0 = Ψί — Ψ3 = Ψ4 = 0 provided OΛ and ιΛ are chosen to be repeated
principal spinors of ΨABCD (so ̂ at Λe corresponding null vectors la and
na lie along the repeated principal null directions of Cabcd). The only
freedom, apart from OA -» r4, r4 -> — OA, in the choice of OA and ιA for a
type {22} vacuum solution is the two parameter connected subgroup
of the Lorentz group acting in the tangent space at each point which
leaves the corresponding null directions invariant. The action of this
subgroup on OA, ιA is given by oA-^λoA, ιA-+λ~1 ιA where A is a complex
scalar. The normalization OA ι

A = 1 is preserved.
If we let ψ = 6 Ψ2, then the Weyl spinor of a type {22} vacuum solution

is given by

We proceed to prove Theorems 1 and 2 by a sequence of lemmas.

Lemma 1. Let χBC = ψ~i/3o(BιC}. Then

f( l*Bc = 0. (5)

Proof. Consider the quantity VA

A\\pnoBιc^\. We shall show that, if
n = — 1/3, every dyad component of this quantity vanishes by virtue of
the vanishing of the corresponding component of Eq. (3).

Writing out the Bianchi identity (3) using equation (4) and trans-
vecting with ιp~1ιBocoD gives

• {IA VAA'(hBθcoD]} + OA VAA'(ι(BιcoD})-\ = 0 .

Expanding out the terms in square brackets and making use of the relation
SA

D =ιDoA — ODIA, we find

ιp~1oA VAA'\p -30% VAAΌD = 0 . (6)

The analogous component of F$'[

OAOBIC VA

A\ιpnoBιC}-\ = ̂ nψnlψ-ίoA VAA'ιpΛ-L

no
DιA VAAOD~\

which vanishes, by Eq. (6), if n = — 1/3. Therefore

and similarly

The components OAOEOC F^'[φ~1/3^zc)] and ιAιBιc

vanish by virtue of the shear-free conditions on OA and ιA, which again
are consequences of (3). Hence V(A[_ψ~1/3oBιC}] = 0.
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Before completing the proof of Theorem 1 we need to translate
Eq. (5) into a tensor form. To this end, we define a real symmetric trace-
free tensor Pαb = χABχA>B,.

Lemma 2. There exists α vector Pα such that

Proof. We first obtain the identity

λ^(a nbc) — Z(azbzc)_ (A B C) (A1 B' C') (O\
2°(aQ9 9b0c0) — °ao0bo°co ^A0

 8B0

εC0

 bA'Q %& %6 ' W

Denoting the left-hand side of (8) by Ej£goco and the right-hand side by
Paoboco^ we observe that each is idempotent:

πabc Jjaoboco _ τ?abc τjabc f?aoboco ... πabc

•pabc TjaoboCo __ πabc _ τ?abc faQbQcQ .
^aobQCo* aibia ^αi^ici L a0b0co ̂ α i&ici >

and finally that the traces are equal :

τjabc _ πabc _ Λ
^abc Γabc ^

(since δ(*δ$δϊp = ^n(n + l)(n + 2) if if is an w-dimensional Kronecker
delta). The required equality E^ίQCo = Fj£ξΌCQ now follows. For, the above
relations imply that the left range of F^QCO contains the left range of
Eaboboc0> but also that these ranges have the same dimension (namely 4),
so they are equal. Similarly the right ranges are equal. An idempotent is
uniquely determined once its left and right ranges are both fixed. Thus
Eq. (8) is established.

Now we apply Eq. (8) by transvecting it on both sides with VaPbc.
Noting that VaPbc = χB,c, VA'AχBc + lBc ^AA'Xβ'C' and using (5), we see
that P(aogboCQ) = y(aopb0c0) where Pa =±gbc V(aPbφ which establishes
Lemma 2.

Lemma 3. The conformal Killing tensor Pbc is irreducible provided the
spacetime admits fewer than four independent Killing vectors.

Proof. Every type {22} solution admits either a two or a four para-
meter group of isometrics [16]. Since the geodesic equations admit four
first integrals in the latter case, we restrict our attention to those solutions
possessing only two independent Killing vectors. We wish to show that
the tensor Pab is not expressible as a linear combination of the metric
and the Killing tensors which are symmetric outer products of the two
independent Killing vectors. The two Killing vectors span a 2-plane T
at each point and, as T is non-null almost everywhere, we need only
consider regions in which T is timelike or spacelike.
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If T is timelike in some region of the spacetime, then except perhaps
on certain (at most) three-dimensional subsets, T does not contain a
repeated principal null vector. At some generic point p, let the real null
vectors in The aAoίA' and βAβ~A'. Then, at p, the reducible Killing tensors
are linear combinations of εABεA,B,, α^α^ά^/ά^/, a(AβB}oί(A'βB'), and
βAβββA'ββj_ These three expressions are annihilated when transvected
with aA (x,BβA"β*'', but χABχA'B' is not since none of %AoA, a

AιA, β
AoA, β

AoA,
or βAιA vanishes. Thus, χABχA>B' is irreducible when one of the Killing
vectors is timelike.

If, on the other hand, T is spacelike in some region, then T will be
spanned by complex linear combinations of a pair of complex null
vectors α^/P' and βA"ΰA'. It is known in this case that, at a generic point,
neither of the repeated principal null vectors la or na is orthogonal to
both spacelike Killing vectors5. Therefore, none of the scalars OCAOA,
uAιA, β

AoA, β
AιA vanishes, except perhaps on certain three dimensional

subsets of the spacetime. The reducible Killing tensors in this case are
linear combinations of u,Au,BjtA,]iB.9 a(AβB}a(A,βBΊ, βAβBβA>βB>, and
εABεA'B'9 and the fact that χABχA'B> is irreducible then follows, as before,
by transvection with α^αδα^ αβ/ at a generic point.

This completes the proof of Theorem 1.
A quantity such as χBC, satisfying (5), could be called a Killing spinor

and has some interest in its own right. Note that if

KAKA' FAA,κB = Q, (9)

then

κAκA'FAA,(κBκcχBC) = Q (10)

by virtue of Eq. (5). If Eq. (9) holds, then the null vectors ka = κAκA'
are tangent to null geodesies γ (since (9) implies kc Vck

a = ϋ). Eq. (10)
tells us that the complex scalar χ = κBκcχBC is constant along γ. The real
scalar \χ\2 is the conformal quadratic first integral obtained from the
conformal Killing tensor Pab. But in addition, argχ is also constant along
γ and this gives us further information. We have seen that the constancy
of |χ|2 helps us to locate the null geodesies in M. In an analogous way,
the constancy of argχ enables us to determine the parallel propagation
of "flag planes" (i.e., polarization planes) along γ. For, Eq. (9) states, in
addition to the fact that the fc° are tangent to null geodesies, that the flag
plane (cf., [9,11]) of KA is also parallelly propagated along y. Knowledge
of χAB defines for us this parallel propagation since (for example) if
χ > 0 at one point of y, then χ > 0 also at every other point of γ. This
fixes the flag plane of KA in relation to χAB.

5 We wish to thank W. Kinnersley for discussions on this point.
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Thus, knowledge of any (non-zero) χAB satisfying (5) supplies the
information of the propagation of polarization of (say) a photon along
any null geodesic y.

The same would also hold for any "Killing spinor" with arbitrary
(unequal) numbers of (symmetric) upper and lower indices :

with

Eq. (1 1) is of interest also in other contexts. In flat spacetimes it represents
in a conformally invariant way the general trace-free symmetric twistor

[13,14] of valence (V
W

Eq. (7) can be put in a form which is more suitable for the calculations
involved in the proof of Theorem 2 as follows. Letting

αb

oAoA' = l\ ιAΓA' = na, and ό'2/3^1/3 Ψ2~
113 = vΓ1/3γΓ1/3 = Σ

we have
Pbc = Σ(l(bnc}-$gbc), (12)

since Pbc is tracefree and lan
a = 1. Define Qbc = Σl(bnc}. Then the equation

PίΛ) = P(aβbc) implies

F(«βfro = Q(agbc) (13)

where Qa = Pa + ̂  VaΣ- Suppose now that there exists a scalar Q such
that Q β =F β β, and let Kbc = Qbc-Qgbc; then V(aKbc) = V(aQbc}

— Q(a9bc) = 0 and Kbc is a quadratic Killing tensor.

Lemma 4. The Kerr solution [10] admits Kbc as a quadratic Killing
tensor.

Proof. The proof consists in finding the vector Qa given above and
showing that Qa is a gradient. The Kerr metric has been expressed in a
variety of coordinate systems [10, 15, 3]. For the purposes of the explicit
calculation to follow, the most convenient of these is

l-2mrR~2 -1 0 2mra2R~2 sm2θ

- 1 0 0 αsin2θ

0 0 -R2 0

2mra2R~2 sin20 a sin2θ 0 -(r2 + a2 + 2mra2R~2 sin2θ) sin2θ

where α, b = 0, 1, 2, 3; x° = u, x1 = r, x2 = θ, x3 = φ, and R2 = r2

+ a2cos2θ. There are two Killing vectors with components, in these

(14)
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coordinates ξa = (1,0,0,0) and ηa = (0,0,0,1), corresponding to the fact
that gab is independent of u and φ. The contravariant components
of gab are

-,2/J /~2 , ^2\r>-2-a2R~2

-(r2 + a

0

-aR~2

sm

(2mr-r2-a2)R-2

0

-aR~2

0

0

R

0

(15)

The repeated principal null vectors la and na to which the above
coordinates [u, r, θ, φ} are adapted, have components

p = (0, -1,0,0),

na = R~2(r2 + a\ + a2- 2amr\ 0, a) ,
(16)

and satisfy /Q Fα/ c = 0, lan
a = I. The latter normalization precludes affίne

parametrization of na. The complex convergence ρ of the null geodesic
congruence defined by /α is given [12] by ρ = — (r — jαcosθ)'1, and the
only nonvanishing dyad component of the Weyl spinor is Ψ2 = — mρ3

where m is the mass parameter. Therefore

y-l/3 y-1/3 = m-2/3(r2 + fl2 C()S20) = m-2/3^2

The scalar £ of Eq. (12) is given by Σ = (6m)~2/3R2. Absorbing the
constant factor into Qbc we put Qbc = jR2l(bnc} so that

0

a

α2 0 0

a2-2amr 0 α

0 0

0 0

(17)

The calculation of the components of the vector Qa satisfying
p(αρ&c) = Q(agbc) is greatιy simplified by noting6 that

p(αρbc) ^ ̂ (o^ρbe) _ QΦg^)

in any coordinate system, where 5e denotes the ordinary partial derivative
5/5xe.

The vector Qa is then defined by

Q(agbc) = ̂ (α^gbc) _ ρe(oδβf l fbc) ^

The calculation is further simplified by noting that Q2α = 0 so that the
32g

bc = (d/dθ)gbc are not required, and also that d2Q
bc = 0. We find

g* = 2rR~2(r2 + α2, r2 + α2 - 2mr, 0, α)
6 We wish to thank R. Geroch for pointing out this fact to us.
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so that ρα = 0αcρ
c = (0, -2r,0,0)= Va(-r2). We conclude that the

components

define a quadratic Killing tensor for the Kerr solution. Explicitly,

-r2a2R~2sm2θ (r2 + a2) R~ 2 a2 cos2 θ 0 -ar2R~2

(r2 + α2) (r2 + «2-2mr) 0 a3R~2cos2θ

R~2a2cos2θ R~2a2cos2θ .(18)

0 0 -r2R~2 0

-ar2R~2 a3R~2cos2θ 0 -r2R'2sm~2

In order to complete the proof of Theorem 2 we note that the contra-
variant components of the metric of the charged Kerr solution with
cosmological constant are obtained from those of the metric of the Kerr
solution by replacing 2mr — r2 — a2 in g11 of Eq. (15) by 2mr — r2 — a2

+ e2 + j$Ar4, where e is the charge parameter and A the cosmological
constant. Replacing K11 in Eq. (18) by R~2(r2 + a2 -2mr- e2 -^Ar4)
-a2cos2θ, a straightforward calculation shows that V(aKbc} = 0 in the
more general case also.
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