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Abstract. An extensive analysis of the Dirac problem of canonical quantisation is
reported. In this a known solution [1] has been found to be unique to within a canonical
transformation under a certain prescribed condition. This proves a conjecture duc to
Streater [2]. A further canonically inequivalent solution is obtained by relaxing this con-
dition. The results obtained are discussed in terms of the derivation algebras pertaining
to the Classical and Quantum Lie brackets. Applications to the study of higher symmetries
and to realisations of Lie algebras as polynomial functions of canonical operators are
pointed out.

1. Introduction

The relationship between the Poisson bracket and the commutator
bracket forms the basis of one of the most important connecting links
between Classical and Quantum mechanics [3]. This is because each
define a Lie bracket and the corresponding Lie algebra, which may under
suitable conditions be extended to a Lie group [4], then describes the
underlying space-time symmetries of the mechanical system. Should we
wish their space-time symmetric structures to be the same we would
require these Lie algebras to be isomorphic. Such a condition leads to
the important conclusion that the phase space variables which define
position ¢ and canonical momentum p are mapped into operators Lg
and Lp satisfying the canonical commutation relations [3]. However
there are certain well-known difficulties which arise in attempting to
define such a transformation [5, 6]. In particular the Poisson bracket
Lie algebra of all polynomials In g and p is not isomorphic to the com-
mutator bracket Lie algebra of all polynomials in Lq and Lp [6]. This
important fact contributes to some of the distinguishing features of the
two mechanical systems. [t can give rise to ambiguities in the quantisation
of Classical systems, though these can often be overcome in practice due
to the simplicity of the operators involved [7]. It is pertinent to the
description of the relationship between the recently discovered higher
local symmetries of classical systems and their possible quantum
analogues [8—10]. It results in the usual quantisation procedure not
being co-ordinate free [1].
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In the present development we give a detailed analysis of the so-called
Dirac problem [2, 3]. This is concerned with the construction of an iso-
morphism between the Poisson bracket Lie algebra of Classical mecha-
nics and the commutator bracket Lie algebra of Quantum mechanics.
The solution to this problem serves the purpose of defining a possible
canonical quantisation procedure. Our investigation not only helps to
clarify the relationship between Classical and Quantum mechanics; but
at the same time we are able to propose possible alternative quantisation
schemes which might prove suitable for a field theory. Thus we have
proved (cf. §9) that for polynomial maps, Souriau’s solution [1] is
unique to within canonical equivalence. Whereas a further canonically
inequivalent solution is also obtained by extending the image space of
the Dirac map to include inverse powers of canonical operators.

The mathematical problems which arise in this analysis are of interest
in themselves and are algebraically non-trivial. Thus we are led naturally
to the problem of finding all possible realisations of a given Lie algebra by
polynomial functions of canonical operators [10] and to the question
of the existence of the quantum canonical conjugate of a given poly-
nomial function [11,12].

In much of the analysis to follow we consider the case of just one degree
of freedom. That is we admit only one pair of canonical variables. Except
in certain instances, the generalisation to an arbitrary finite number of
degrees of freedom is trivial and immediate. For mathematical con-
venience we omit the imaginary number i from the canonical commuta-
tion relations and set Planck’s constant equal to one. This does not affect
the analysis.

2. Lie Brackets and Derivations
We recall the definitions of a Lie algebra and of a derivation [13].

Definition 2.1. A Lie algebra & is a linear space over a field K (which
we shall almost always take to be the complex numbers C) closed under
multiplication defined by the Lie bracket [ ,] which satisfies:

1) [ax+By),z] =alx, 2]+ By, 2], 2.1)
2) [xyl+[yx]1=0, (2.2)
3 [x Dzl + [y, [z x]]+ [z [x y1] =0, (2.3)

for all x,y,ze ¥ all a, € K. The ideal generated by all elements of the
form [x, y]: x,y €% is said to be the derived algebra ¥’ of &.
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The Lie algebras with which we are concerned also possess an associa-
tive multiplication rule which satisfies

4 [xy. 2] =xly, 2]+ [x. 2]y (24)

for all x, y, z e Z. It is the different commutativity properties of this latter
multiplication which distinguishes the Classical and Quantum Lie
brackets.

Definition 2.2. A derivation D of a Lie algebra ¥ is a linear map
D: ¥ — & satisfying

D[x, y]=[Dx, y]+[x, Dy] 2.5)

for all x,ye L. A derivation D is said to be inner if there exists an xe ¥
such that

Dy =[xyl (2.6)

for all ye &. It is said to be outer if it is not of this form.

The set of all derivations D(¥) of & form a Lie algebra under the Lie
bracket given by

[Dy, Dy]1x = Dy(D,x) — D,(D; x).

This is known as the derivation algebra of #. The set of all inner
derivations ad(.%) of & form an ideal in D(¥) homomorphic to .#. We
extend the notion of derivation and inner derivation to include the
following:

Definition 2.3. Given %, a subalgebra of ¥,, then a derivation D of
& into &, is a linear map D : ¥, — ¥, satisfying (2.5) for all x,ye ¥,;.
D is said to be inner if there exists an x € £, such that (2.6) holds for all
ye .

The question of the existence of outer derivations of a given Lie
algebra & is an important one as it reflects the structure of Z. Thus if &
is commutative, each of its inner derivations is the zero map. Whereas
any non-zero linear transformation is a derivation and hence an outer
derivation. At the other extreme if . is semisimple then all its derivations
are inner (Ref. [13], p. 74). Again if the derived algebra ¥’ of & is semi-
simple and ¥’ % % then % possesses both inner and outer derivations
(Ref. [13], p. 103, Ex. 7). & also has this property if it is nilpotent
(Ref. [13], p. 29, Ex. 15).

If two Lie algebras %, and %, are isomorphic then so are their
derivation algebras D(%,;) and D(¥,). Consequently if &, possesses
outer derivations and %, does not, then they cannot be isomorphic.
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This fact happens to be particularly useful in the comparison of the
Classical and Quantum Lie brackets and leads to a better understanding
of the solutions to the Dirac problem [14]. For this reason we start with
some results concerning the derivations of these algebras.

3. Characterisation Theorems for Derivations of the Poisson Bracket

Let P denote the set of all complex polynomials in the real variables
g and p. This forms an infinite dimensional Lie algebra under the Poisson
bracket defined by

{fsg}z_—“ﬂ—ﬁ—. 3.1

In addition, (2.4) is satisfied with respect to pointwise multiplication
of polynomials and this multiplication is commutative. The centre of P
is the one dimensional space of constant functions. Inner derivations
always vanish on the centre whereas outer ones need not. The following
characterisation theorem is due to Wollenberg [15].

Theorem 3.1. (Wollenberg). Every derivation D of P is of the form

Df={aa,f}+ﬁ<f—ocpg—£—(l—a)qa—f)

y 3.2)

with a,e P and o, pe C.

The importance of this result is that it expresses an arbitrary derivation
as a sum of an inner derivation {a,, f'} and an explicitly determined outer

derivation ( f—oap—=——(1—a)q f{;—qf—) This decomposition is not
unique and in particular the choice of o is arbitrary. Recalling that
D(1) = 0 for inner derivations, we see from (3.2) that ad(P) is an ideal of
codim. 1 in D(P). In the following we present a different and somewhat
shorter proof than that given by Wollenberg and .extend its validity to
certain subalgebras of P. The essentially new step is contained in the
following

Lemma 3.1. Given D a derivation of P, then
af of
ap

Df= 34

M) (f (33)

af af
for all feP.

15*
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Proof. The proof is by induction on the degree of f. We first note that

0Dlg) , D)

5 5 ={Dq,p} +1{q,Dp} = D{q,p} = . (34
q P

Similarly it is readily verified that D(1) is a constant. Expanding
{D f, p} using (2.5), (3.1) and (3.4) we obtain

[ 3f py. 2 9D®) | of aD(g)

As 0f/0q is of lower degree than f, we may assume (3.3) to hold for
D(0 f/0q). Then substitution of this into (3.5) gives after a little manip-
ulation

{Df_ﬁi afo —D(l)(f L af)} p} 0.

P op 0q

A similar result may be shown to hold with g replacing p in the right
hand position. Hence the square bracketed term is a constant a. Setting
p = q =0, and using the linearity of D we find that o = 0. Since (3.3) holds
trivially when f is of degree zero, the lemma is proved.

This result gives an expression for computing D f which may be
compared to that for differentiation. Moreover it shows that D is com-
pletely determined by its value on the canonical variables ¢ and p. From
it the theorem follows easily. Thus for each complex number o we may
find an a, € P such that

Jda da
ap“ = —(Dg—agD(1)) aq“ =(Dp—(1—a) pD(1)).

Indeed these equations are integrable by (3.4) and the simple-
connectedness of the Euclidean plane E2. Substitution back into (3.3)
and identification of D(1) with 8 gives (3.2) as required. It is in the above
integration that the uniqueness of the expression for D is lost.

We note in passing that Lemma 3 of Ref [15] follows imme-
diately from the above derivation. The theorem extends trivially to the
case of n degrees of freedom. It applies immediately to derivations of
P into C* (the space of infinitely differentiable functions). It can be
extended to derivations of C* into C® by imposing suitable continuity
conditions on D. Finally it holds for the real as well as for the complex
field.

The inductive proof given in the above depends crucially on the fact
that g and p are elements of the algebra P for which we seek to construct
derivations. The question then arises as to whether similar results hold
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for a subalgebra R of P not containing the canonical variables ¢ and p.
As our previous considerations indicate the answer to this depends on
the size of the derived algebra R’. We have not attempted an exhaustive
analysis of this situation, but the following result has been obtained.

Theorem 3.2. Given R a subalgebra of P generated by monomials with
R =R'. Then ad(R) is an ideal of codim.0 or 1 in D(R).

Proof (partial). We first identify the subalgebras R of P for which
R = R'. These are described by the following lemma.

Lemma 3.2. Let R satisfy the conditions of Theorem 3.2, then one of
the following hold

1) Lin.span(q?, p?, qp) = M, CR,

2) Lin.span(q, gp® qp) = M, CR,

3) Lin.span(p, g*p, qp) = M; CR.
where the linear span of the said functions is taken over the complex field.

We note that the M, form Lie subalgebras of R which are all iso-
morphic to sl(2, €). As this algebra is simple all the derivations of M; into
M, are inner. For a proof of the theorem we must also characterise the
derivations of M, into R. It turns out that these are also inner in the sense
of Definition 2.3. We remark that this result depends on the particular
choice of R as image space of the derivations and may be shown to
fail if this space is further enlarged to include inverse powers of g and p.

We shall state without proof:
Lemma 3.3. The derivations of M;:i=1,2,3 into R are all inner.

Consider now the case M; C R. The above lemma shows that given
an arbitrary derivation D we may subtract from it an inner derivation
such that D vanishes on M;. Having done this we may show that

d af
Df=v<qa—§+pa—£—2f) (3.6)

for all fe R with ye . This defines a one parameter family of outer
derivations non-zero on the complement in R of M;. Thus if R = M, then
all the derivations of R are inner. Otherwise the inner derivations form
an ideal of codim.1. The argument proceeds in the same fashion for
M, and Mj; and so the theorem is proved.

We remark that D as given by (3.6) coincides with second term of (3.2)
when the identifications o = 1/2 and f = —2y are made. Hence essentially
the same result is obtained here as before. The situation differs markedly
if R+ R'. Consider for example the Lie algebra generated by the set
S =(g>, p*). Then any linear map from S to R defines a derivation of R.



216 A. Joseph:

On the other hand for an inner derivation

0 1
o)

0 (1 3

aq (q2 bl ))‘0

so that the inner derivations form an ideal of infinite codim. in D(R). Yet
the condition that R + R’ does not imply the existence of outer deriva-
tions. For example let R be generated by the set (g, gp), then R4 R’; but
all the derivations of R are inner. Actually this case is rather special as
the Lie algebra is finite dimensional and does not involve polynomials
higher than quadratic. Thus it may still be true for the infinite dimensional
case that R+ R’ implies the existence of outer derivations, though we
are unable to prove this conjecture.

We now turn to the corresponding problem of determining the deri-
vations pertaining to the commutator bracket Lie algebra. Though the
analysis is similar, it is yet subtly different, a circumstance which can be
accredited to the noncommutativity of the associative multiplication
defined in (2.4).

4. Characterisation of Derivations for the Commutator Bracket

Let & be the associative, distributive algebra over the complex field
generated by finite linear combinations and finite powers of the elements
g, p and the identity 1, where

qp—pq=1. (4.1)

Then £ becomes a Lie algebra with respect to the commutator Lie
bracket defined by

[figl=fg—gf 4.2)

for all f,ge 2. It may be verified that the associative multiplication
defined in £ satisfies (2.4), but this multiplication is not commutative.
We shall use 2™ to denote the corresponding algebra generated by m
mutually commuting (independent) sets of elements satisfying (4.1).

We remark that no assumptions need be made at this stage concerning
possible representations of ¢ and p. This is because the problem of
determining the derivations of 2 is a purely algebraic one. For this
purpose we recall some of the relevant algebraic identities. Let adx : x e &
denote the linear transformation of 2 into £ defined by

adx:y—(adx)y=[x,y]

for all y e 2 Then by induction on the recurrence relation

m+1

adx = xadx™ —adxadx™+ x"adx
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it may be shown that

adx" =Y (f)(— DF xR adtx . 4.3)
k=1

This holds for all positive integer m. As a special case setting x = p
we obtain

[q,p"]=np""" (4.4)

for all positive integer n. Combining (4.3) and (4.4) then gives

(m,n)
)= % () () 0kt @

k=1

where (m, n) denotes the smaller of the two integers m and n. (Eq. (4.5) has
been given by Rosenbaum [16] whose derivation we have simplified.)

From (4.4) it may be seen that adg acts like differentiation on poly-
nomials of p. A similar statement applies to adp. A particular consequence
of this fact is that if an element x € 2 commutes with g (or p) then it is
independent of p (or g). Hence the centre of £ is the one dimensional
space of constant multiples of 1. These facts play an important role in the
subsequent analysis as they do also in the representation theory (Ref. [7],
pp. 137-138).

We are now ready to present the main result of this section.

Theorem 4.1. The derivations of 2 are all inner.
Proof (partial). There are two stages in the proof. We first show:
Lemma 4.1. A derivation D of 2 is inner if and only if D(1)=0.

Proof. Necessity is immediate because an inner derivation must
vanish on the centre. The proof of sufficiency is by induction on the
degree of f.

We next show that for any derivation D of 2, D(1) = 0. To this end we
note without proof:

Lemma 4.2. Given D a derivation of ? for which D(1)=al:aeC,
then modulo an inner derivation

D(q"p"+p"q") = % (2—m—n)(q"p"+p"q") (4.6)

for all positive integers m and n.

The theorem now follows easily. From (4.6) we obtain

DLq".p'] = [D(g". P71+ [q" D) = 7 (4=m—n)[q"p"]. (47)
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Recombined with (4.6) we have by the linearity of D that
m_.n (x m..n a m n
Dig"p") = 5 2 =m=nq"p"+ = [q" p]. (4.8)

From this may recompute D[q™, p"] using (4.5). To do so we require the
identity

(rium—kz,:wk)(— e B m! n,!,‘, ke
k=1 t=1 (Wl“k—t)‘(f’l"'k—t)’k't'

(4.9)

m! n!

m=u n—u
q .

(m, n)
= — 1 “

,,;( P Y P P

This may be verified by making the change of variable defined by
2k=u+v, 2t =u—v and summing over v. Then comparing (4.7) with
the expression for D[q"™, p"] which results on first expanding the argument

[4™ p"] using (4.5) and substituting from (4.8) and (4.9), we obtain
(m,n)
ay (=" ”) (2K — 2k ki gm*pr k=0,
K=1 k) \k

The term inside the summation cannot be zero if both m, n > 3. Thus
o =0 and the theorem is proved.

Though 2 itself does not admit outer derivations, there are a number
of important subalgebras of # which do admit them. Let us denote by
Ry, R,, R4 the subalgebras of 2 defined as the linear span of the sets
S1, S5, S5 where

Sl = (la q, D, (12, pzv qp) ’
S,=(1,4""", g"p: m a non-negative integer), (4.10)

S;=(1, q"p"+p"q™: m, n positive integers).

In addition we shall use #,™: i =1, 2, 3 to denote the corresponding
algebras generated by m independent sets of canonical operators. Then
from the proof of the above theorem we have the immediate corollary.

Corollary 4.1. The inner derivations of Z™: i=1,2,3; m a finite
positive integer, form an ideal of codim.1 in D(R;™). For R, and R, the
outer derivations are given by (4.8) with n =1, 2. For R4 the outer deriva-
tions are given by (4.6).

It turns out [17] and Ref. [7], p. 141, that #, and %, are just the
subalgebras of 2 which admit an isomorphism with the corresponding
subalgebras defined with respect to the Poisson bracket. This circum-
stance indicates that we may anticipate less difficulty in the quantisation
of simple mechanical systems. Thus the Hamiltonian for the harmonic
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oscillator and the Runge-Lenz vector of the Coulomb problem are
readily translated to quantum mechanical form. In addition %, turns
out to be particularly useful in the understanding of the solutions to the
Dirac problem. The example of %5 for its part suggests that we might
avoid the difficulties arising in quantisation by symmetrisation of the
polynomials concerned. However this procedure cannot be extended
consistently to the whole algebra, though in effect the quantisation of
%, and Z, take this form.

5. The Dirac Problem

Let & () denote the linear (but not necessarily bounded or self-
adjoint) operators acting on some Hilbert space 4, then

Definition 5.1. 4 Dirac map (2] is a linear map L from P into L (H#)
such that L(1)=1 and

[Lf.Lgl=L{f g} (5.1)
forall f,geP.

Such a map defines an isomorphism between the Lie algebras formed
from the Poisson and commutator brackets. Its importance lies in the
fact that it provides a possible canonical quantisation procedure for
Classical systems. The Dirac problem is to find all such Dirac maps.
One important class can be obtained as follows [2, 15]. Denote by
C&(E?) the space of infinitely differentiable functions with compact
support in E* and let # be I*(E?), the space of square integrable func-
tions on E%. Let D be an outer derivation of P into C*(E?) with D(1) = 1.
Then the map f— Lf given by

(LN ={f, o} +(Df)¢ (5.2)

with ¢ € C3(E?) is a Dirac map. (Lf is well-defined because (Lf)¢ is
square integrable and defined on a dense subspace of # because CZ(E?)
is dense in Z*(E?).) In particular if we choose

I

Df=f-+ 154 275 (5.3)
then Lf takes the explicit form
of 0 of ¢ 1 6f 1 8f
=L = L g 54
H dq op  0p dq o T3 P >4

There is in fact no loss in generality in doing this as the more general
expression given in (5.2) can be reduced to (5.4) by a canonical trans-
formation (Ref. [2], pp. 364-366).
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Inspection of (5.4) shows that the expression for Lf involves two
independent sets of quantum canonical operators. That is to say that the
image of P under L is not 2 as might be hoped; but rather a subalgebra
of 22. This subalgebra is in fact #,% which was defined in the previous
section. Thus the present solution of the Dirac problem does not provide
an isomorphism of P with £, but rather an isomorphism of P with %,°.
This result is in accord with our previous study of their derivation
algebras. Nevertheless this situation may be thought to be rather un-
satisfactory as the implied quantisation procedure does not correspond
to the one customarily used. For certain simple mechanical problems,
in particular the harmonic oscillator, this difficulty is less important
because the quantum mechanical Hamiltonian derived by the above
procedure can be decomposed into two copies of that usually obtained
(Ref. [2], pp. 359-361). This observation is particularly relevant to field
theory because of the importance of this Hamiltonian in the description
of the free field and because the infinite number of degrees of freedom
makes this doubling irrelevant. It is a situation which can be more
directly investigated through the notion of an irreducible Dirac map.
This we do in the following section. In later sections we investigate the
general Dirac problem and in particular show that the solution described
by (5.4) is canonically equivalent to all other solutions in #2. We also
obtain a further canonically inequivalent solution by extending the
image space to include inverse powers of the canonical operators.
Finally we discuss possible applications of these results and related work.

6. Irreducible Dirac Maps

Definition 6.1. A Dirac map L of P into £ (H) is said to be irreducible
if the only operators commuting with both Lg and Lp are constant multiples
of the identity.

Recalling Definition 5.1 we see that
[Lg.Lpl=1. 6.1)

Thus Lg and Lp are quantum canonical operators and an irreducible
Dirac map defines an isomorphism between P and a subalgebra of 2.
Certainly P and 2 are not isomorphic as one possesses outer derivations
whilst the other does not. Therefore it is not surprising that one can
show that there are no irreducible maps . Though this result is a negative
one, we are able at the same time to determine those subalgebras of P
which do admit irreducible Dirac maps and to prepare the discussion
for the general Dirac problem.
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Theorem 6.1. There are no irreducible Dirac maps of P into £ ().

Proof (partial). The proof is by contradiction. We note without
proof that:

Lemma 6.1. Given L an irreducible Dirac map, then

m.n\ __ 1 m+1 n+
L(g"p"y = ICESICES)) [+ g), ' (p)] (6.2)

for all positive integers m and n.
On the other hand we may also show

Lemma 6.2. Given L an irreducible Dirac map, then
L(g"p") = L"(q) L'(p) + L'(p) L"(q) (6.3)
for all positive integer m and n.

These lemmas lead to a contradiction for m, n = 3 and so the theorem
is proved.

Corollary 6.1. Let R, and R, denote the subalgebras of P generated by
the sets S, and S, defined in (4.10), then there exist irreducible Dirac maps
R, and R, into L (). In both cases the map is given by (6.3).

A corresponding result does not hold for R, the subalgebra of P
generated by S5, because this coincides with P.

7. Finite Dimensional Dirac Maps

Consider the subalgebra R; of P. A simple calculation shows that

L(g®) = L*(9) + 2, (7.1
L(p*)=L*(p)+29, (72)
L(qp)=L(pg)=%(Lq Lp+LpLg)+2h (7.3)
where f, g, h e £(5#), commute with Lg and Lp and satisfy
Lfo91=2h, [fihl=f, [g:h=—g. (7.4)

This last set of relations define the Lie algebra of sl(2, €). Hence the
solution to the Dirac problem for R, is provided by the representations
of this algebra. As these are well understood we may regard the Dirac
problem to be completely solved for this case. We should like to extend
this argument to the general Dirac problem. However it turns out that
this is several orders of magnitude more difficult. Therefore we first
investigate the simpler problem motivated by the following con-
sideration.
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It is clear that (7.4) has finite dimensional representations. In partic-
ular we may set f, g, h equal to a suitable linear combination of the Pauli
spin matrices. Such an occurrence of finite dimensional representations,
as a result of a canonical quantisation procedure, would be of con-

_siderable physical interest. Hence the question arises as to whether finite
dimensional representations of (7.4) suffice to describe a Dirac map of P.
It is unfortunate and perhaps not surprising, taking into account that
canonical operators may be involved, that the answer is negative. Never-
theless the proof is of interest in itself and is non-trivial. Moreover many
of the relations we obtain are required in the solution of the general
Dirac problem. To make our objectives more precise we start with the
following definition.

Definition 7.1. A Dirac map L of P into L () is said to be finite
dimensional of dimension m if every operator which commutes with both
Lq and Lp is a tensor product of the identity and an (m X m) matrix.

In the above terminology the irreducible Dirac maps are one dimen-
sional. By a slight abuse of notation we omit further explicit reference to
the tensor product. However this should cause no confusion.

The main result of this section can be stated as follows:

Theorem 7.1. There are no finite dimensional Dirac maps of P into
L(H).

Proof (partial). We first note some important algebraic identities.
The first of these is described in the following lemma.

Lemma 7.1. Given a Dirac map L of P into L (), then

L= 3 ()o@, (1.5
k=0
L™ = Z( ) L IN) (7.6

for all positive integer m, where ay,b,e L(#): k=0,1,2...m and
commute with both Lq and Lp. In addition
ag=by=1, a,=b =0 (7.7)
Lemma 7.2. The a,:k=0,1,2... defined in the previous lemma
satisfy the following identities

la. a]=0 (7.8)
and

k
[ap, h] = > a (7.9)
for all non-negative integer k and 1; h being defined in (7.3).
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As an immediate consequence of the previous lemma and (7.4) we
obtain the following identities

[(ad*g)ay, h] = (m/2 — k) (ad“g)a,, (7.10)
for all positive integer m and k and
(m—k+N!k!

——(ad*"! 7.11
k=D m—K)! (ad*"g)a, (7.11)
for all integer m, k, [ with m = k = [. From (7.10) and (7.11) it can be seen
that if a,, + 0 then the operators (ad*g)a,,: k=0,1,2 ... m are non-zero
and linearly independent. As the (mxm) matrices form a space of
dimension m?, we obtain from this the following result:

(ad'f) (ad*g)a,, = (—1)

Lemma 7.3. If L is an m-dimensional Dirac map, then a,. = 0.

The proof is completed by showing that this leads to a contradiction.

8. The Operators a,

Recalling (5.1) we see from (7.5) and (7.6) that the Dirac problem is
completely solved when we have the most general expressions for the
a, and the b,. Now these are not all independent. In the first place the
b, : k = 3, can be obtained from the g, by k-fold application of the linear
transformation adg. This follows from the identity

(ad*L(p*) L(q") = (— 2k L(p")
which gives
b =(=1) (ad"g)a . (8.1)

Secondly the a, are themselves interdependent. We have already
found (cf. (7.8)) that they commute. We show below that they are deter-
mined by a, and a; alone. This fact is contained in the following lemma.

Lemma 8.1. Given the a, as defined in Lemma 7.1, then

1

a S —
m+(n+1)

m+n:aman+ [ m+1:[an+17 g]] (82)

for all non-negative integer m and n.

Recalling (7.7) we see from this that the general term a,, is determined
by a,, a; and g. In addition, a, and a; cannot be wholly independent as
(8.2) implies certain consistency relations between them. Unfortunately
it is not easy to resolve the precise form of this interdependence, a fact
which is in turn responsible for much of the difficulty that arises in the
Dirac problem. It can be overcome in the case of polynomial Dirac maps



224 A. Joseph:

as we show in the next section. For the present we investigate the solution
prescribed by the condition

ay=0. 8.3)
In this case (8.2) simplifies considerably giving
Arp+1 = 07 ayp = aZn (84)

for all non-negative integer n. The main result of this section can then be
stated as follows:

Theorem 8.1. There are no Dirac maps satisfying (8.3).

The importance of this result is that the condition a;+0 puts an
additional constraint on the possible solutions of (7.4). Indeed, setting
k=31in (7.9), we see that half-integer as well as integer steps in the spec-
trum of & (in that it has a spectrum) can be effected. As we shall see in
the next section certain solutions of (7.4) are thereby excluded and this
leads ultimately to a complete solution of the polynomial Dirac problem.

9. Polynomial Solutions to the Dirac Problem

In the following we derive the solutions to the Dirac problem in the
case when f, g, h and a; are polynomials in a pair of canonical operators.
In the terminology of Definition 7.1 such solutions are infinite dimen-
sional so that the present analysis to some extent complements that
given in § 7. The advantage of studying the polynomial solutions is that
we may put aside questions of selfadjointness, boundedness and domains
of the operators concerned and treat the problem on a purely algebraic
level. This is particularly useful in the present situation as the solutions
to the Dirac problem are likely to involve operators which satisfy the
canonical commutation relations. Such operators are unbounded, have
continuous spectra and incomplete domains and consequently are less
easy to handle on a functional analytic level [18].

To clarify our objectives we start with the definition.

Definition 9.1. A Dirac map L of P into £ () is said to be a poly-
nomial map of degree n if for each fe€ P, Lf is a polynomial in not more
than n independent sets of canonical operators.

In the above terminology the irreducible Dirac maps are polynomial
maps of degree one. We are able to show that to within a canonical
transformation the Dirac map given by (5.4) exhausts all possible poly-
nomial maps of degree two. On the other hand we also exhibit a further
canonically inequivalent solution involving inverse powers of canonical
operators.
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The simplification which comes from restricting to polynomial maps
of degree two is a consequence of the following theorem.

Theorem 9.1. Given a, f, he P with
[a,f1=0, [f.hl=f, [ah]l=3a2 (9.1a—c)

then there exist constants o, § such that
ad’? +pf3=0. 9.2)
Proof (partial). The key step in the proof comes from the lemma.

Lemma 9.1. Given a,be P with [a,b]=0. Let # be the set of all
polynomials in a, b ordered so that powers of a appear to the left. Then
there exists a non-trivial element of # which is independent of q and p.

Applied to (9.1a) this lemma shows that there exists an ordered poly-
nomial of @, f and 1 which vanishes. We may then use (9.1b, ¢) to show
that this must be a polynomial with factors of the form given in the left-
hand side of (9.2). At least one of these factors must vanish identically
and so the theorem is proved.

The simplification arising from (9.2) is considerable. Applied to the
Dirac problem setting a = a; we are able to assert that f is a constant
multiple of the square of a canonical operator. This in turn leads to the
following characterisation theorem for polynomial Dirac maps.

Theorem 9.2. Given L a polynomial Dirac map of degree two with
qi» p; I, j =1, 2 satisfying

L4:> Pj] = 5ij1

where §,; is the Kronecker delta, then to within a canonical transformation

N

for all f e P. Here * denotes that the real variables q, p have been replaced
by the commuting operators py, p, in the given function.

Proof (partial). One pair of canonical operators, namely: Lg and Lp
is provided by (6.1). Moreover these commute with the a;, b;: k=1,2 ...
defined § 7. Thus the problem of determining all polynomial solutions
of degree two reduces to finding the most general realisation of the a,
and the b, as polynomials in a single pair of canonical operators. Thus
applying Theorem 9.1 to the identities given in (7.8), (7.9) and (8.2) and
substituting in (7.5) and (7.6) we may show that to within a canonical
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transformation
Lign= Y (m—k—1)(—1)'"-’“1(’:)x'""‘L"(q), 04)
k=0
L=y (1=1-1) (-1 ('l’) L) ©5)
1=0

where x, y satisfy
[x,y]=1. (9.6)
Applying the canonical transformation

1 1
Lq:%"‘?l’l x=512_‘7P1
9.7

1 1
LP:_%"’TPz Yy=4q:+ 5 p,

to (9.4) and (9.5) we obtain (9.3) as required, and the theorem is proved.
We remark in passing that the Dirac map defined above is based on
the following realisation of si(2, ) in £, namely

—x? —y? 1
R g= > h—z(xyﬁ—yx). (9.8

f=

This is not the only possible realisation; but it is the only consistent
with a=+0 as required by Theorem 8.1. Thus we may set [19]

1 1
f= 5(x2y+yx2), g=y, h=750y+yx), ©.9)

and it may be verified that this is also consistent with (7.4). On the other
hand in this case neither f of g admit a square root in ¥ (#) and this
excludes the above realisation when a = 0.

10. A Solution to the Dirac Problem
in Inverse Powers of Canonical Operators

In the previous section we noted that a known solution of the poly-
nomial Dirac problem was unique to within canonical equivalence.
Though this is a non-trivial result in its own right, it cannot of itself give
rise to any interesting new solutions. Yet, as a by-product of this analysis,
we are able to obtain an additional solution canonically inequivalent
to (9.3). This involves inverse powers of the canonical operators g, p
which we define in the usual way, namely

-1 -1

q9 '=q 'q=1, ppt=p'p=1. (10.1)
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We denote by 2 the polynomial algebra generated by ¢,p, ¢~ %, p~ "
The general commutator in 2 may be obtained from (4.5) and the relation

-m - (n+k L _
la™™p "]1= Z (=1 (m)#——q Lg=tm=hp= (k) =1
K=1 I'(n)T'(k+1) 102)

which holds for all positive integer m and integer n. This may be developed
by the procedure described in § 4. A similar expression has been given by
Rosenbaum [16].

We shall extend the argument of the previous section to 2. In this we
do not need to consider possible representations of these operators or
their analytic properties. This is because the mathematical argument,
and a rigorous one at that, can proceed at purely algebraic level. However
for the sake of further application we mention a few of their more im-
portant properties.

Suppose we choose g and ip to be self-adjoint elements of £ (#),
i= ]/:T Then it may be shown that (4.1) implies that they each have a
continuous spectrum which consists of the whole of the real line [18].
Hence their inverses ¢~ and (ip)”! also have this property. Let
#?(—o0, ) be the space of square integrable functions on the real
line with x a real variable. Then in % (¥?*(—o0, «¢)) q and p have repre-
sentations as multiplication by x and as differentiation with respect to
x [18]. Correspondingly ¢! and p~' may be represented by multi-
plication by x ! and by the integral operator with kernel h(x — x') where
h is Heaviside step function. Perhaps the most important physical
system in which such inverse powers occur is the hydrogen atom. In this
the coulombic term is represented as multiplication by »~* in position
space and by the integral operator with kernel |p — p'|”* in momentum
space [20].

We do not attempt to give a complete account of Dirac maps in 2, as
we have yet to prove an analogue of Theorem 9.1 for this case. Also we
feel that 2 may be an unsuitable object for a general analysis. Thus it is
not even closed under linear canonical transformations so that state-
ments about 2 are not canonically invariant. Whilst this difficulty could
be corrected, it is better left as a subject for a later discussion.

We are now able to state the main result of this section.

Theorem 10.1. The linear map L: ¥ (#) given by

L= ¥ tm— k== (e,
k=0 (10.3a,b)

Lo = ¥ (n—l—l)(—l)(’;) (= ey L),

16 Commun math. Phys., Vol 17
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(6.1) and (9.6) define a Dirac map. Furthermore this map is not canonically
equivalent to that given in (9.3).

The above solution to the Dirac problem is based on some rather
remarkable identities involving canonical operators. First of all the
expressions for f, g and h which define a realisation of s/(2, €) take the
form

2
f==t g=—a 072 h= gy (104)
where x, y satisfy (9.6). This solution is not canonically equivalent to
that given in (9.8). Furthermore the asymmetry in f and g which leads
to a corresponding asymmetry in L{q™) and L(p") 1s only apparent. To
see this we first note the surprising fact that ¢ has a square root in 2.
This is contained in the identity

1. .m—2.,-1

Pr=—eyx) )=yt —mx Tty x (10.5)
which holds for all integer m. In addition to this, p is canonically con-
jugated in 2. That is there exists an element X € 2 for which

[X,5]1=1. (10.6)
Indeed % is given by

)”c:er%(y"zx‘l—kx"y*z) (10.7)

as may be verified using (10.2). Inversion formulae which express x and y
in terms of % and § are also available and these take the form

(10.84, b)

Substitution of these expressions into (10.4) interchanges the roles
of f and g and this in effect restores the symmetry to this realisation
of s1(2, ©).

Finally we remark that the canonical transformation (9.7) applied to
(10.3a, b) ultimately leads to the following expression for L on a general
monomial. This is

LN

m— n m_.n— l
L(g"p") = mpy ' phgs —npiph gy + 5 2=m=npp;
1 '2/ 1 —1'
122 (42*5171) .

This differs from the expression obtained from (9.3) in the presence
of the last term.

(10.9)

1
+n(n—1) pi"(qz - ~2~p1)
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11. Canonical Conjugation and Higher Symmetries

In § S we observed that P and £ are not isomorphic. This fact is
responsible for a number of differences between Classical and Quantum
mechanics. Perhaps the most striking of these occurs in the problem
of canonical conjugation. This is the problem of determining the
canonical conjugate of a given function in ¢ and p. The situation in
Classical mechanics is well understood and we shall examine this first
[4,9,21].

Let A denote the algebra of all complex analytic functions in the real
variables g and p. Then given any element x € A4, there exists an element

h
y € A such that oyl =1 (11.1)

To show this we solve the differential equations

dg  0Ox dp  0x

dy op’ dy oq
which have analytic solutions because x is analytic. We then invert these
expressions to obtain y as an analytic function of g and p. At the same

time we obtain d A oA 4 o

(11.2)

dy d8q op 0p 0q

This implies (11.1) and so y is the required analytic function.

This physical interpretation of the above transformation comes from
the identification of x with the Hamiltonian. Then (11.2) become Hamil-
ton’s equations of motion and the y-dependence of g and p, the path in
phase space which describes the time evolution of the mechanical
system [21].

In Quantum mechanics the analysis is less straightforward and it is
not known if a given function of the canonical operators g and p can be
canonically conjugated in any well-defined sense. Indeed the functional
analytic approach would seem to indicate that this will not be the case
in general. This is because, as we have already noted, the operators
which satisfy (4.1) must have each a rather special type of spectrum.
Hence an operator not having such a spectrum® cannot be canonically
conjugated in £ (). The corresponding physical interpretation [11]
of this is that we cannot express Quantum mechanical time as an element
of #(#). This does not exclude the possibility of being able to develop
a formal power series [12] for the time, because such an expression may
not converge (in any sense) to an element of £ (). Without this con-
vergence the operators lose their usual meaning and so we feel should
not be taken into consideration here.

! For example the harmonic oscillator Hamiltonian which has a discrete positive
spectrum.

16*
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There is of course one important exception to the above. This is that
any linear function in g and p can be canonically conjugated in #. The
canonical transformations so defined are said to be sympletic and these
play an important role in Quantum symmetries. On the other hand the
canonical conjugation of elements of 2 of higher degree is restricted
by the fact that the commutator does not generally lower the combined
degree by more than two. The same holds true of the Poisson bracket
and this is why we chose to discuss the algebra A rather than P. However
unlike the Classical case, there is no obvious extension of £ in & (#)
which admits canonical conjugation of its elements.

Recalling (10.5)—10.8) we see that 2 may admit canonical trans-
formations not available to 2. Actually as far as we know this is the first
example of its kind obtained within the framework of Hilbert space for
which the corresponding functions in the real variables ¢ and p are not
canonical conjugates under the Poisson bracket. It serves to extend
the class of non-linear functions which can admit canonical conjugation.
[t would be of interest to complete this list.

Thus far we have only considered the case of one degree of freedom.
When there are n degrees of freedom we may find [9, 22], for a given
element x; € A", (2n — 1) further elements, x,:i=2,3 ...n;y,:j=1,2...n;
x;, y; € A" satisfying

{x,y} =0 (11.3)

In the physical interpretation of this result we identify x; with the
Hamiltonian. Then y; describes the time evolution of the system and
the remaining elements form (2n—2) independent constants of the
motion. Actually these are only defined locally and in general an attempt
to extend their definition over the whole of phase space leads to their
being multivalued [23, 24]. Thus they are not constants of the motion
in the ordinary sense and do not imply any degeneracy in the motion of
the Classical system (Ref [21], p.288-299). On the other hand the
analogous result in Quantum mechanics would lead to a degeneracy in
the energy spectrum as long as we could show that the x;, y; can be
chosen to be elements of £ (#°) with J# the representation space of the
Hamiltonian. We stress that this latter condition should not be over-
looked for otherwise there is no guarantee that all the unitary irreducible
representations of the symmetry group will appear in the spectral
decomposition of the Hamiltonian [25]. Apart from a postiori veri-
fication, this requirement can be checked by exhibiting the x,, y; as poly-
nomials in the canonical variables or as polynomials or weak limits of
polynomials of their (bounded) exponentiated form. This fact has led
to the conjecture [24] that the Quantum analogue of (11.3) can be solved
for a given Hamiltonian (omitting the time) if and only if the Classical
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constants of the motion are defined globally, that is over the whole of
phase space. However at the moment the evidence for this is limited to a
few examples which include the harmonic oscillator and the hydrogen
atom and we feel somewhat sceptical about its general validity. The
above considerations lead to the following interesting problem [9, 10,
23, 24, 26-29]. Given an arbitrary Lie algebra & find all possible
expressions for the generators of ., as elements of A" or 2". Now if &
is finite dimensional we can always find at least one realisation as a
bilinear function of the canonical operators g, p;: i,j=1,2...n, for
some n. This fact is an easy consequence of Ado’s theorem (Ref. [13],
p. 202). On the other hand there may also be other polynomials having
this property. We have already noted two further examples in §9 for
sl(2, ©). In these cases n is equal to the rank of the Lie algebra. In general
for semisimple Lie algebras it has been shown that n must be at least
equal to the rank [10, 28] though this condition is not sufficient for a
realisation. Again in the Quantum case we should not always restrict
ourselves to 2 for, as we saw in § 10, interesting solutions may be so
excluded.

The significance of canonical transformations to this problem arises
because we should not want to distinguish canonically equivalent
solutions. In this respect the Classical and Quantum brackets will behave
differently and we can expect the latter to be more difficult to handle.
In the case when one of the canonical variables appears at most linearly,
then on account of the isomorphism implied by Corollary 6.1 the Classical
and Quantum solutions become equivalent and both reduce to the
problem of determining the so-called non-linear realisations of Lie
algebras [30]. This can be handled by techniques developed in the theory
of Lie groups [19]. However the wider problem described above has no
such general formalism.
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