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Abstract. We present a general framework in which Griffiths inequalities on the
correlations of ferromagnetic spin systems appear as natural consequences of general
assumptions. We give a method for the construction of a large class of models satisfying
the basic assumptions. Special cases include the Ising model with arbitrary spins, and the
plane rotator model. The general theory extends in a straightforward way to the non-
commutative (quantum) case, but non-commutative examples satisfying all the assump-
tions are lacking at the moment.

Introduction

Recently, Griffiths [1] obtained remarkable inequalities for the
correlation functions of Ising ferromagnets with two-body interactions.
These inequalities were subsequently generalized by Kelly and Sherman
[2] to systems with interactions involving an arbitrary number of spins,
and by Griffiths to systems with arbitrary spins [3]. These inequalities
have received several applications of physical interest. They have been
used to prove the existence of the infinite volume limit for the correlation
functions of Ising ferromagnets [1], to settle the question of the existence
of phase transitions in one dimensional systems with moderately long
range interactions [4], to obtain upper and lower bounds on critical
temperatures [5], and to establish rigorous inequalities on critical point
exponents [6]. It is therefore of interest to extend the inequalities to the
largest possible class of models.

In this paper we make a first step in this direction by giving a general
formulation which seems appropriate for this problem, both for classical
and quantum systems. We obtain sufficient conditions for the inequalities
to hold, analyze these conditions, and construct examples which satisfy
them. These include as special cases the Ising model with arbitrary spins
and the plane rotator model.

In Section 1, we develop the general theory for the classical case.
In Section 2, we describe a number of models which fit into the general
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scheme, and for which the inequalities hold. We also give some counter
examples indicative of the limits of the theory. Section 3 contains a more
general formulation of the theory, which contains that of Section 1 as
a special case, and seems adequate to study quantum systems. The
purpose of this exposition in two overlapping stages is to give a self-
contained description of the classical case, which is slightly simpler,
and for which a fairly large class of non trivial examples exist.

Basically, the problem is an algebraic one. Nevertheless, series and
therefore convergence problems arise here and there. Therefore some
assumptions of a topological nature are required, in order to make de-
finite statements. Their choice is mainly a matter of convenience. In
what follows, we shall make assumptions which are natural, sufficient
to treat the applications, and sufficient for the convergence problems
to become trivial. The arbitrariness of this choice will not be mentioned
any more, but should be kept in mind.

1. General Theory in the Classical ( = Commutative) Case

Let K be a compact space, 21 = ^(K) the algebra of complex con-
tinuous functions on K. Elements of K will be denoted by x, y, etc.,
elements of 2Ϊ by /, g, h, etc. 91 is a commutative C*-algebra [7] with
the norm \\f\\ = Sup|/(x)|. It has a unit element, namely the function

X

which is constant and equal to one, and which we denote by i . Let σ
be a state on 21, or equivalently a positive measure on K with total mass
equal to one. We shall be interested in subsets Q of 21 satisfying some
of the following conditions:

(Q1) Q is a convex cone, closed in the topology of 21, containing i
and closed under multiplication and complex conjugation. In particular,
for any feQ,geQ and any α ^ 0 , β^0, the functions α/ + βg, fg and
/ belong to Q.

(Q2) For any finite family fx,...,/„ of elements of g, the following
quantity is real positive1:

σ(/i ...fn) = Sdσ(x)f1(x) ...fn(x)>0. (1.1)

(Q3) For any finite family fί9 ...,/„ of elements of Q and for any
sequence of plus or minus signs, the following quantity is real positive:

J dσ(x) dσ(y) f[ (/4(x) + ft{y)) ^ 0. (1.2)

This choice calls for the following remarks.
1 In all this paper, a positive means a ^ 0, a strictly positive means a > 0.
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Remark ί. If Q satisfies (Q1), then (Q2) simply means that σ belongs
to the polar cone [8] of the convex cone that consists of the real elements
inβ.

Remark 2. The conditions (Q2)and (β3) are not independent. (Q2) is
a consequence of (β3). In fact:

tdσ(x) Π ft(x) = i J d<r(x) dσ(y) [ f [ ft(x) + f[ ft(y)]. (1.3)
i = l L i = l i = l J

Π ft W + Π /*(y)=i(Λ W+/i W) ί Π /; W + Π /*(y))
ί= 1 i = 1 \i = 2 i= 2 /

Now:

+ ί(Λ(*) - /i(y)) (Π /<(*) ~ Π /ι(y)
\i=2 f=2

By iteration, the integrand in (1.3) decomposes as a linear combination
with positive coefficients of integrands of the type that occur in (1.2).
Therefore (Q3) implies (Q2).

On the other hand, if all signs are plus signs, (1.2) reduces to a con-
sequence of (Q2). The inequality (1.2) is obviously satisfied if the number
of minus signs is odd, in which case the LHS of (1.2) is zero. Other cases
are not trivial.

Remark 3. In all the applications of Section 2, Q will be a real cone.
Complex cones will rather provide us with counterexamples. One could
also include in (Q1) the condition that Q is real. The present form is
chosen in analogy with the more general case described in Section 3.

The relevant conditions for our purposes are (Q2) and (Q3). We now
show that the natural subsets of 9Ϊ to consider are those satisfying (Q1).
Let S be a self conjugate subset of 91 (that is, with /, S also contains /).
Let Q(S) be the smallest subset of 9Ϊ that contains S and satisfies (Q1),
or equivalently the intersection of all subsets of 91 that contain S and
satisfy (Q1), or equivalently the norm closure of the set of polynomials
of elements of S and i with positive coefficients. Q(S) will be called the
multiplicative convex cone generated by S.

Proposition 1. Let S be a self conjugate subset of 9ί. // S satisfies
(Q2) (resp. (β3)j, then Q(S) also satisfies (Q2)(resp. (Q3)).

Proof. The statement for (Q2) follows from the previous description
of Q(S) and the stability of (Q2) under convex combinations, multipli-
cation and norm closure.

Suppose now that S satisfies (Q3). (Q3) is obviously stable under
convex combinations and norm closure. In order to prove that Q{S)
satisfies (ζ)3) it is sufficient to prove that (1.2) holds when each f is a
product of elements in S. The argument is the same as in Remark 2.
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Let f = g1 ... gr where gie S for 1 Sjύr. Then

f(x) ± M = y fei (x) + flfi O ) fe2 <7r(x) ±9i- θM

(1.5)

+ y (#1 W - 01 00) {02 . 0r (*) + 02 ftM)

By iteration, we obtain a decomposition of f(x)±f(y) as a polynomial
with positive coefficients of expressions of the type g(x)±g(y)9 where
geS. The result follows immediately.

We now introduce the following notation. Let h and / belong to 21.
We define:

Λ(*)] (1.6)

= Zfc-
x idσ{x)f(x) exp[- Λ(x)] (1.7)

provided ZhΦ0.
In the applications, X will be the phase space of a physical system,

h the hamiltonian, / any observable, Zh the partition function, and </>ft

the thermal average of /.
We are now prepared to state and prove the basic inequalities. The

first one reduces to the following statements.

Proposition 2. (Griffiths' first inequality). Let S be a self conjugate
subset of 9ί, satisfying (Q2). Let he 21.

(1) // e~h e Q(S) and Zh + 0, then </>A is real positive for all fe Q(S).
(2) If -heQ(S\ then e~heQ(S) and Zh^l.

Proof Q(S) satisfies (Ql) by definition and (β2) by Proposition 1.
(1) is obvious. (2) follows from (Ql) and (Q2) by expanding Γ h as a
power series in — h. The series is norm convergent in 91. Term by term
integration gives Zh ̂  1.

We turn to the second inequality.

Proposition 3. (Griffiths' second inequality). Let S be a self conjugate
subset of 9ί, satisfying (β3). Then for any /, g and -h in Q(S\ the
following quantity is real positive:

(i 8)

Proof. Q(S) satisfies (Ql) by definition and (Q3) by Proposition 1.
From the definition (1.7), we obtain

2Zl{ifg\ - (f\(g\) = Sdσ(x) dσ{y) (f(x) - f(y))

χ(g(χ)-g(y))eχp(-h(x)-h(y))

= ΣAw°(x)dσ(y)(f(x)-f(y))(g(x)-g(y))(-h(x)-h(y)γ. (1.10)
nn = 0
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Term by term integration is allowed by the uniform convergence of the
series, and each integral is real positive by (β3).

These results call for the following remarks.

Remark 4. Proposition 2 is a rather weak result, and holds under
much more general circumstances. For instance, the exponential can
be replaced by any entire function with positive Taylor coefficients at
the origin. We have kept unnecessarily restrictive assumptions because
they seem to be useful for Proposition 3, which is the really interesting
result.

Remark 5. In the proof of Proposition 3, we do not need the full
strength of the condition (β3), but only a special case of it. The main
reason for imposing (Q 3) in the present form is its factorization property,
already used in the proof of Proposition 1, and to be used again for
Proposition 5 below.

We now face the problem of finding sufficiently general self conjugate
subsets S of 91 that satisfy (Q2) or (β3). It will prove useful to consider
subsets S of 91 which satisfy the following condition:

(S) The product of any two elements feS,geS, has an expansion:

where an^0 and fneS for all n, and where the series converges in the
norm topology of 91.

Let now C(S) be the convex cone generated by S a n d i , i.e. the norm
closure of the set of linear combinations of elements of S and H_ with
positive coefficients. The search for S is simplified by the following result.

Proposition 4. Let S be a self conjugate subset of 91. Then:
(1) if S satisfies (S),Q(S) = C(S),
(2) if S satisfies (S) and if σ(f) is real positive for all feS, then S

satisfies (Q2).

Proof. (2) is obvious. We prove (1). Certainly C(S)CQ(S). Now (S)
implies that C(S) satisfies (Ql). Therefore C(S) = Q(S).

An essential tool in the construction of models is the following factori-
zation property.

Proposition 5. Let K" = Kίx K2be the product of two compact spaces,
let σ = σ1x σ2 be the product of two probability measures on Kλ and K2

respectively, let S1 and S2 be self conjugate subsets of ^{K^ and ^(K2)
respectively, and let S = SίS2C

(£(K1 x K2) be the set of functions of
the type f(x1,x2) = fx(χx) f2(x2), where f± eS x and f2eS2.

Then, if S± and S2 both satisfy (S) (resp. (Q2), resp. (Q3)), S also
satisfies (S) (resp. (Q2), resp. (Q3)).
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Proof. The property is obvious for (S) and (β2). For (β3), it follows
from repeated use of the identity:

(1.12)

In the following section, we shall use Propositions 4 and 5 to construct
examples of subsets S C 9Ϊ satisfying (Q 2) or (Q 3), and for which therefore
Propositions 2 and 3 hold.

2. Examples

In this section, we give explicit examples of systems (K, σ, 5) such
that S satisfies (S) and (Q2) or (β3). We describe successively:

two basic examples where <S satisfies (S) and (β2) (Examples 1 and 2),
two basic examples where S satisfies (S) and (Q 3) (Examples 2 and 4).

They are restrictions of Examples 1 and 2 respectively.

two counter examples to optimistic guesses concerning the possibility
of generalizing example 4 (Counter examples 1 and 2).

An example where (S) and (Q 3) are satisfied, but which falls outside
of the class considered in the previous section, since the corresponding
K is not compact.

Finally, we turn to physical applications constructed from Examples 3
and 4 and describing generalized spin systems (Models 1 to 4).

Example ί. (S) and (Q2) satisfied. K is an arbitrary compact set,
σ an arbitrary probability measure on K, S = Q(S) is the set of real posi-
tive continuous functions on K.

Example 2. (S) and (Q2) satisfied. K is a compact group G, σ is a
positive definite measure on G, or equivalently a measure of the form
a = μ* * μ, where μ is a bounded measure on G, and μ* is defined by
dμ*(x) = dμ(x~1). S = Q(S) is the set of positive definite functions on
G [9]. (S) follows from the fact that the product of two positive definite
functions on G is again positive definite, and (Q2) from the fact t h a t /
positive definite implies

Example 3. (S) and (β3) satisfied. K is an arbitrary compact set,
σ an arbitrary probability measure on K. Let g be a real function in

). Let T be the set of real positive continuous non decreasing func-
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tions φ on g(K), the image of K under g. We define:

= {fe^(K):3φeT such that f = φog}.

(S) is obviously satisfied. We prove that S also satisfies (Q 3). Let f—
for ί = 1, ...,n. The integrand in (1.2) is a product of factors which are
either of the type (fί(x) + fi(y)) and therefore positive, or of the type
fi(x) — fi(y)9 in which case they have the sign of g(x)-g(y). Since it
suffices to consider the case of an even number of minus signs, the inte-
grand in (1.2) is positive, and (Q3) is proved.

Example 4. (S) and (g3) satisfied. This example is a special case of
Example 2. We take G commutative, σ is the Haar measure on G and
Q(S) is the set of all real positive definite functions on G. We moreover
restrict our attention to the case where G is the direct product of a finite
number of circles T± and a finite number of finite cyclic groups ZPi,
where Zp = Z/pZ is the additive group of integers modulo p. Because
of Bochner's theorem [10], we can take S to be the set of the real parts
of the characters of G.

An element of G is a family 0 = (01? ...,0r) of r angles θ£6[0,2π).
For each i, θt can take either all values in [0, 2π), or values of the form
2πk/pi with k integer, depending on whether this specific θt belongs to
a circle 7i or to a cyclic group Zpi.

The characters of G are the functions χw(0) = exρ(zm. 0) where
m = (mx,..., mr) is a set of r integers (some of them taken modulo some pt).
The functions in S are the functions fm(θ) = cos(m. θ). Condition (S)
follows from the identity

cos(m. 0)cos{m' 0)=— [cos((m + m). θ) + cos((m-m').0)] . (2.1)

We now show that S satisfies (Q3). Let /m., i= 1,..., n, be a finite family
of functions in S. We want to prove that the following quantity is positive:

J=μθdθ'fl(fmι(θ)±fmi(θ')). (2.2)
r

Here \άθ= \\ $dθp and for each j9 ldθ} means either integration in

(0,2π) or summation over the discrete values 2πk/p with 0^k<p— 1,
for some positive integer p.

Now for all ι,

θ+ff\ I 0 - 0
cosni .0 + cosffi .0' = 2 cos mt — I cos (m i .

2 —\'"*' 2 ,
7 V 7 (2.3)

cosmf.0 — cosfftf.0' = 2 sin ( m̂  — sin w f.
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Substituting (2.3) into (2.2), we obtain for J an expression of the type:

( 2 .4,

where F(ω) is a periodic function of each component ωt oϊω with period
2π. Each factor in the integrand in (2.4) is a periodic function of each θj
and θ'j with period 4π, in such a way that the product has period 2π
in θj and θ'j.

For each component (θj9 θ'j) of (0, θ'\ we now change the integration
variables from (θj9θ

fj) to (Xj = (θ'j + θj)/2 and βj = {θ'j-θJ)β. This is
straightforward if βy, θ'j are continuous variables in (0,2π), but requires
some care if fy and 0} are discrete variables. We consider a specific
component; and drop the subscript j . We proceed as follows (see Fig. 1).
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Fig. 1. Change of integration variables in Eq. (2.4). Regions with the same number give
equal contributions

Using the periodicity of the integrand in (2.4) we first replace the
integration in the square OALB(0^θ<2π, 0^θ '<2π) by one fourth
of the integration in the square KLMN(-2π ^ θ < 2π, -2π^θf< 2π).
The latter integration is twice the integration in the square ABCD
( — π ^ α < π , — π^β<π\ In the continuous case, the new integration
domain is obviously the product of the intervals - π ^ α < π and
— π^β<π, the measure being dadβ. In the discrete case where θ
and θ' represent elements in a finite cyclic group Zp, one has to consider
separately the two subdomains that consist of points with both α and β
even multiples or odd multiples of π/p. Each subdomain is the product
of identical domains for the variables α and β. The case p — 2 is shown
on Fig. 2 as an example.

Finally, J reduces to one term, or to a sum of terms, of the type
2. This is positive, and (β3) is proved.
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Fig. 2. Change of variables in Eq. (2.4) in the discrete case (G = Z2). The final integration

range consists of the points interior to the dotted square

We next show that the restriction to real positive definite functions
cannot be dropped in general in Example 4 if (Q 3) is to be fulfilled.

Counter Example i. (Q3) not satisfied. K is the unit circle Tί9 σ is
the Haar measure dσ(Θ) = dθ/2π, S is the set of characters of Tί9 Q(S)
is the set of positive definite functions on Tx. Then (Q 3) does not hold,
as shown by the following counter example:

- e ) ) = - 2 .
(2.5)

In a previous paper [11], we obtained Griffiths' second inequality
(1.8) as a consequence of the positive definiteness of a suitable function.
The group G corresponding to this case is a direct product (Z2)

N. In this
case, every element of G is of order two, so that all the characters and
positive definite functions on G are real. We denote by x, y, etc., the
elements of G and by ρ, μ, λ, etc. the characters of G, i.e. the elements
of the dual group G. Then, for any (real) positive definite functions /
and — ft on G, the function φf(ρ) = <£>/,<£?/>/, is a real positive definite
function on G. In particular, φf(ρ) is bounded everywhere by its value
at the origin 3L of G. Now if / is real positive definite, and μ e G, fμ is
also real positive definite. Therefore:

φfβ) - φfμ(μ) = (f μ\ - ^ 0 . (2.6)

We now show that the positive definiteness of φf(ρ) for (real) positive
definite / does not hold in general if the characters of G are complex.
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Counter Example 2. The function φf(ρ) = <£>&<{?/>& is not positive
definite in general. We start with an arbitrary compact commutative
group G, to be chosen more precisely later. We take —h to be a real
positive definite function on G

-h= YJ(λ)λ (2.7)
λeG

with J(λ) = J(λ) = J(λ)^O. We first consider the case where / = μ e G .
By Bochner's theorem [10], φμ(ρ) is positive definite iff its Fourier trans-
form φμ{x) is real positive. We consider φμ{x):

c)Sdy dz ρ(y) ρ(z) μ(y) exp [ £ J(λ) (λ(y) + λ(z))

= $dy μ{y) exp [£ J(λ) (1 + A(x)) λ(y)j

= Σ -A- Σ J(λι)...J(λnm(i + λi(X)) ( 2 8 )

* idy μ(y)flJ,{y).

This is not real in general, as shown by the following example. We take
μ Φ i , J(μ) = J(μ) = J > 0, J(A) = 0 for A Φ μ and λ φ μ. We take further-
more J small enough for the first order term in (2.8) to be dominant.
Then:

φμ(x) = ZΪ2(J(1 + μ(x)) + 0(/2)). (2.9)

This is not real in general if μ is not real.
We next consider the case of a real positive definite /. We take

/ = μ + μ, so that φf(ρ) = <£>f,<{?(μ + μ)X Its Fourier transform is then
real:

Φ/W = Φμ(x) + Φβ(x) = 2 Re(^(x). (2.10)

One may then ask whether φf(ρ) is positive definite, or equivalently
whether its Fourier transform φf(x) is positive. The following example
shows that this is false in general. We take now G = Tx, we call the variable
θ instead of x, we take μ(θ) = e2iθ, J(λ) = J(λ) = J>0 for λ(θ) = eiθ,
J(v) = 0 otherwise, and J small enough for the lowest order term in
φf(x) to be dominant. Then:

φf(β) = Z,- 2 Re(J 2(l + eίθ)2 + 0(J3)) (2.11)

φf{θ) = 2Zϊ2(J2 cos0(l + cos0) + 0(J 3)). (2.12)

This has the sign of cosθ, and φf is therefore not positive definite.
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Counter example 2 shows that the proof and generalization of
Griffiths' second inequality given in Ref. [11] are accidental, since they
depend in an essential way on the reality of the characters of G, which is
not required in the general situation of Example 4.

In a recent paper, Sherman [12] obtained a generalization of Griffiths'
second inequality (1.8) for the group G = (Z2)

N, which is weaker than the
positive definiteness of φμ(ρ), and states only that for any subgroup H
of G and for any real positive definite /, g and — h on G, the following
quantity is real positive:

Σ «Q>k<Qfg>k - <Qf>k <QQ\) ̂  0 . (2.13)
ρeH

It would be interesting to determine whether (2.13) still holds for the
groups considered in Example 4. We now present an example where
(β3) holds, but where K is not compact.

Example 5. (S) and (β3) satisfied. K is the real line. The measure σ
is defined by dσ(x) = exρ( — x2/2)dx, S consists of the Hermite poly-
nomials Hn(x) with the usual sign conventions. These polynomials are
orthogonal with respect to σ. (S) follows from the orthogonality relations
and the fact that for all /, m, n, the following quantity is positive:

idσ(x) Ht(x) Hm(x) Hn(x) ^ 0. (2.16)

We now prove (β3). We consider the quantity:

J = μσ(x) dσ(y) f [ {Hm{x) ± Hm(y)). (2.17)

We make a change of variables from (x, y) to u — (x + y)/]/2, v = (x — y)/]/2:

j = μσ(u)dσ(v) Π \HmV^Λ ±Hmί^γ^

The Hermite polynomials satisfy the identity [13]:

r

m_j(u)iϊz(t;). (2.19)

Furthermore, Hm has the parity of m. Therefore:

where even corresponds to plus, and odd to minus. Using (2.20) repeated-
ly, we decompose the integrand in (2.18) as a polynomial with positive
coefficients of Hermite polynomials of u and v. The integrations over u
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and v factorize in each monomial, and it follows immediately from (S),
the orthogonality relations and the positivity of Ho, that J is positive.
This proves (β3).

This example is of restricted interest, since convergence requirements
allow only for quadratic Hamiltonians in this case.

Using Examples 3 and 4 as building blocks and proposition 5 as a
glue, we can now construct a large variety of models where (Q 3) is satis-
fied, and which therefore satisfy Propositions 2 and 3. We select a few
of them on the basis of their physical interest.

Model 1. Ising model with spin \. This is a special case of Example 4
with G = (Z2)

N. We have therefore obtained one more proof of a well-
known result [1,2,11].

Model 2. Generalized Ising model with arbitrary spins. Let A be a
finite set of N sites. We shall construct a system (X, σ, S) as the product
of individual subsystems (Kr, σr, Sr) associated with each site re A. By
Proposition 5, S will satisfy (S) and (Q 3) if each Sr does. Let r be a site
in A. The system (Kr, σr, Sr) is itself constructed as the product of two
systems:

— a system of the type of Example 4, with G = Z2,

— a system of the type of Example 3, with K= [0,1], and g(x)=x.

This can be described equivalently as follows. Kr is the closed interval
[ — 1, +1]. σr is any positive normalized even measure on Kr. In partic-
ular, dσr(x) = dσr(—x). If σ has a finite mass aδ(x) at the origin, it should

be understood as lim — (δ(x +ε) + δ(x-ε)). Sr is the set of functions
e->0 Z

on Kr that are of the form f(x) = φ(\x\) or f(x) = ε(x) φ(\x\), where φ(t)
is any positive continuous non decreasing function of t e [0,1], and
ε(x)= +1 (resp. —1) for x>0 (resp.x<0). The set Q(S) which occurs
in Propositions 2 and 3 is then the set of all norm limits of polynomials
of all such functions for all sites in A, with positive coefficients.

Remark 6. The Ising model with arbitrary spins considered in Ref. [3]
is the special case obtained by restricting Sr to be the set of functions
{x"} where n is an arbitrary positive integer, and σr to be the measure
defined by

dσr(x)=—~- X δ[x-—)dx (2.21)

where sr is integer or half integer, and m takes all integer or half integer
values from -sr to +s r .

Remark 7. Model 2 satisfies the following property, already obtained
in Ref. [3] for the special case described in Remark 6. Choose Q(S) as
above. Suppose that for all r, σr is non-vanishing in any neighborhood
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of + 1 . This can always be achieved by a rescaling of the corresponding
spin variable, and entails therefore no loss in generality. Let σ be the
product measure σ = Y\ σr onK and let </>ftj(T be the thermal average

r

of feQ(S) with hamiltonian h and measure σ(cf. (1.7)). Let φ(t) be a
positive continuous strictly increasing function of t e [0, 1], for instance
φ(t) = f with α > 0. Consider the new hamiltonian hλ defined for λ > 0 by:

) . ( 2 2 2 )
reΛ

Then, by Proposition 3, </) h A > σ is an increasing function of A. On the

other hand, (f}hΛ>σ = (f}h>σΛ where σλ is the measure defined by

Π

dσλr(x) = dσr(x) exp{λφ(\x\)) Udσr(x) e x p C M M ] ] " 1 . (223)

It is easily seen that when λ tends to infinity, σλ tends in a suitable sense
(technically: in the sense of the W* topology induced by 9Ϊ on its dual
space 91') to the measure σ = Πσn where dσr{x) = i(δ(x + 1) + δ(x -1)) dx.
Therefore, for any / and -heQ(S\ the following inequality holds:

0 ^ < / > Λ , σ ^ </>„,,. (2.24)

In words, this means that the thermal averages of elements of Q(S) for
arbitrary spins are bounded by the averages of the same quantities for
spin j , with the same hamiltonian.

Model 3. Plane rotators. Let A be a finite set of N sites. With each
site is associated a classical spin, which is a unit vector in the two dimen-
sional euclidean plane, or equivalently a point θ of the unit circle Tx.
The phase space is therefore K = (T^. This is a special case of example 4.
σ and S are chosen as in this example: σ is the Haar measure dσ = Πdθr/2π,
S is the set of functions cos(m.β) where θ = {θl9 ...,0 r), m = {ml9..., mr)9

and the nij are arbitrary integers. Q(S) = C(S) is the convex cone of norm
limits of polynomials (or equivalently linear combinations) of such
functions, with positive coefficients. In the applications, one often con-
siders special cases, for instance functions of the type cos(0r — ΘS),
re A, seA.

Model 4. Classical Heisenberg model. Let A be a finite set of AT sites.
With each site r is associated a classical spin, which is a unit vector ur

in the three dimensional euclidean space, or equivalently a point of the
two dimensional unit sphere. Such a point is described by two angles
θ e [0, π], and φeTl9oτequivalently, by two variables x = cos0e[ — 1, + 1 ]
and φ e Ti. The phase space is therefore the product of those of models 2
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and 3: K = [ - 1 , + 1]N x (T^. Suitable σ and S can therefore be obtained
as products of those considered in Models 2 and 3. Note however, that
this is not sufficient to accomodate the usual interaction terms, which
are linear in cos(w,., ws) = cos^cosθ s + sinθr sin0S cos(<?>,. — φs), and for
which further generalizations of example 4 are needed.

Similar games can be played with higher dimensional classical spins.

3. General Theory in the Quantum (= Non Commutative) Case

In this section, we extend the theory of Section 1 to the non com-
mutative case. The non commutativity complicates the algebraic struc-
ture, and several extensions are possible; we first present the most natural
one, which is completely straightforward, and then a symmetrized theory
which however has the severe drawback that the factorization properties
are destroyed by the symmetrization.

Let 91 be a Banach *-algebra2 [14] with unit element i . Other
elements of 91 will be denoted by A9 B, H, etc. Let σ be a state on 91,
namely a positive linear functional normalized by σ(i) = l. We are
interested in subsets Q of 91 which satisfy some of the following conditions.

(Qΐ) Q is a norm closed, self adjoint, convex cone, closed under
multiplication in 91, and containing i .

(Q2) For any finite family Au ...,An of elements of Q, the quantity
σ(A1 ... An) is real positive.

(Q3) For any finite family Al9 ...,An of elements of Q and for any
sequence of plus or minus signs, the following quantity is real positive:

The product in (3.1) is an element of 9ί(x)9ί, and σ(χ)σ is a state on the
latter algebra in an obvious way.

Remark 2 of Section 1 applies to the present case without modifi-
cation. For any self-adjoint subset S of 91, we define Q(S) as in Section 1.
Proposition 1 still holds (with self adjoint replacing self conjugate), the
proof being identical.

The natural extension of Proposition 2 is the following statement.

Proposition 6. Let S be a self adjoint subset of 9Ϊ, satisfying (Q2), and
let H e 91.

(1) // e~tH 6 Q{S) for all t e [0, ε] for some ε > 0, then the following
quantity is real positive for all A e Q(S) and all t e [0,1]

σ(e-tHAe-(χ-t)H)^0. (3.2)
2 It might appear natural to use C*-algebras. The extra condition thereby imposed

does not seem to be useful for the elementary considerations that follow.
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(2) It is sufficient for e~tH to belong to Q(S) for all ίe[O,ε] that
H= B + C, where -Be Q(S) and e'tC e Q(S) for all t e [0, ε]. (In partic-
ular, it is sufficient that — H e Q(β).)

Proof. Q(S) satisfies (βl) by definition and (Q2) by Proposition 1.
(1) is obvious. (2) follows from the perturbation expansion:

e-t(B+c)= £ j dtί...dtne-t>c(-B)...(-B)e-(t-t»)C. (3.3)

The natural extension of Proposition 3 is the following statement.

Proposition 7. Let S be a self-adjoint subset of 91, satisfying (Q 3).
Then, for any A, B and -H in Q(S) and for any s, ί ( 0 ^ s ^ ί ^ 1), the
following quantity is real positive:

-H)
(3 4)

Proof. Q(S) satisfies (gl) by definition and (Q3) by Proposition 1.
For any A e 91, we define A+ e 9Ϊ® 91 by:

(3.5)

Let Ω be the LHS of (3.4). Then

(3.6)

= Σ ' fr-^-ff (σ®σ)((-H+YA4-H+γB4-H+Y). (3.7)

This is real positive by (Q 3).
Integrating (3.2) or (3.4) over s and t with positive measures, we obtain

various inequalities which are consequences of Propositions 6 and 7
respectively. Special cases will be obtained below from weaker assump-
tions in Propositions 9 and 10.

The extension to the present case of the end of Section 1 is immediate
and will only be sketched briefly. Condition (S) is formulated and
Proposition 4 holds with self adjoint replacing self conjugate. The proof
is identical with the previous one. Proposition 5 is reformulated in an
obvious way as Proposition 8 below, the proof being unchanged.

Propositions. Let <Ά1 and 9I2 be two Banach ^-algebras with unit
element. Let at(i= 1, 2) be a state on 9If. Let σ = σ1(x)σ2 be the product
state on 9l1(x)9ί2. Let S± and S2 be self adjoint subsets of 9IX and 9I2

respectively, and let S C 91 be the set of elements of the form A = Aί®A2

where Aί e S ί and A2eS2.
Then, if Sί and S2 both satisfy (S) (resp. (Q2), resp. (Q3)), S also

satisfies {S) (resp. (Q2), resp. (Q3)).
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We now present a symmetrized version of the theory which however
is much less complete, because it lacks the factorization property ex-
pressed by proposition 8.

Let again 21 be a Banach *-algebra with unit element i , and σ a
state on 2Ϊ. We are interested in subsets Q of 21 which satisfy one of the
following conditions.
(Qs2). For any finite family Al9...9An of elements of g, the quantity
σ(^(A1 ...An)) is real positive, where £f means complete symmetri-
zation with respect to the order of the factors:

&>{A1...AJ = ±-ΣA*w-A*w (3-8)
n π

The sum in (3.8) runs over all permutations of (1, . . . , ή).
(Qs3). For any finite family Au..^An of elements of Q and for any

sequence of plus or minus signs, the following quantity is real positive.

4 ) (3.9)

Remark 2 of Section 1 still applies to this case. We first show that
(Qs3) implies (βs2). By the same argument as in Section 1, we obtain
the following identity in 21091:

(3.10)

where the sum runs over appropriate sequences of plus or minus signs,
and the coefficients c{±} are positive. We apply 9> and then (σ(x)σ) to
both sides of (3.10). The LHS becomes 2σ(^?(Aί ... An% while the RHS
is positive if (Qs3) holds. Therefore (βs3) implies (Qs2). We next show
that (3.9) with plus signs everywhere is a consequence of (Qs2). This
follows immediately from the identity:

where the sum in the RHS runs over all possible subsets / of (1 , . . . , n).
There is no natural analogue of (Q1) and Proposition 1 in this case.

Nevertheless, (Qs2) and (βs3) extend in an obvious way from any given
self-adjoint subset S of 21 to the closed convex cone C(S) generated by
S and i , as described in section 1.

(Qs2) and (Qs3) are weaker than (Q2) and (Q3) respectively, and
therefore yield weaker results than those contained in Propositions 6
and 7.

Proposition 9. Let S be a self-adjoint subset of 21 satisfying {Qs2),
and let H e 2ί.
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(1) // e~tH e C(S) for all t e [0, ε] for some ε > 0, then the following
quantity is real positive for all A e C(S).

σ[\dte-tHAe-{1~t)H\ ^ 0 . (3.12)

(2) It is sufficient for e~tH to belong to C(S) for all ίe[0 ? ε] that
H = B + C, where -Be C(S) and e~tCe C(S) for all te [0, ε].

Proof (1): The following limit holds in norm in 91.

\dte-tHAe-^-^H= lim — ί - V r ^ Γ ^ ^ . (3.13)

The quantity in the KiiTS is the symmetric product of A and n factors
equal to exp(-H/n). (3.12) then follows from (Qs2).

(2) is proved by applying the same argument to each term in the
ΛHSof(3.3).

Similarly Proposition 7 is replaced by the following result.

Proposition 10. Let S be a self-adjoint subset of 91 satisfying (Qs3).
Then, for any A, B and —H in C(S\ the following quantity is real positive.

\0<: (3.14)

Proof. Let Ω be the LHS of (3.14). Using the notation (3.5), we can
rewrite it as:

2Ω (3.15)

20- Σ ί ?,
fl)) (3.16)

(3.17)

= Σ -Λσ®σ)[?(A_B_(-H+γ)) (3.18)

where if is defined by (3.8). This is positive by (βs3).

Remark 8. Propositions 9 and 10 become simpler in the special case
where σ is a central state on 91, i.e. when σ(AB) = σ(BA) for any A e 91,
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B e 21. This occurs in practice when 21 is an algebra of N x N matrices,
and σ(A) = N~1TrA. In this case, the quantity

no longer depends on t. The inequality (3.14) in Proposition 10 takes the
simple form:

)^O. (3.19)

If σ is the trace over a matrix algebra, the first factor in (3.19) is simply
Bogoliubov's scalar product [15], and (3.19) expresses the fact that if
the hamiltonian contains a term — λB, then the thermal average of A
is an increasing function of λ.

We have not found any natural analogue of the factorization property
(Proposition 8) in the present case.

Other extensions of the general theory of Section 1 to the non com-
mutative case are possible. We mention only the following one, which
lies between the non symmetric and the totally symmetric versions.

We define in 91 a symmetric product (A,B)^AoB = ^(AB + BA).
This product is commutative, but not associative. One can reformulate
(βl , 2, 3) and (S) with the symmetric product replacing the ordinary
product. One then obtains, instead of (3.2, 4) or (3.12, 14), intermediate
inequalities of no special interest. The analogue of Proposition 4 still
holds, but the important factorization property (Proposition 8) again
breaks down.

We conclude this section by giving a non commutative example
where (S) and (β2) hold.

Example 6. 2ί is the algebra of N x N complex matrices. S = Q(S)
is the set of matrices with real positive coefficients, and σ is defined by
σ(A) = Tr ρA/Tr ρ, where ρ eS. (S) and (Q2) are obviously satisfied, and
Proposition 6 holds. A special case of this example has been described
elsewhere [16]. It implies a version of Griffiths' first inequality for the
isotropic Heisenberg model, which has been announced by Hurst and
Sherman [17].

4. Conclusion

In this paper, we have presented a theory from which Griffiths'
inequalities emerge in a natural way as consequences of two general
conditions (Q2) and (Q3). We have given several examples satisfying
these conditions, and including as special cases the Ising model with
arbitrary spins, and the plane rotator model, both with many-body
interactions. The theory allows for a natural although not unique non-
22 Commun. math. Phys., Vol. 16
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commutative extension, which should be appropriate for quantum
systems. In this case, we have only an example which fulfills (Q2).

The general theory is completely elementary. Nevertheless, it brings
into the foreground condition (Q 3) which seems to be the heart of the
matter, and suggests that further progress would follow from a deeper
analysis of this condition. In particular, it would be interesting to obtain
a larger class of systems for which it is fulfilled. Examples are lacking
in the noncommutative case. In the commutative case, a good candidate
could be the convex cone of real positive definite functions on a non-
commutative compact group, for instance the group of rotations in the
usual euclidean space. For such systems as the classical Heisenberg
model and similar models with higher dimensional spins, this would
furthermore provide a larger class of interactions and observables satis-
fying (Q 3) than can be obtained by the method of Section 2.

Acknowledgements. I am grateful to K. Chadan and B. Jancovici for discussions, to
D. Ruelle for critical remarks, and to F. Dyson for correspondence.
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