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Abstract. We extend to arbitrary dimension the proof by Guenin that the time-
evolution is an automorphism group of the local algebras, if the interaction Hamiltonian
is a space-integral of a bounded local density with finite range.

It has been suggested [1, 2] that, in order to avoid the divergences
of quantum field theory, the time-evolution might be regarded as an
automorphism group of some C*-algebra 91; if there is a non-trivial
interaction, these automorphisms will not be implemented by unitary
transformations in the "free" representation of 91.

These ideas have been illustrated in a linear model [1], and in two-
dimensional relativistic theories with bounded interaction densities [3].
A similar result has been demonstrated for the Heisenberg ferromagnet
and certain fermion systems [4, 5, 8, 9]. In the present paper we offer a
generalisation of some of the results of [3] and [5].

We work in the algebraic approach to quantum field theory [2].
More precisely, we make the following assumptions:

1. We are given a J3*-algebra 91 of observables, and to each bounded
open subset & of 1R4, we are given a sub-£*-algebra 91(0); we assume
that the various 91(0) generate 9ί.

2. Causality: if (9V and (92

 are space-like separated, then 91 (0X)
commutes with 9Ϊ(02).

3. Free field dynamics: we are given a continuous homomorphism,
τ0, from IR4 into the automorphism group of 91, such that τ0(α)9I(0)
= 91 (0α), where (9a = {x eIR4; x — ae 0}. By continuity we mean that
||τ0(α)Λ-4||->0, for any A e 91, as a-+Q in IR4 For example, 91(0)
could be the C*-algebra generated by a free scalar field φ, smeared with
test-functions in 2(G\ or that generated by even powers of a free Dirac
field in 0.
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Let V e 9Ϊ(0!) be any hermitian local observable, and let Va = τ0(0, d)V.
Then J VacPa—Vr may be defined (see [6]) by a Riemann-Bochner

H^r
integral, and so defined, lies in $1.

We also have that τ~^(t, 0) Vr = Vr(t) = J Fα(ί)d3α.
W * r

We shall regard Vr as an interaction potential; it perturbs the free
dynamics τ0(ί) and defines a new time-evolution τr(ί) (Theorem 1). The
limit r-»oo exists (Theorem 2), defining a theory with space- translation
symmetry (Theorem 3).

Let A e 9X, and consider the following infinite sum,

τl(t)A =A + i$ dt, \Vr(tά A] + i2 / dt, } dt2 [VM, \Vr(t2\ Aί] + - - - (*)
0 0 0

Now, τ~Ql(t, 0) is an automorphism and so \\Vr(t)\\ = \\Vr\\, for every ί,
hence

\\vr(t)\\ = \\vr\\ ^ J ^llκ,ιι = 4 π r 3 l l F i l >
|α|^r -3

since ||FJ| = ||F||, τ0(0, α) being an automorphism.
The (n -h l)th term of the sum is a multiple commutator which can be

expanded to give 2" various permutations of V^t^ ... Vr(tn)A. The norm
is therefore less than or equal to

2*\\Vr\\» \ \ A \ \ l d t i . . .
ίn-1

.
o o n-

It follows that the sum converges in 91 in norm, for all ί. (Fr, 1̂ e 91 and
9ί is norm complete.) We can, therefore, define τ'(ί) on 9ί by (*). This
describes the approximate dynamics in the interaction picture.

We shall now give some properties of τ^(ί).
(i) τI

r(t)(λA + B) = λ(τI

r(t)A) + τI

r(t)B, for all A,Bε<Ά, and all AeC.
(ii) (τί(ί)>4*) - (τί(ί)^)*, for all A e 91. These are obvious.
(iii) If A and B are in 91, then (τ*(t)AB) = (τ*r(t)A) (τί(ί)B).

ί
Proo/. By definition, τl(t)A = A + i\dtl \Vr(t^\ A] + - which con-

o
verges uniformly in ί, for t e [— Γ, Γ], say. Let sn+1 denote the sum of the
first n + 1 terms. Then we can differentiate sn + 1 term by term, with the
result

at

The r.h.s. converges uniformly in 0, for Θε [-T, T], as n-κx), which
implies the existence of the limit of the l.h.s. (all limits being norm limits
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in 31). The two facts : sn converges uniformly in [ — T, T] and s'n converges
uniformly in [— T, T], are sufficient to imply that the limsπ is differen-
tiate, with derivative equal to the limit of s'n, as rc-»oo, for t e [ — T, T].
Hence

(1)

Similarly,

(2)

Now (1) satisfies the initial condition τI

r(t)A\t = 0 = A, a similar one
holding for (2).

Moreover, (τ?r(ί)AB) satisfies the differential equation

\t=e = i[Vr(θ), *ί(θ)AB] (3)

with the initial condition

Q = AB. (4)

Now

= i[Vr(t), t

where we have used Eqs. (1) and (2),

(5)

with the initial condition

(τί(ίM)(τί(ί)B)|ί=o = ̂ . (6)

However, given the differential equation

df(t)
dt r

together with a given initial condition, we can obtain the unique solution
by iteration. Comparing Eqs. (5) and (6) with (3) and (4) (or by direct
iteration of (5) with (6)) we obtain the required result.

The above remark concerning the uniqueness of the solution of the
D.E. with given initial condition, further implies that τ^(ί) is one-one.

We can summarise the above by simply saying that τ,(ί) is a one-one,
continuous, algebraic *-homomorρhism of 9ί into itself.
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Theorem 1. // τ0(ί) is the given automorphism of <Ά (Postulate 3),
with a = (ί, 0, 0, 0), then for A e SI,

τ0 (5) <(s) τ0(ί) τί(ί)^ - τ0(s + t) τj(

i.e. τ0(s) T^(s) form a 1-parameter group of homomorphisms of 21 into itself.

Proof. Let A be an observable in the algebra 21. We consider the first
fc + 1 terms of τ0(s) τ*(s) T0(i)Sn + 1, where Sπ+1 denotes the first n + 1
terms of ^r(i)A, and show that, for sufficiently large n and fc, this is
arbitrarily close, in norm, to the sum of the first n + 1 terms of
τ0(s + ί) τ*(s + ί)v4. The result follows in the limit fc, n-+co.

By definition,

+ i2 ί dt, Jf dt2[Vr(t,), \Vr(t2\ A]\ + ••• (n +1 terms).
0 0

The first fc +1 terms of τ0(s) τ'(s) τ0(ί)Sn + 1 are just

τ0(s) sτ0(ί)Sπ + 1 + i j ds1[Fr(s1), τ0(ί)Sπ + 1]
I o

+ ί2 ^ds, J ds2[Fr(5l), [7r(s2), τ0(ί)Sπ + ι]] + - (fc + 1 terms)}
0 0 J

ί
- τ0(s) τQ(t)<Sn + l + / J dsi [τ0HO ^(^iX ^n+il

+ i2 J dSl \ ds2[τ^(t) Vr(Sl), [τ^(ί) Vr(s2), SB+1]] + - (fc + 1 terms) [.
0 0

But τό HO Vr(
sι) = Vr(sι + 0, etc., and so we obtain

τ0(s + ί) Ll + i / dίt [7Γ (ίj, A] + i2 J dίt jf dt2 [yr(tv), [Vr(t2\ A]\
I 0 0 0

+ (n + 1 terms)
S Γ ί

+ i I ds, Vr(sι + ί), {A + i J dί! [^(ίj, >1] + - (n + 1 terms)}
0 L 0

o o
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The total number of terms (not expanding the commutators) is
(n + 1) (fe -f 1). Suppose that both n and k are greater than, say, m. Then
the term in "j/m" inside the large curly bracket is

dtm[vr(tl), [v,(t2), [...[
0

0 0

dsj dt, ...
0 0 0

There are m -f 1 terms (not expanding the commutators).
If we now change the variables of integration so that, for example,

(st + t) becomes the new sί? and then relabel each integral so that the
variables become ul9 ..., um rather than s l5 ..., s7 , ί1? ... tm- p we arrive at

0 0 0

S + t Uι Uj - 1 ί U,

+ f dUί f dw2 ... J dUj$ duj+1 ...
ί ί ί 0

ί ί ί

Adding term by term, from right to left, leads us to

which corresponds to the (m + l)th term in τ^(s -f t)A. So we see that the
sum of the first k +1 terms of τ0(s) τj(s) τ0(ί)Sn + 1 is equal to the sum of
the first n + l terms of τ0(s + t) τ^(s + t)A, (provided k^n) plus a remain-
der consisting of a sum of certain terms in Vr of "degree" n + l, ...,n + k.

There are, in fact, —(n + l) + (k — n)(n + l) such terms. Denote this
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remainder by Rn. Then by direct estimation of this remainder, we obtain

"~2 ""1

x"
+ ...+

n! \ 2! n!

y2 f

4 4
where we have replaced —-πr3 |s| ||F|| by x, and — πr3 |ί| ||F|| by y. The

last term, viz.
Λ/ H + l vfc \ / ,,2 i

+ 1)! kl}\ * 21 nl

can be made arbitrarily small (say < ε) for sufficiently large n and k. The
other terms are

say.
Let ε > 0 be given. Choose m such that

γm+l

*y\ <ε,
,(m + l)! (m + 2)!

and choose n so large that n > m and

yi χ2 / ^n-l yi \ χm / yι-m + 1 yi

X^ίί + TΓ\(n-l)! + ~n\] + ~mϊ((n-m + 1)1 + '" + "nί

Then the first m terms of Σ are less than ε, and the remaining n — m terms
are less than or equal to

(m
.e.

So we have proved that \\Rn\\ < 3ε, for arbitrary ε > 0, provided /c, n are
sufficiently large. Letting /c-*oo, and n->oo gives the result.

Corollary. The homomorphisms τj(ί) are automorphisms of 2ί.

Proo/. We need only show that the τj(ί) are onto 3X. Let J5 e 31. Put
A = τ0(-t)τI

r(-t}τ0(t)B. Then ^e9I, and τ0(ί) τ*r(t)A = τ0(ί)B, which
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implies that tf(t)A = B, since τ0(ί) is an automorphism. The τ*(ί) are
therefore onto.

We can use the group property of τ0(ί) τ].(i) to give an alternative
proof that τj(ί) is one-one, as follows: suppose τl(t)A = ^r(t}B. Applying
τo( — t) τl( — O τo(0 t° both sides of this equation then gives the result
A = B.

We shall now investigate τl(t) in the limit as r->oo. Let A e 21(0) be
a local observable.

Definition 1. Let r0 be the smallest real number such that
[Va(tl Vb(s}] = 0 for \a-b\> r0, where |ί| < T, and |s| < T.

Definition 2. Let r^ be the smallest real number such that
[Va(t), A] = Q for |α| > rA, where \t\ < T.

Both r0 and rA are well-defined positive numbers. This follows from
the fact that A and V are local, and Postulate 2.

Theorem 2. Tftere exists 5 > 0, SMC/I that for all \t\ ̂  δ, the limit ι?r(t)A
exists as r->oo, /or α/ί tocα/ A. If we denote the limit by A^t), then the
map A—tA^t) is continuous in A, and can be extended to the whole 0/21,
for all ί, and defines an automorphism of 21 -which is strongly continuous in t.

Proof. Let A be a local observable, and let |ί| < T. Then, according
to Definitions 1 and 2, if \tj\ < \t\9 and |ίk| < |ί|, then

LVaj(t^Vak(tk) ] = Q if \aj-ak\>rQ

and
lVaj(tj)9A]=0 if |α ; |>rx.

Consider the general term in the series for τ?r(t)A, namely

ldtndtn-i dti ί
0 0 0 \an\*r

ί

Working from the inside bracket, we see that [Fαι (ίj, A] is zero if
lαιi > r^? similarly for the double commutator,

\vΛί(t2\ VMA] = \ya2(t2\ vaι(tj\A + vM \va2(t2\A\

vanishes unless |α2 — αj rg r0 or |α2| ̂  rA. The same goes for the other
term - [Va2(t2),AVaί(t1)']. Thus, in general, the j-fold commutator is
zero unless α1? . . . , «/ lies in a set |α; | ̂  r^, or jα^ — α1 |^r0, or ... or
l a y — α^l ^ r0. We note here that r0 is independent of A.
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Now, the norm of (*) is bounded by

i J u un ... j a u

tn..'\dt, j <Pan...\fa,\\\yan(tn\l..,A-]...-\\\
0 S(n)

where the integrand vanishes outside S(n) and its positivity means that
we certainly have not decreased the value of the integral. S(n) is the
3 M-dimensional region P) SJ9 where

";l«ι £rA}9

Sj = {α; lα l g rA} u {α; l^ - aj,1 \ ̂  r0} u - u {α; aj - αj g r0},

Expanding the commutator, we obtain as a bound for (*)

\t\n

J n ' ' ' j 1

The integral over S(n) can be split up into n\ parts (not all disjoint), each
of the form of a polysphere in suitable coordinates, namely

jαj rg rΛ, jα^l ^ const, [α^j ^ const., ...

where αj is either α; , when the constant is rA, or is one of aj — ak_l,
(2^k <^j), when the constant is r0.

For each 7 e (1,..., n) let us put

say, and

αj,k = J

say, for k = 2, ...J.
Then the typical term in the integral over S(n) is

αι,ια2,i2 •-• α«,tn where όe ί1' •••'Λ

The integral over S(n) is therefore bounded above by the sum

Σ θ ί ί l < x , 2 i 2 . . . < x , n t i n
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(where the sum is over all possible values of z'2, ΐ3, ..., in)

It follows, then, that (*) is bounded in norm by

nl

Let r and r' be so large that the first N terms of τ*r(t)A and τl>(t)A are the
same. This is possible since each 8(n) is a bounded region, and con-
sequently, as r increases, each term of τl(t)A becomes independent of r.
Then

2" \\V \\" \\A\\D ... (D

The series £ -ii- 2" || 7 |Γ D(D + d) . . . (D + (n - 1) d) converges, uniformly
n M

in | r | l Ξ < 5 , by the ratio test, for δ< 1/2 \\V\\d. Hence, given ε>0, for
sufficiently large N, (i.e. sufficiently large r, r'}

The τ*r(t)A therefore form a Cauchy net, and hence converge in $ί.
The δ defined above depends only on V and r0, not on ,4. It follows

that, for |ί| ̂  δ, τ?r(ϊ)A converges uniformly as r-»oo, for all local A. Since
each τJ

r(t)A is continuous in A, it follows that τ^(t) A = A^f) is also
continuous in A, for y4 local, and |ί| ̂  ̂ . We can therefore extend τ^(ί),
for |ί| ^ (5, by continuity, to the whole of 21.

Now, τ^(ί) is the strong limit of automorphisms, and is therefore
certainly a *-homomorphism. We shall show that τ^(ί) is one-one and
onto, for |ί| g δ. The relation

τ0(s) τj(s) τ0(ί) τί(ί) - τ0(s + ί) τj(s + ί), for \s\<δ,

\t\<δ, implies that τ(s)τ(t) = τ(s + t), where τ(ί) denotes τ0(ί)τ^(ί). We
deduce that τ^(ί) is an automorphism, as in the corollary to Theorem 1.

So far we have defined a family of automorphisms, τ(f), with |ί| <^ <5.
We can extend these to all ί.

Define, for |θ|^2<5,
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where |x| rg δ, \y\ ̂  6, and x + y = θ. The right hand side is well-defined,
and is an automorphism of 31. If \θ\ ̂  δ, this definition is no more than
an identity. Suppose δ < \θ\ ̂  2(5, x + y = θ = x' + y', \x\, |x'|, \y\, \y'\ < (5,
and x φ x'. Then

= τ(x') τQ/ - y) φ), using x - x' = y' - y ,

= τ(x')

which simply means that τ(θ) is independent of how we write θ = x -f y,
i.e. is well-defined. We have therefore extended the range of ί, from
|ί| ^ δ, to |ί| g 2<5. In this way we can define τ(ί) for any ί.

That τ^(ί) is strongly continuous in t follows from the obvious fact
that τl(f) is strongly continuous for each r, and the following estimate:

- τ*r(t)A\\

+ \\τl(t}A-τl(t'}A\\ + 1 1

The first and third terms on the r.h.s. can be made arbitrarily small, for
sufficiently large r (convergence is uniform in ί), and the second for
|ί — 1'\ sufficiently small. This proves the theorem.

Remark. The family τ0(s) τ^(s) Ξ τ(s) is a one-parameter group of
automorphisms of 3ί, strongly continuous in s, for all s.

Theorem3. τ^(ί) commutes with space translations, i.e. τ^(ί) τ0(0, α)
= 10(0^)^(0, for alia.

Proof. Let A be local, and |ί| < <5; then we have

τ0(α) ̂ (t)A = τ0(α) A + i dt, f d3at \_Vaι(tγ), A] +
o

Continuity of the automorphisms gives the result for all A e 31. It remains
to remove the restriction |ί| ̂  δ. This is easily done as follows; let s be
given. Then there exists ί, with |ί| ̂  δ, and a positive integer m such
that mt = s. Let A e 31.
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τ0(0, α) ^(s)A = τ0(-s) τ0(0, α) τ0(s) 4,(s)A

= τ0(-s) τ0(0, α) (τ(t)TA = τ0(-s) (τ(ί)f τ0(0, a) A

= ^(s) τ0(0, αM, (where τ(ί) = τ0(ί) τ^ί)) .

This completes the proof of the theorem.

Clearly, both Theorem 2 and Theorem 3 hold in any number of
dimensions.

If, in addition to the assumptions 1, 2, 3, we have a continuous
representation of 0(3) in Aut9l, and if we choose Vto be invariant under
this action of 0(3), the theory will be Euclidean invariant.

Suppose that instead of a general J5*-algebra 9ί, we consider the
algebra constructed as follows. Define $(&} to be the W*-algebra
generated bv Φ( f ), π(g) as /, g run over 2(&\ where (φ, π) is the usual
relativistic scalar free field at time t = 0 and where now (9 C H^3 let 9ί0

be the C*-algebra generated by the &t(f)\ Then results worded as our
Theorems 2 and 3, with 91 0 replacing 91, can be proved by similar methods
(using weak integrals instead of Riemann-Bochner integrals). (But in
this case, τ0(ί) will not be continuous in t in the sense of assumption 3,
so that the continuity of the time evolution, τ0(ί) τ^(ί), will be a represen-
tation-dependent concept.)

If A e βfc(&) and fε2((9\ it is easy to prove from our estimates that
the norm limit, τ(t)A, of τr(t)A = τ0(t) τ'(t)A as r->αo, is uniform in
H ^ l l ^ l . Since τr(t) is implemented, it follows that τr(t)eiaφ(f] and
τr(ί)βlαπ(/) are strongly continuous in α, and since the limits r— >oo are
uniform in α, we see that τ(t)eί<xφ(n and τ(ί)e lαπ(/) are strongly con-
tinuous in α. This means that the sharptime Heisenberg fields φ(f, ί),
π(/, ί) can be defined as the self- adjoint generators

i«

the limit being strong on the domain Dt of φ(/5 ί). In general, Dt will
depend on ί.

The resulting theory fails to be satisfactory because
(1) time-evolution is not implemented,
(2) locality and relativity do not hold.
The first would be remedied by changing to a new representation,

as required by Haag's theorem [7]. The second is due to the non-local
nature of the interaction.

Note added in proof. Bounded interactions without a space cut-off have been considered
by H0egh-Krohn as weak limits of cut-oίf theories (see Boson Fields under a General
Class of Local Relativistic Invariant Interactions); and by Efimov, and others in perturba-
tion theory. (See A. Salam, R. Delbourgo and J. Strathdee, Phys. Rev. 187, 1999 (1969)
and references therein.)



32 R. F. Streater and I. F. Wilde: Time Evolution of Quantized Fields

References

1. Segal, I. E.: Quasi-finiteness of the interaction Hamiltonian of certain quantum fields.
Ann. Math. 72, 594 (1960).

2. Haag, R.: Colloques sur les problemes mathematiques de la theorie quantique des
champs. Paris: Centre Nationale des Recherches Scientifiques 1959; — Haag, R.,
Schroer, B.: Postulates of quantum field theory. J. Math. Phys. 3, 248 (1962); —
Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.
5, 848 (1964).

3. Guenin, M.: On the interaction picture. Commun. Math. Phys. 3, 120 (1966).
4. Streater, R. F.: The Heisenberg ferromagnet as a quantum field theory. Commun.

Math. Phys. 6, 233 (1967).
5. — On certain non-relativistic quantized fields. Commun. Math. Phys. 7, 93 (1968).
6. See Yosida, K.: Functional analysis, p. 132. Berlin-Heidelberg-New York: Springer

1965.
7. Haag, R.: On quantum field theory. Dan. Mat. Fys. Medd. 29, 12 (1955).
8. Robinson, D. W.: Commun. Math. Phys. 7, 337 (1968).
9. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969.

R. F. Streater
i. F. Wilde
Mathematics Department
Bedford College
Regent's Park
London, N.W. 1, Great Britain




