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Abstract. In this paper we examine the covariant representation theory of a covariant
system (A, G) introduced by Doplicher, Kastler and Robinson. (A is a C*-algebra and G
is a locally compact group of automorphisms of A.) We define the concept of left tensor
product of two covariant representations. Loosely stated, our duality theorem says that G
is canonically isomorphic to the set of bounded operator valued maps on the set of covariant
representations of the covariant system (A, G) which preserve direct sums, unitary equi-
valence and left tensor products. We further show that the enveloping von Neumann
algebra jtf(A, G) of the covariant system (A, G) admits a (not necessarily injective) comulti-
plication d such that (jtf(A, G), d) is a Hopf von Neumann algebra. The intrinsic group
of this Hopf von Neumann algebra is canonically isomorphic and (strong operator topo-
logy) homeomorphic to G.

§ 1. Introduction

Generally speaking, the mathematical purpose of any representation
theory is to study an abstract and perhaps intractable object by ex-
amining the collection of structure preserving maps (morphisms) into
some simpler, or at least more concrete object. In the case of the unitary
representation theory of locally compact groups, the term "concrete"
is more appropriate than the term "simpler" as every locally compact
group is isomorphic and homeomorphic to a group of unitary operators
acting on a Hubert space, in the strong operator topology (cf. Lemma 2.2
of [2]). A similar phenomena of course shows up in the case of the
He-representation theory of a C*-algebra.

If the examination of the representation theory is to serve as an
effective tool for obtaining information about the structure of the
original abstract object, we must have a representation theory which
completely determines the structure of that object. One of the most
basic questions one can ask of any representation theory is: Are there
enough representations? Initially we would like to know if there are
enough representations to distinguish points. Once we have satisfied
ourselves as to this minimal requirement of any representation theory,
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we would like to know if the collection of representations, together with
whatever natural structure this collection possesses, is sufficiently rich
to completely determine the structure of the abstract object. Any precise
answer to such a question will put into focus the properties of the re-
presentation theory which are particularly relevant for determining the
structure of the abstract object, as well as suggest how information about
the representation theory could be translated into information about
the object being represented. In the case of locally compact Abelian
groups, for example, the beautiful Pontrjagen duality theorem tells us
that the morphisms of the group into the circle group, together with
their multiplication and a natural topology, determines the group
completely. Because of the special elegant form of this result (ό = G)
any theorem indicating how to construct a represented object from its
representations is now referred to as a duality theorem. Thus we have
the Tannaka duality theorem for compact groups, [5], the Tatsuuma
duality theorem for locally compact groups [6] and the Takesaki duality
theorem for separable C*-algebras [4] (a clean sweep for the Kyoto
school).

In this paper we examine the duality question for the covariant
systems considered by S. Doplicher, D. Kastler and D. Robinson in [1].
A covariant system is a pair (A, G) consisting of a C*-algebra A and a
locally compact group G, of automorphisms of A (cf. Definition 2.1
of [3]). We show that the automorphism group G may be reconstructed
from the set of covariant representations of the system. To do this we
require additional structure on the set of covariant representations. Thus
we are led to introduce the concept of left tensor products of covariant
representations. Loosely stated, our theorem says that G is canonically
isomorphic to the set of bounded operator valued maps on the set of
covariant representations of the covariant system, which preserve direct
sums, unitary equivalence and left tensor products.

In the previous paper [3], we characterized the enveloping von
Neumann algebra of a covariant system (A, G) as the set of options on
the covariant representations, i.e., the bounded maps on the covariant
representations which preserve direct sums and unitary equivalence
(cf. Definition 3.2 of [3]). Since the covariant system (A, G) is isomor-
phically embedded in <tf(A9 G) (cf. Theorem 3.5 of [3]), the duality
problem may be formulated as the question of identifying the auto-
morphism group G, as a group of unitary elements in the algebra £/(A, G).
In this paper we show that jtf(A, G) admits a natural (not necessarily
injective) comultiplication d such that the pair (jtf(A, G), d) is a Hopf
von Neumann algebra (cf. [2]). (The comultiplication d is a normal
*-homomorphism of <stf(A,G) into j/(A, G)® si (A, G).) The duality
theorem may then be formulated as saying that G may be identified as
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the intrinsic group of the Hopf von Neumann algebra. By the intrinsic
group of (&f(A, G\ d\ we mean the group of invertible elements T in
tf(A9 G) for which d(T) = T® T.

In Section 2 we define the various notions of tensor products which
may be applied to covariant representations. In Section 3 we show that
jtf(A9 G) is a Hopf von Neumann algebra. We also show that the covariant
enveloping algebra sίc(G\ of G (cf. § 4 of [3]) is a Hopf von Neumann
algebra. We also prove in this section, that in the embedding of the
covariant system (A, G) into the enveloping algebra s/(A9 G), A and G
have at most the identity element of jtf(A9 G), in common. In Section 4
we consider the left π0-regular covariant representation (π, L) of (A, G)
(cf. Definition 3.6 of [3]), where π0 is any non-zero ^-representation
of A. We show that the von Neumann algebra j/(π, L) generated by
the range of (π, L) is a Hopf von Neumann algebra and its intrinsic
group is precisely the set of operators {Lx:xe G}, which is isomorphic
and (strong operator topology) homeomorphic to G. In Section 5 we
show that the intrinsic group of s/(A, G) is precisely G, as embedded
canonically in <tf(A9 G). In Section 6 we state and prove this result in
a form completely analogous to the classical Tannaka duality theorem
for compact groups [5].

A portion of this work was done while the author was a visitor at
the Mathematisches Institut der Universitat, at Gδttingen, Germany,
during the summer of 1969 and he wishes to express his gratefulness for
the hospitality of the Institute. He also thanks the National Science
Foundation, USA for its financial support.

§ 2. Left and Right Tensor Products of Covariant Representations

Let Jf0 denote a fixed Hubert space of sufficiently large dimension
such that every proper cyclic covariant repesentation of (A, G) is unitary
equivalent to one whose representation space is a closed subspace of J»f0

(cf. Proposition 2.7 and Definition 3.1 of [3]). Let &(A9 G) denote the
set of all proper covariant representations of (A, G) which act on some
closed subspace of J^f0.

In order to identify the automorphism group elements in the envelo-
ping algebra si (A, G) we need some additional structure in the set
$(A9 G). Thus we wish to introduce some concept of "tensor product"
among covariant representations. The basic idea here is that we form
the usual tensor product of the unitary group representations and then
amplify the ^representation of the C*-algebra A in order to obtain a
new covariant representation.
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Proposition 2.1. Let (π, U) denote a covariant representation of the
covariant system (A, G), and let V denote any strongly continuous unitary
representation of G. Let I denote the identity operator on 3F(V). Then
(π®/, Ϊ7® V) and (7®π, V® U) are covariant representations of (A, G).

Proof. The representation x-»π(x)®/ is a ^representation of A on
J^(U)®J^(V) known as the amplification of π. In fact π®/ is unitary
equivalent to απ where α = άimJ^ (V). Then for any x e A, s e G we have

π(x) (7(5)* ® F(s) /F(s)*

= [((7® F) (5)] - [(π®/) (x)] . [(C7® V) (s)]* .

Remark 2.2. Let ^22(/l, G) denote the set of all unitary representations
U of G such that, there exists a ^-representation π of A for which
(π, U) E 9t(A, G). Thus @2(A, G) is a subset of Gc, the set of all strongly
continuous unitary representations acting on a closed subspace of Jf0.
Clearly $2(A, G) is closed under the operations of direct sum and uni-
tary equivalence in the sense that if U1 and U2 are contained in $2(A, G)
and U1®U2GGC, then 1^0 (72 e &2(A, G). Similarly if u is a linear
isometry such that U2 = uU1u* and C^e^lXG) an(i ^2 e ̂  tnen

ί72 e ^2(^5 G). The previous proposition then states that $2(A, G) is the
analogue of an ideal in Gc, relative to the representation theoretic
operations in Gc.

Definition 2.3. Let (π1? L^) and (n2,U2) denote two covariant re-
presentations of the covariant system (A, G).

The left tensor product, denoted (π1? ί/ι)^(π2, U2), is defined to be

The right tensor product, denoted (π l5 C/1)0(π2, C/2) is defined to be

Remark 2Λ. Clearly these binary operations are not commutative.
In fact

(π1? C/ΛSKπ^ l/2) = (π2, t/2)0(πl9 t/O .

If this asymmetry is too bothersome, one can also define the symmetric
tensor product by

(πt, ί/OΘfo, C/2) = [(πls [/!)ίSl(π2,
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For the purpose of duality we shall need only a minimal amount of extra
structure for the covariant representations and it would be sufficient
to define the left tensor square of a covariant representation (π, U) by

§ 3. Hopf von Neumann Algebras

In an earlier paper [2], we defined a Hopf von Neumann algebra si
as a von Neumann algebra admitting an associative comultiplication.
In that paper we required the comultiplication to be an isomorphism
of si into si® si. In this paper we are forced to relax this condition,
by requiring only that the comultiplication be a normal *-homomor-
phism of si into $4 '®si '. However this new definition, which we now
give formally, is in fact more consistent with the notion of Hopf algebra
as employed by algebraists.

Definition 3.1. A Hopf von Neumann algebra is a von Neumann
algebra $0 that admits an associative comultiplication, i.e., a normal
*-homomorphism d of si into stf ®stf such that

where i denotes the identity map on si.
A Hopf von Neumann algebra is said to be cocommutative if d = Φd,

where Φ is the canonical isomorphism of stf ®stf onto si® si defined
by Φ(S<g)Γ)=Γ®S, for all S, Γ in j/.

We remark that in general, unlike the situation in [2], the Hopf von
Neumann algebras considered in this paper will not be cocommutative.
This is a consequence of the asymmetry present in defining tensor product
structure among covariant representations. Indeed the reader can clearly
see that the comultiplication defined in the next theorem is not cocommu-
tative.

Theorem 3.2. The enveloping von Neumann algebra stf(A, G) of a
covariant system, is a Hopf von Neumann algebra. In fact, si(A, G)
admits a unique associative comultiplication

9 G)

such that
d(x} = x (x) / for all x in A

and
d(s) — s ® s for all s in G .

Here I denotes the identity element of si (A, G).

6 Commun. math Phys , Vol. 17



80 J. Ernest:

Proof. Note that this comultiplication is uniquely determined by
the conditions stated since d is a σ-strongly continuous homomorphism
and A u G generates £/(A, G) (cf. Theorem 3.5 of [3]).

Consider the universal representation (v, V) of (A, G), obtained by
taking the direct sum of all the proper covariant representations in
&(A, G). Then by theorem 3.7 of [3], this has a unique extension to a
normal *-homomorphism of jtf(A, G) onto j/(v, V). This is in fact a
^-isomorphism and hence represents jtf(A, G) faithfully as an algebra
of operators acting on a very large Hubert space (cf. the proof of Theorem
3.3 of [3]). Let φ denote this isomorphism of jtf(A, G) onto j/(v, V).
Then the left tensor square (v, F)^ of (v, V) also has a unique extension
to a normal ^-representation d' of jtf(A, G). Further the range of d' is
generated by the set {v(x)®/:xe>4}u{K(s)® V ( s ) : s e G}. Hence the
range of dr is contained in j^(v, V)®stf(v, V\ which is mapped isomor-
phically onto s/(A, G}®stf(A, G) by φ~ 1 ®φ~ *. Thus d = (φ~ 1 ®φ~ ̂ d'
is a normal *-homomorphism of jtf(A, G) into j^(v4, G)® <£/(/!, G).

It remains to verify that d is associative. But since d is a normal
*-homomorphism, it is sufficient to verify the equation

on the generating set A\jG of stf(A, G). But for se G, both sides yield
s® s® 5. For xe,4, both sides yield x®/®/, where / is the identity
of st(A, G).

This theorem leads us to the observation that A and G are essentially
disjoint in jtf(A, G).

Proposition 3.3. Consider the covariant system (A, G) to be embedded
in its enveloping von Neumann algebra jtf(A, G). Then:

(1) // A contains an identity element, then Ar^G consists of the single
element, which is at the same time the identity element of A, of G, and
of s/(A, G).

(2) // A does not contain an identity, then Ar\G is empty. Further the
approximate identity of A converges strongly to the identity of stf(A, G).

Proof. It is easy to verify that if / is the identity element of A, then
its corresponding option on 3%(A, G) is the identity of jtf(A, G) and is
exactly the option corresponding to the identity element of G.

If x is an element of A and x = s for some s e G we have d(x) = x® I
= s®I while d(x) = s®s. Thus 5® / = s®s and hence x = s = I. Hence
the identity is the only element which G and A have in common. Thus if A
does not have an identity we have A n G = 0, the empty set.



Duality Theorem for the Automorphism Group 81

To see that the approximate identity converges strongly to the
identity element of jtf(A, G), consider the isomorphism of s/(A, G) onto
<β/(v, V) where (v, V) is the universal covariant representation ofjtf(A, G).
Then v is a proper representation and hence the projection onto the
essential space of v is exactly the identity operator which is the identity
of j/(v, V). Thus the result follows from Lemma 2.4 of [3].

Definition 3.4. An element S of a Hopf von Neumann algebra (X, d)
is called an intrinsic element of j/ if S is invertible and d(S) = S®S.

Clearly the intrinsic elements of any Hopf von Neumann algebra
form a group, which we call the intrinsic group of the algebra. In our
previous work (cf. Proposition 3.6 of [2]) we showed that the intrinsic
elements are in fact unitary. However in that argument we assumed the
comultiplication d was an isometry. Thus we sketch a modified proof
which is applicable to this more general situation where d need only be
a normal *-homomorphism.

Proposition 3.5. The elements of the intrinsic group of any Hopf von
Neumann algebra are unitary.

Proof. First note that if S is any intrinsic element of a Hopf von
Neumann algebra (j*,d), then \\S\\ ^ \\d(S)\\ = \\S®S\\ = \\S\\2. Hence
\\S\\ ^ 1 for any intrinsic element.

Let T be an intrinsic element of (<£/, d). Then one may verify that
TT* and its inverse are intrinsic elements. By the previous result,
| |T*T|| g 1 and HCTT)"1!! <; 1, from which one concludes that in fact
||T*T|| = 1 and \\(T*TΓl\\ = l Since T*T is a positive operator, the
spectral theorem implies T*T = /. Similarly ΓT* = J.

Remark 3.6. Note that the covariant enveloping algebra <ί/c(G) of G,
defined as the von Neumann subalgebra of £/(A, G) generated by G,
is in fact a Hopf von Neumann subalgebra of jtf(A9 G) (cf. § 4 of [3]).
Indeed, let d' denote the restriction of the comultiplication d to the
subalgebra J/C(G). Then the range of d' is contained in s4(A> G)®^(A, G).
However since G generates stfc(G] and d is a σ-strong continuous homo-
morphism, the range of d' is generated by {d(s) = s®s:se G}. Hence
the range of d' is contained in «a/c(G)® ja/c(G) and (sfc(G\d') is a Hopf
von Neumann algebra.

Let (<$t(G\ d") denote the Hopf von Neumann enveloping algebra
of G (cf. [2]). Let φ denote the canonical normal *-homomorphism
of j/(G) onto sic(G) (cf. §4 of [3]). Then d' - φ = (φ®φ)° d" since they
are both normal *-homomorphisms which agree on the generating set G.
Hence the canonical map φ of j/(G) onto stfc(G] described in § 4 of [3],
is in fact a Hopf von Neumann algebra morphism.
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§ 4. The Left π0-regular Covariant Representation

We first recall a definition from [3].

Definition 4.1. Let (A, G) be a covariant system and let π0 denote
any non-zero ^representation of A. Let μ denote left invariant Haar
measure on G and let L2(G, Jf (π0)) denote the space of all μ-square
integrable measurable functions of G into ^(π0). We define the left
π0-regular covariant representation (π, L) in the space L2(G, Jf (π0)) by

(L(s) ξ) (t) = ξ(s-1 ί) for all s, ί in G

and

(π(x) ξ) (ή = Mr1*) ξ(t) for all x in A, t in G.

Theorem 4.2. Let π0 be a proper ^-representation of A, where (A, G)
is a covariant system. Let (π, L) denote the left π0-regular covariant re-
presentation of (A, G).

Let U be a strongly continuous unitary representation of G, on JίC(U).
By Proposition 2.1 (π (x) /, L (x) U) is a covariant representation of (A, G)
on L2(G, 3? (π0))<g) Jf ((7). TTien (π®/,L® 17) is quasi-equivalent to (π,L).
More precisely, if a = dimJf (ί/), ί/ien (π (g) /, L (g) 17) is unitary equivalent
to a direct sum of α copies o/ (π, L).

Indeed let {φλ} denote an orthonormal basis for 2tf. Then the map φ,
defined by

φ:ξ®η-+{(η,U( )φλ)ξ( )}

of

L2(G, ̂ f W)® ̂ f (ί/) onto ^ 0L2(G, ̂ f (π))
Aeτl

is α linear isometry such that

λeΛ

Proof. Clearly φ is well-defined and linear. We verify that φ is an
isometry. Since U is a unitary representation, for each fixed t in G,
{I7(ί)φλ) ^s an orthonormal basis for Jf((7). Hence
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Hence

\\{(η,U( )φJξ( ) } \ \ 2

λ G

= UΣ\\(η,U(t)φλ)ξ(t)\\2\dμ(t)
G \ λ

= $\\ξ(t)\\2\\η\\2dμ(t)
G

= \\ξ\\2 \\η\\2.
Thus

\\ψ(ξ®η\\ = \\ξ\\ \\η\\ = \\ξ®η\\

We next verify that φ is surjective. For a fixed Λ0, let Eλo denote the
projection of £ φL2(G, J f (π0)) onto the /I0-comρonent. Consider the

λsΛ

continuous complex valued function on G, f(x) — (φλo, U(x) φλo). Since
f(e) = 1, there exists an open neighborhood N of e such that / is bounded
away from 0 on N. Suppose t e G and ξ is an element of L2(G, Jf (π0))
such that ξ(x) = 0 for all x not in x not in ίAΓ. Letting ft(x) = f ( t ~ 1 x )

for all x in G, we define ξ' in L2(G, ̂ f(π0)) by ξ'(x) = -j~- iϊxetN and

ξ'(x) = 0 i f x φ t N . Then 5(x) = (t7(i)<pA o» ^W^oK'W for a11 ^ in G

Thus we have established that if ξ 6 L2(G, «^(π0)) and if ξ vanishes outside
tN for some t in G, then ξ is in the range of Eλo ° φ.

Now let gf be a continuous function from G into jf (π0), with compact
n

support K. Then there exists ί1? ...,ίM in G such that K C U ί fN. Let

M1 = t1N and let Mf = ί f N— (j tjN , for z' = 2, ...,n. Then the Mf

are mutually disjoint measurable sets such that Mf C ttN, z = 1, ..., n,

a n d K c Q M ; . Let χMι denote the characteristic function of Mf,
ί = l

z = 1,..., n. Then χMιg is in the range of Eλo° φ by our previous result,
and

n

9 = Σ XMίfif -

Since φ is linear, g is in the range of Eλo ° φ. Thus EAo ° φ is a continuous
map of a Hubert space onto a dense subspace of L2(G, J-f0) and hence
is surjective. Since λ0 was arbitrary, φ is surjective.
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We leave to the reader the task of verifying that φ does map

(π® /, L ® U) into £ ® (π, L) .
λeΛ

Theorem 4.3. Let π0 denote a proper ^representation of A, where
(A, G) is a covariant system. Let (π, L) denote the left πQ-regular covariant
representation of (A, G) and, as usual, let j/(π, L) denote the von Neu-
mann algebra generated by the range of (π, L).

Then «β/(π, L) admits a unique injective comultiplication r such that
(π, L), r) is a Hopfvon Neumann algebra for which

r(π(x)) = π(x)® / for all x in A

and

r(L(s)) = L(s) ® L(s) for all s in G.

Further the intrinsic group of <$#(π, L) is precisely the set

{L(s):seG}.

Indeed the map s-+L(s) is a isomorphism and (σ-strong) homeomorphism
of G onto the intrinsic group of (stf(π, L), r).

Proof. Consider the left tensor square (π, L)^ of (π, L). By the previous
theorem (π,L)^ =(π®/, L®L) is quasi-equivalent to (π, L). Hence (cf.
the remark following Proposition 2.7 in [3]) there exists an *-isomorphism
r of j^(π, L) onto j^((π, L)^) such that

r(π(x)) = π(x)® / for all x in A

and

r(L(s)) = L(s)® L(s) for all s in G

Note that ^((π,L)^)c^(π,L)®^(L)C^(π,L)(g)^(π,L). Hence r
maps j/(π, L) into j/(π, L)®j/(π, L). Also note that r is uniquely deter-
mined by the given conditions since r is a normal *-homomorphism and
j/(π, L) is generated by {π(x), L(s) : x e A, s e G}. To see that the comulti-
plication r is associative we must verify the formula (r® i)° r — ( l®r)° r

For this purpose it is sufficient to verify the formula for the generating
elements of j/(π, L). However both sides of the formula, when applied
to π(x), for x in A, yield π(x)(χ)/(χ)/. Similarly both sides, when applied
to L(s), for s in G, yield L(s)®L(s)(χ)L(s).

Suppose now that y is an intrinsic element of j/(π, L). Then r(y) = y ® y.
Further, as noted above, r maps «s/(π, L) into ja/(π,L)®«β/(L). Hence
y e <s/(L), the von Neumann algebra generated by the range of L. Since L
is quasi-equivalent to the left-regular representation L0 (cf. the proof of
Theorem 3.5 of [3]) and since the left regular representation has the
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property that it is quasi-equivalent to its own tensor square (a special
case of Theorem 4.2) we have that L is quasi-equivalent to L® L. Since
L ~ L0 we have that there is an isomorphism φ of s/(L) onto £#(L0)
such that φ(L(s)) = L0(s) for all s in G. The restriction r' of r to si(L) C si(π, L)
is thus a comultiplication for j/(L) such that r'(L(s)) = L(s)®L(s) for all 5
in G. Since (L(s) : s e G} generates J/(L), this condition uniquely deter-
mines the comultiplication r' of si(L). Indeed, if we identify j/(L) and
si(LQ) by the above isomorphism, r' is precisely the comultiplication
considered in Proposition 3.4 of [2]. Thus if y is an intrinsic element of
si(π, L) we have seen it must be contained in si(L) and is thus an intrinsic
element of (siL\ r'). By the Tatsuuma duality theorem (Proposition 3.8
of [2]),y is necessarily of the form y = L(s) for some s in G.

The fact that s-*L(s) is then an isomorphism and σ-strong homeo-
morphism simply follows from the fact that L is quasi-equivalent to the
left-regular representation L0, and these properties hold for L0 (cf.
Lemma 2.2 of [2]).

Remark 4.4. Since we can construct a left π0-regular covariant re-
presentation (π, L) for each proper ^-representation of A, we in fact
have a whole collection of Hopf von Neumann algebras to which the
previous theorem applies. Of course quasi-equivalent left π0-regular
covariant representations give rise to isomorphic Hopf von Neumann
algebras (cf. the remark following Proposition 2.7 of [3]). Following
Theorem 3.9 of [3], call a central projection E of si (A, G) a regular
projection if the restriction of the induction si (A, G)-*si(A, G)£, to the
covariant system (A, G), is a covariant representation quasi-equivalent
to a left π0-regular covariant representation of (A, G), for some proper
^representation π0 of A. Then for every regular central projection E,
the algebra si (A, G)E is a Hopf von Neumann algebra and the induction

is a Hopf von Neumann algebra morphism.

§ 5. The Enveloping Algebra Version of the Duality Theorem

In an earlier work (cf. Remark 3.3 of [2]) we defined the concept
of inner tensor product of any two ^representations of a Hopf von Neu-
mann algebra. The following lemma may be interpreted as stating that
the extension of the left tensor product of two covariant representations,
to the enveloping algebra si (A, G), is precisely the inner tensor product
of the corresponding normal ^representations of si (A, G) (cf. Theorem
3.7 of [3]).
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Lemma 5.1. Let (π l 5 L^) and (π2, U2) denote proper covariant represen-
tations of the covariant system (A, G) with extensions to normal ^-represen-
tations πi and π'2 respectively of the enveloping Hopf von Neumann algebra
(^(A, G), d). Then the canonical extension o f ( π l 9 C/ι)^(π2, U2) to ^(A, G)
is precisely

Proof. Since (πi®π 2)°d is a normal He-representation of
it is sufficient to verify that its restriction to (A, G) is (π1? Ul)^S((π2, U2).
However (π^Oπ^)0 d(x) = π\®π'2(x®I) = π1(x)®I for all x in A. Simi-
larly for s in G,

(π /

1®π2)od(s)=t/1(s)®l72(s).

Notation. Before we state and prove our next theorem, it will be
helpful to establish some precise notation to be used throughout this
section. Let (v, V) denote the universal representation of (A, G) (cf. the
proof of Theorem 3.3 of [3]) and assume the enveloping von Neumann
algebra is concretely represented as acting on the Hubert space Jf7 (v, V).
We identify sέ(A, G) and &/(v, V) and the canonical extension of (v, V)
to stf(A, G) is therefore the identity map i.

Let π0 be a proper ^representation of A and let (π, L) denote the
left π0-regular covariant representation of (A, G). By the Theorem 4.3
(j/(π, L), r) is a Hopf von Neumann algebra whose intrinsic group is
precisely the set (L(s) : s e G}. Then (cf. Theorem 3.9 of [3]) there exists
a central projection E of jtf(A, G) such that the restriction (π;, L) of the
induction

to (A, G), is a covariant representation quasi-equivalent to (π, L). Thus
e is the normal ^-representation of jtf(A, G) which uniquely extends
(π', L') and e®e is the induction on j/(/4, G)®<stf(A, G) with respect to
the projection E®E. Since (π, L) and (π', L') are quasi-equivalent,
&tf(A, G)E — «s/(π', L') is also a Hopf von Neumann algebra and e is a
Hopf von Neumann algebra morphism oϊjtf(A9 G) onto jtf(A, G)E. Note
that if T is an intrinsic element of jtf(A, G), then e(T) = TE is an intrinsic
element of jtf(A, G)E.

Theorem 5.2. Let (A, G) be a covariant system with enveloping Hopf
von Neumann algebra (stf(A, G), d). Then the canonical embedding of G
into jtf(A, G) is an isomorphism and σ-strong homeomorphism of G onto
the intrinsic group of £/(A, G).

Proof. Earlier results establish that the canonical embedding of G
into jtf(A, G) is an isomorphism and σ-strong homeomorphism into the
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intrinsic group of sf(A9 G). It thus suffices to establish that the image
is equal to the intrinsic group of jtf(A9 G).

Let T be an intrinsic element of j/(/l, G). Thus e(T) = TE is an in-
trinsic element of <s/(A9 G)E = j/(π', L') By Theorem 4.3, we have that
TE is necessarily of the form sE9 for some 5 in G. Thus s~1 Tis an intrinsic
element of <sί(A9 G) such that (s~1T)E = sE

1TE is the identity operator
<stf(A9 G)£.

Since (π, L) is quasi-equivalent to (π, L)ΐSl(v, 7) (cf. Theorem 4.2) we
have (π', L') is quasi-equivalent to (π', L')ΐSl(v, V). It therefore follows that
their unique extensions to normal He-representations oϊ^ί(A9 G) are also
quasi-equivalent. By the previous lemma,

e is quasi-equivalent to (e ® ΐ) ° d .

But note that e maps s - 1T into the identity operator / on jtf(π'9L).
Thus (e®0 d(s~17) = e(5~ 1T)®s~1T = I®s~1 Tmust also be the iden-
tity operator on ffl(π',L)®2tf(v, F). Hence s"1 Tmust be the identity
operator on Jf (v, F). Thus T = s.

Corollary 5.3. L^ί (A9 G) be a covariant system and let (π, L) be a
left π0-regular representation of (A, G). Let πf be the corresponding normal
^-representation of jtf(A9 G). Then π' is a Hopf von Neumann algebra
morphism of (s/(A,G\d) onto (stf(π9L)9r) which maps the intrinsic group
of (jtf(A9 G), d) injectίvely onto the intrinsic group of (j/(π, L), r).

Proof. This is precisely what we have just proved for the induction
jtf(A9G)-+s/(A9G)E9 and we have simply formulated it for the quasi-
equivalent normal ^representation π'.

§ 6. The Classical Formulation of Duality for the Automorphism Group
of a Covariant System

We wish to characterize the automorphism group G of a covariant
system (A9 G) as the set of options defined on the space of $(A9 G) of
covariant representations of (A9 G) which satisfies some axiom concer-
ning the tensor product structure in &t(A, G). In Section 2 we defined the
concepts left and right tensor products, symmetric tensor products and
left tensor squares. We shall see that any one of these concepts will
suffice to give the needed structure to $(A, G).

Definition 6.1. An option S defined on 0l(A, G) will be said to preserve
left tensor products, if, whenever ( π ί 9 U^ and (π2, U2) are in $(A, G) and u
is a linear isometry of J f (π1? UΊ)® ffl (π2, U2) onto a closed subspace
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of ^o, such that

M((π1,

then

In a completely similar manner, we may define the notion : "S preserves
right tensor products", "S preserves symmetric tensor products" and
"S preserves left tensor squares". We may also define "S preserves the
left tensor square of the proper covariant representation (π, I/)" even
when (π, t/) is not an element of $(A, G). Indeed S has a canonical ex-
tension 5" to the representations (π, U) and (π, (7)^(π, [/) by requiring
that Sf preserve unitary equivalence and the direct sum of representations
(cf. axioms iii) and iv) in the definition of a option, Definition 3.2 of [3])
and noting that (π, U) and (π, U)Q(π, U) are both direct sums of proper
cyclic covariant representations (cf. Proposition 2.7 of [3]), each of
which is unitary equivalent to an element of &(A, G). Then we say S
preserve the left tensor square of the proper covariant representation

(π, E7) if

, U)) = S'(π, ί/)® S'(π, U) .

Theorem 6.2. Lei S be an invertίble element of s$(A, G), i.e., an in-
vertible option defined on &(A, G). Then the following conditions are
equivalent.

(i) s = sfor some s in G, where s(π, U) = C7(s) /or all (π, 17) in ̂ (A, G).
(U) S preserves the left-tensor square of a Ieft-π0-regular covariant

representation of (A, G).
(iii) S preserves left tensor squares.
(iv) S preserves left tensor products.
(v) S preserves right tensor products.

(vi) S preserves symmetric tensor products.

Proof. We first show that (ii) implies (i). Let π' denote the normal
^representation of jtf(A, G) corresponding to the left π0-regular re-
presentation (π, L). By definition of this extension π'(S) = S'(π,L). Then
(cf. Lemma 5.1) (π'®π')°d is the extension of (π, L)^Sl(π, L) to $f(A, G)
where d is the comultiplication of stf(A, G). Hence

d~] (S) = S'((π, L)φ(π, L))

= S/(π,L)<g)S'(π,L)
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Since π' is a Hopf von Neumann algebra morphism of (sf(A, G), d) onto
(&/(π, L\ r) (cf. Corollary 5.3) we have

π' (x) π' ° d = r ° π' .

Hence

Thus π'(S) is an intrinsic element of j/(π, L). However (Corollary 5.3)
π' maps the intrinsic group of (jtf(A, G), d) isomorphically onto the
intrinsic group of (j/(π, L), r). Thus S is an intrinsic element of jtf(A, G)
and hence (Theorem 5.2) S is of the form s, for some s in G.

The equivalence of conditions iv) and v) follows from the fact that,
for any pair ( π ί 9 U ί ) and (π2, U2) of covariant representations in 0l(A, G),
faij C/1)'δl(π2, t/2) i

§ unitary equivalent to (π2, L^2)lSl(πι? ^i) where the
linear isometry is the usual mapping of 34? fa ) ® J f (π2) onto Jf7 (π2) ® ̂ f (% )
and the fact that any option preserves unitary equivalence (cf. axiom
iv) of Definition 3.2 of [3]). Hence we clearly have i)=> vi)=> v)=>iv)=>iii)=>ii).

Remark 63. In the duality Theorems 4.3, 5.2 and 6.2, the requirement
that the intrinsic elements be invertible may be weakened to the require-
ment that they be non-zero. We have used the invertible condition be-
cause we like Proposition 3.5 and Proposition 3.5 is not true without
this invertibility assumption. Indeed consider a von Neumann algebra
sf with a non-trivial projection E. The general element is λl + μ£, with
λ,μ in <C. Define d(λl + μE) = λI®I + μE®E. Then (j^,d) is a Hopf
von Neumann algebra and d(E) = £® £, where E is non-zero and non-
unitary. However Proposition 3.5 was not used in the proofs of the duality
theorems. Indeed all of these theorems are proved by reducing to the
case of the Hopf von Neumann algebra generated by the left regular
representation of the automorphism group G. Here the Tatsuuma duality
theory is applicable, and in this case one need only assume that the
intrinsic elements are non-zero rather than invertible (cf. [6]).
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