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Abstract. We give here a systematic presentation of the theory of projective representa-
tions when antiunitary operators are present. In particular the imprimitivity theorem of
Mackey is proved in this situation and all the unitary antiunitary representations of the
extended Poincare group are derived.

§ 1. Introduction

In the mathematical formulation of quantum mechanics proposed by
von Neumann (cf. [3, 8,9]) the set of all propositions concerning a
quantum mechanical system is an orthocomplemented lattice. The
simplest example of such a lattice is the lattice if pf) of all closed sub-
spaces of a separable Hubert space ffl. The observables in such a system
turn out to be self adjoint operators in Jtf. In order to construct the
standard observables like energy, linear, angular and spin angular
momenta etc., in such a system it is necessary to study the effect of
coordinate transformations by a group G of symmetries. In this context
the representations of G in the group J^(J^) of automorphisms of the
lattice ^(Jf) is of great importance.

By the extension of a theorem of Wigner (cf. [8], Theorem 7.27,
page 167) it is known that every automorphism τ of Jδf (Jf) is induced by
a unitary or antiunitary operator Uτ on Jf. The operator Uτ is determined
uniquely only up to a scalar multiple of modulus unity. Suppose tfί(J^)
is the group of all unitary and antiunitary operators on Jf7 and J(#?) is
the normal subgroup consisting of scalar multiples of identity. Then
Wigner's theorem can be reformulated as follows: the group j/(Jf) is
isomorphic with the quotient group %(Jίf)/J(Jf). We shall denote this
quotient by P UA(J^) and call it the projective unitary antiunitary group
of Jtf. °lί(3^) with the weak (operator) topology (which is equivalent to
the strong topology) is a complete and separable metric group in which
j^(Jf) is a compact subgroup. Thus the quotient topology in PUΛ(J^)
can be carried over to j / p f ) in order to make it a topological group.
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In this paper we are interested in studying the continuous representa-
tions of G in the group P UΛ(^f) or equivalently j/(Jf) . Even though
there is a very detailed account of projective unitary representations in
the papers of Mackey [2,4] Wigner [10] and others, there does not seem
to exist a systematic theory of projective unitary antiunitary or P UA
representations. Some examples of such representations in the case of
the Poincare group (or the inhomogeneous full Lorentz group) may be
found in the works of Foldy [1] and Streater and Wightman [7]. We shall
extend the results of Mackey on transitive imprimitivity systems when
PUΛ representations are considered and derive as an application all
the "positive mass" PUA representations of the Poincare group. This
answers some of the questions raised in Foldy [1].

§ 2. The P UA Group of a Hubert Space

In this section we shall study some of the basic properties of unitary
and antiunitary operators, describe the projective unitary antiunitary
group and finally prove a result concerning its topology and Borel
structure.

Definition 2.1. Let Jfi and J^2 be two complex separable Hubert spaces
with inner products (*, )i a n d (', ')i respectively. A map V: J ^ - ^ J ^ *s

called antiunitary if V is one one, onto and satisfies the following prop-
erties :

(1) V(x + y) = Vx + Vy for all x,ye3#[,

(2) Vax = άVx for all xe Jfx and scalars a,

(3) (Vx, Vy)2 = [y, x)x for all x, y e Jf,.

If j ^ = J^2 = J ^ V is called an antiunitary operator on Jf.

From now onwards let Jf stand for a fixed complex separable Hubert
space with inner product ( , •). We shall denote by ^ + (^ f ) and ^ Γ ( ^ )
respectively the set of all unitary operators and the set of all antiunitary
operators on 34f. The set %(3/f) = ^ + p f ) u ^ Γ p f ) is a group under
the composition operation. This is called the unitary antiunitary group or
simply the UA group of J^ If there is no ambiguity we shall drop the J*f
within brackets and denote these by % °U+, and %~. It is obvious that ύiί+

is a normal subgroup of °U and

If Ve <%~, then V%+ = %+V=%~. In particular, if V is any fixed anti-
unitary operator then every antiunitary operator W can be written as
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UV where U is a unitary operator. Thus the group ^/^ has only two
elements.

Lemma 2.1. Let (X, £f) be a Borel space and P and Q be two projection
valued measures on 6f. Suppose there exists a WeW such that

WP{E)W~1=Q(E) for all Ee<f.

Then there exists a UE%+ such that

UP(E)U~1 =Q(E) for all E.

Proof. By the Hahn-Hellinger theorem we may, without loss of gener-
ality, assume that J f is of the form @L2(μ) where μr is a sequence of

measures on 5^ and P(E) is just multiplication by χE where χE is the
indicator function of E. Consider the map Vo \f-+j where bar stands for
complex conjugation and/is an element of 3tf. Vo is an antiunitary opera-
tor which commutes with all the P(E). Thus the operator U = WV0 is
unitary and satisfies the required property. This completes the proof.

In the above lemma we used the fact that complex conjugation is an
antiunitary operator. We note that it is an antiunitary operator whose
square is identity. The next lemma asserts that every such antiunitary
operator is unitarily equivalent to a complex conjugation.

Lemma 2.2. Let V1 and V2 be antiunitary operators such that
Vl = Vi = I. Then there exists aUeW+ such that UVxU'1 - V2.

Proof. Consider the unitary operator W= V2V1. Suppose

2π

W= J eiλP(dλ)
o

where P is a projection valued measure in [0,2π]. Let

U= j eiλl2P{dλ).
o

We have

/ = vi = wv1 wv1.

Thus W~1 = V1WV1. This implies

2π 2π

j e~iλP{dλ)=Vί I eiλP(dλ)Vι
o o

2π

- J e-iλV1
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Hence Vx P(E)Vί = P(E) for all Borel sets E C [0,2π]. Thus

V1UV1 = V1 j eW
o

2π

o
2π

Now we have

Since 17 is unitary, this completes the proof of the lemma.
We shall now assign the UA group °U the weak topology. A sequence

Un converges to U in °U if and only if, for every pair jc,yeJ^ (Unx,y)
-^(Ux,y) as rc->oo. It is easy to prove that this topology is equivalent
to the strong topology. Thus Un -> U in ^ if and only if, for every x e J^
|| Unx — Ux\\ ->0 as w->oo. Introduce the metric

)= X J ^ ^ i ^ i for L/,Fê

where x l 5x2> ••• ^s a nY fixed orthonormal basis in Jίf. This is a left in-
variant metric in °U which induces the required topology in °lί and makes
it a complete and separable metric group.

Let / C t be the subset {cl, \c\ = 1}. Then J is a compact normal
subgroup of ^. The quotient group ^UjJ is called the projective unitary
antίunίtary group or simply the P UA group of Jtif. We shall denote the
P UA group by % and the canonical homomorphism from % onto ^ by
~. Thus ^ map sends a unitary or antiunitary operator U to the coset
U ~Uf in ^. Endowed with the quotient topology, % becomes a
separable metric group. The next lemma implies that °lί is actually a
complete and separable metric group.

Lemma 2.3. // G is a complete and separable metric group and H CGis
a closed subgroup, then the quotient space G/H of left cosets admits a
metric which induces the quotient topology and makes G/H a complete and
separable metric space.

Proof1. We may assume that the metric d in G is right invariant.
Let

Nk = {x:d(g,e)<2-k), fe = l , 2 . . . (2.1)

This proof was suggested to the author by A. Tortrat.
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be a decreasing sequence of symmetric open neighbourhoods of the
identity e.

Let g = πg be the coset gH for every g e G. π is the canonical map
from G onto G/H which takes the point g to the coset containing g. Define

do(gi,g2)= infd{gug2h).
heH

It is easy to verify that d° defines a metric in G/H and induces the quotient
topology. Now let gn be a sequence of points in G/H such that

lim d°(gn, gm) = 0 .
n,m-+ oo

This implies that for every k, there exists an integer nk such that {nk} is
monotonic increasing and

π~ιgnίNkπ~ιgm for all n,m^nk. (2.2)

Choose a sequence g'keπ~ιgnk as follows: ĝ  is any element in π~1gnι.
By (2.2) π~1gnr\Nίg

r

1 φ θ for all n ̂  Wj. Hence choose g'2 eπ~1grl2nN1g'ί.
Then n~1gnr\N2g

/

2φd for all n^n2. Choose 07

3 e π ' ^ ^ n ^ Repeat
this procedure.

It is clear that

g>ι£Nι_1Nι_2...Nkgk for all />fc.

By (2.1) and the triangle inequality we have

Hence g\e Nk-1gk for all l>k. Since G is complete under the metric d
it follows that g'k->g E G as k-*QQ. Thus gk—>g in G//ί. Since gk = ̂ Πk, it
follows that ^ n ->^ as n ^ o o . Thus every Cauchy sequence converges in
G/H. This completes the proof.

Corollary 2.1. TTî  P £Λ4 group % of α complex separable Hubert
space is a complete and separable metric group. In particular, $ with its
Borel structure derived from its topology is a standard Borel space.

Corollary 2.2. There exists a one one Borel map η from °U into °U such
thatη(UT= U~.

Proof. Since °U and °U ~ are complete and separable metric spaces and
the map U -» U " is continuous, the existence of the map η follows from
a theorem of Kuratowski (cf. [5], Theorem 3.9, page 21).

Remark. Since — is an open map and ̂  and °U~ are both open
closed subsets of °U, it follows that their images tfί+ and °il~ are disjoint
both open closed subsets of °U. °U+ is a normal subgroup of %. Further
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§ 3. P UA Representations

Throughout this section let G denote a locally compact second
countable group and 4ί be the PUA group of a complex separable
Hilbert space ffl. We give G its natural Borel structure and °U the topology
described in § 2.

Definition 3.1. A Borel homomorphism from G into °U is called a
projective unitary antiunitary representation or simply a P UA represen-
tation of G in 3^.

Lemma 3.1. Any P UA representation of G is continuous. For a P UA
representation Q-+U~ of G, the set G+ = {g: U~e(%;+} is a both open
closed normal subgroup of G such that G/G+ has at the most two elements.
If G~ = {g : U~e°U~}, then G+ and G~ are the cosets which constitute the
group G/G+.

Proof. By Corollary 2.1 to Lemma 2.3, °U is a separable metric group.
Hence by a well known result of Mackey (cf. [6], Theorem 2.2, page 10),
the map g -+ U~ is continuous. By the Remark at the end of § 2, $+ is a
both open closed normal subgroup oϊ%. Since G+ is the inverse image of
$+ through a continuous map, it is both open closed. The rest of the
properties are quite straightforward to prove.

Corollary 3.1. If in a PUA representation g-> U~ofG, there exists a
g0 such that Ug~o e °U~\ then G cannot be connected.

Definition 3.2. The decomposition of G into G+ and G occurring in
Lemma 3.1 is called the UA decomposition of G associated with the P UA
representation g —• Ug~.

We shall now investigate how a PUA representation can be lifted
to a "multiplier representation" in the UA group ΰU. Suppose g-> U~ is
a P UA representation of G. Making use of the cross section map η of
Corollary 2.2 to Lemma 2.3 we can construct a measurable map
g->η(Ug~) from G into %. Since η(Ug~)~= Ug~, we may, without loss of
generality, assume that Ug = η(Ug

m). Then g-^Ug is a measurable map
and for any two elements gί,g2eG, (UgίUg2)~=Ug~g2. Hence there
exists a complex number σ(gu g2) of modulus unity such that

UgιUg2 = σ(gug2)Ugιg2 for a l l gl9g2eG. (3.1)

We may always take Ue = I where e is the identity element of G. Then

σ(e,g) = σ ( g , e ) = l for a l l geG. (3.2)

Suppose that G = G + u G " is the associated UA decomposition of the
P UA representation g -• Ug~. Computing Ugi Ug2 Ug3 in two different ways
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Uβι(Uβ2Ug3) and (UgιUg2)Ug3, we obtain

1293 if gi£G+,

_ „, w l>72g3 i f giEG~

and

Thus σ satisfies the following equation:

Itllί ί βίίe-j (13)

Considering the properties of σ in (3.2) and (3.3), we introduce the
following definition.

Definition 3.3. Suppose G+ is a both open closed normal subgroup of
G such that the group G/G+ has at the most two cosets G+ and G~ (where
G~ can be empty). A Borel function σ defined on G x G and taking values
on the unit circle of the complex plane is called a multiplier with respect
to G+ if it satisfies Eqs. (3.2) and (3.3). A Borel map g-+Ug from G into °U
is called a multiplier representation if there exists a multipler σ such that
Eq. (3.1) is satisfied. In this case it is also called a σ representation.

Thus our previous discussion can be summed up in the form of a
theorem.

Theorem 3.1. Let G be a locally compact second countable group and
g-*Ug be a PUA representation of G. Then there exists a multiplier
representation g~*Vg of G such that Vg = Ug for all g e G. Conversely
every multiplier representation g-±Vg of G determines a P UA represen-
tation g -> V~ of G.

Definition 3.4. Let g -• Ug~ be a P UA representation of G. Any multi-
plier representation #-> Vg of G such that Vg= t ^ f o r all g e G is called
a version of the given P UA representation.

Remark. Suppose now that g-+Vg and g-*Wg are two versions of a
PUA representation with multipliers σ and σ'. Since Vg~= Wg for all
ge G, there exists a Borel function a(g) on G such that \a(g)\ = 1 and
Wg = a(g) Vg for all g e G. Hence σ and σ' satisfy the following identity:

a(gΐ)a{g2) ,
σ l#i>#2) — —σ\g\ >gi) H #i e G ,

«foi*2) ( 3 4 )

if 01 e G"

where G = G f u G " is the associated £Λ4 decomposition.
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Definition 3.5. A multiplier representation g~*Ug of G is said to be
irreducible if there exists no non trivial proper closed subspace invariant
under all the Ug,g e G, A PUA representation is said to be irreducible if
it has an irreducible version.

Two multiplier representations g-+U{

g\ i = l,2 in Hubert spaces
JfJ, i = 1, 2 respectively are said to be equivalent if there exists a unitary
or antiunitary operator U from 3#[ onto JT2 such that UUf]U~ι = U(

g

2)

for all g e G.
Two P£/^4 representations are said to be equivalent if they have

equivalent versions.
Remark. Two equivalent PUA representations of G have the same

associated UA decomposition for the group G. If the equivalence is
effected by a unitary operator, then they have versions with the same
multiplier. If it is effected by an antiunitary operator, then they have
versions whose multipliers σ1 and σ2 satisfy the equation σ2 = σί.

Because of the Remark after Definition 3.4 and the comments made
above we shall introduce the following definition.

Definition 3.6. Two multipliers σ and σ' are said to be trivially equiv-
alent if they are defined with respect to the same normal subgroup G^
and there exists a Borel function a(g) on G such that \a(g)\ = 1 and
Eq. (3.4) is satisfied, σ and σ' are said to be equivalent if either σ and σ'
are trivially equivalent or σ and σ' are trivially equivalent.

§ 4. Imprimitivity Systems

Let G be a locally compact second countable group and H C G be a
closed subgroup. We shall denote by X = G/H the homogeneous space
of left cosets in which G acts transitively through left translation. Let x
denote an arbitrary point of X and x0 the point corresponding to the
coset H. We shall denote by π the map from G onto X which takes the
element g to the coset gH. The space X with the quotient topology
becomes a locally compact second countable space. Let ^ x be the Borel
σ-fϊeld of X.

Following Mackey we shall define the notion of an "imprimitivity
system".

Definition 4.1. Let j f be a complex separable Hubert space. By an
imprimitivity system for G on X, we mean a pair consisting of a multiplier
representation g-^Ug of the group G and a projection valued measure
E->P{E)9 E e @x in Jf such that

l/,P(J5)E/ff-
1 = P(gE) for all ^ G

We shall denote this system by {j% U P(E)}.
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Remark. It is clear that the above definition is meaningful if X is
replaced by any Borel space where G acts as a group of Borel auto-
morphisms. We shall, however, confine our attention to the transitive
case since other "ergodic G actions" have not been completely under-
stood even in the unitary case. In this connection the reader is referred to
Mackey [4].

Definition 4.2. An imprimitivity system {J^ Ug, P(E)} for the group
G on the homogeneous space X is said to be irreducible if there is no
proper non zero subspace which is invariant under all the operators Ug

andP(£), g e G, Ee38x.
Two imprimitivity systems {Jf\ U]f\P{ϊ)(E)}, i = l,2 for the group

G on the homogeneous space X are said to be equivalent if there exists a
unitary or antiunitary map V from Jf1 onto Jf2 such that

forall

VP{1\E)V'1 =P{2\E) forall

We shall now study the problem of classifying the imprimitivity
systems of G up to equivalence. More or less we follow Mackey and use
his results in many places. However, there are some differences and these
will become clear as we proceed.

By a quasi invariant measure on (X, 38x) we mean a non zero σ-finite
measure μ on 3SX such that μ(E) = 0 if and only if μ(gE) = 0 for all
g e G, E e 38x. It is well known that quasi invariant measures exist on X
and any two quasi invariant measures are equivalent in the sense of
measure theory. We shall choose and fix a quasi invariant measure μ
throughout our discussion in this section.

For every finite or countable cardinal n,L2(μ,n) will stand for the
Hubert space which is the direct sum of n copies of the Hubert space
L2(μ) of complex square integrable functions. Let dn denote the n dimen-
sional complex Hubert space if n < oo and the Hubert space of square
summable sequences of complex numbers, i.e.,

1
a : a = (α l 5 a2,...): X |<3;|2 < oo > if n = oo .

f = i J

We shall denote an arbitrary element of d" by a and the inner product in
(£" by <.,.>. The inner product in L2(μ, n) will be denoted by (.,.). Any
element of L2(μ,ri) can be written as f(x) = (/i(x),/ 2 (x) ? •••) where
J Σ \fi(χ)\2dμ(x)<oo. The space L2(μ9n) admits a canonical projection

valued measure P°(E), E e 3flx defined by

P°(E)f=(χEfuXEf2,-)
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for a l l / = (/i,/2, •) e £2(μ> w) where χ£ is the indicator function of the
set E.

We shall now prove a series of lemmas before proceeding to the state-
ment of the main results.

Lemma 4.1. Let {j^,Ug9 P{E)} be an impήmίtivίty system for G on X.
Then there exists an equivalent imprimίtiυίty system {L2(μ,n), Vg,P°(E)}
where μis a quasi invariant measure on X, n is a finite or countable cardinal
and P°(E) is the canonical projection valued measure.

Proof. Definition 4.1 implies that the projection valued measures
P(E) and P(gE\ Ee^x are equivalent through the unitary or anti-
unitary operator Ug. Hence by Lemma 2.1, they are unitarily equivalent.
Now an application of the Hahn-Hellinger theorem and the argument
of Mackey [2] yield the proof of the lemma.

In the space L2(μ, n\ the complex conjugation which m a p s / t o / i s a
canonical antiunitary operator. By the discussion in § 2, it follows that
every antiunitary operator is the product of a unitary operator and this
conjugation. Making use of this fact and following the arguments of
Mackey [2] one can prove the following lemma.

Lemma 4.2. Let {L2(μ, n), Vg, P°(E)} be an imprimitivity system for G
on X. Let G = G\J G~ be the UΛ decomposition of G associated with the
P U A representation g -> V~. Then there exist functions C(g, x) and D(g9 x)
defined respectively on G+ x X and G x X and taking values in the space
of unitary operators in G71 such that

(VJ)(x) =
dμ

dμ*

At.
dμβ

2 C(g,g-1x)f(g-1x) if g e G\

if geG'

where μg is the quasi invariant measure defined by the equation μg(E)

= μ(gE),Ee£x.

If G~ is empty then we have only a unitary imprimitivity system and
this case has been studied in great detail by Mackey [2]. Hence we shall
concentrate our attention on the case when G~ φ θ. In such a situation
two different types of imprimitivity systems arise according as the action
of the subgroup G+ on X is transitive or not.

a) The Case when G+ Action in X is Transitive and G φ θ

Suppose {L2(μ, w), Vg->P0(E)} i s a n imprimitivity such that the sub-
group G+ = {g : F^is unitary} acts transitively on X. Since G^G~ = G~,
this implies that the stability subgroup H of the point x0 has non empty
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intersection with G . Let

Then by Lemma 3.1, H + is a both open closed normal subgroup of H such
that H/H+ consists of two cosets HY and H~. Choose and fix a point
h0 e H~. Then G~ = G+h0, H~ = H+h0. The element h0 induces an auto-
morphism of the group G+ through the map g-^hQgK^1. We shall write
hQ[g~\ for hogh^1. H+ is invariant under this automorphism. Further
HQ e H+. The map π from G onto X is continuous and in particular
measurable. Hence by a result of Kuratowski (cf. [5], Theorem 3.9,
page 21) we can construct a one one measurable map y from X into G such
that πy is the identity map. Thus y(x)x0 = x for all x. y is called a Borel
cross section map for π. We shall choose and fix such a cross section map
throughout our discussion.

Lemma 4.3. Let {L2(μ,n),Vg,P°(E)} be an imprimitivity system and
let σ be the multiplier of the representation g-+Vg. Then there exists an
equivalent imprimitivity system with the same L2(μ, ή) and the canonical
projection valued measure P° such that the function C(g, x) of Lemma 4.2
is given by the formula

σ{y{gx\y{gx)~1 gy(x)) γ{9x) '9y{x)

where h-+Lh is a σ unitary representation of the subgroup H+.

Proof. For the subgroup G+ and its transitive action in the space X,
the pair consisting of the σ representation g^Vg and the projection
valued measure E-+P°(E) is a transitive imprimitivity system in the sense
of Mackey. Every Vg, g e G+ is unitary. The first equation in (4.1) and the
Eq. (4.2) simply express the fact that the σ representation g-*Vg of G+

is induced by the σ-representation h-+Lh of the subgroup H+. Hence
Lemma 4.3 is just a restatement of Mackey's result [2]. This completes
the proof.

From now onwards we shall tacitly assume that C(g, x) is defined by
(4.2). We shall choose the orthonormal basis vt = (0,0, ...,0,1,0,...)
where 1 is written at the zth position in the vector for i = 1,2,.... In this
basis we shall construct the matrices of the operators C(g, x) and D(g, x)
in the Hubert space (£". Let us denote these matrices by the same symbols.
Thus C(g,x) and D(g,x) will b e n x n unitary matrices. For any matrix
A, let A be the matrix obtained by taking the complex conjugate of every
entry.

By writing a.e.x. we shall refer with respect to the quasi invariant
measure μ on X. "Almost everywhere" statements in a group will always
be relative to Haar measure. With these conventions we have the following
lemma.
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Lemma 4.4. Let {L2(μ,n), Vg,P°(E)} be an imprimitivity system and
let σ be the multiplier of g->Vg. Suppose Vg is defined by (4.1) and C(g, x)
is defined according to (4.2). Then the matrix valued functions C(g, x) and
D(g,x) satisfy the following equations:

C(gug2x)C(g2,x) = σ{gug2) C{gγ g2yx)

jor all XG Λ, gug2eG

, x) = σ(gu g2) C{gxg2, x)

a.e.x. for every gl9g2eG~,

gu g2) D(gγg2, x)

a.e.x. for every gxeG+, g2eG\

D(gu g2x) C(g29x)= σ(gί9 g2) D(gιg2, x)

a.e.x. for every gt e G~, g2eG+.

Proof. The first equation follows by direct verification. The last three
equations can be deduced easily from (4.1) and the equation VgιVg2

Lemma 4.5. Under the same conditions as in Lemma 4.4, for every
g e G+, the function D(gh0, x) is given by the equation

x) = σ{g,ho)C(g,hox)D(x) a.e.x. (4.7)
where

D{x) = a(x)Lnhox)-lho[yix)]Γ, a.e.x. (4.8)

Γ is a constant unitary matrix with the property

Lhom^φ)ΓLhΓ~ι for all heH\ (4.9)

ΓΓ = cLhl. (4.10)

and a(x) and a.(h) are scalar functions of modulus unity.

Proof. Put g2 = h0, gx=gs G+ in (4.5). Then we get (4.7) with
O(χ) = D(h0, x). For any matrix valued function Λ(x) defined on X, let
A°(g) = A(π(g)). If A is measurable on X, then A0 is measurable on G.
Putting g1 = hθ9 g2 = g e G+ in (4.6) we obtain

D{gx) = σ{h0, g) D{hQ[g] h0, x) C{g,x)~ι a.e.x. for every g e G+.

By "lifting" both sides of this equation to the group G and using Fubini's
theorem we obtain

D°(g1g2) = σ(h0, βι) σ(ho[dll h0) C°(hoig{\, hog2) D°(g2) C0(gu g2)'1

a.e. grx e G+, g2 e G .
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Let g2 E G+ be a fixed point such that the above equation holds a.e.
gx e G+. Let D°(g2) = Γx at that point. Then

D ° { g ) = a ι ( g ) c ° ( h o L g g ^ . * ] > ^ 0 ^ 2 ) A c ° ( g g ^ 1 , g i ) ~ ι a e g ^ G ( 4 . 1 1 )

where at(g) is scalar. By (4.3) we conclude the existence of another
constant matrix Γ2 and a scalar function a2(g) such that

D°(g) = a2(g)C0(h0lglh0)Γ2C
0(g,eΓλ a.e. geG\

Since D°{gh) = D°(g) for every h e H+, we obtain from (4.2),

Lh0[h]Γ2L~h

ι=φ)Γ2, heH"

for some scalar α(/i). Putting gx = g2 = h0 in (4.4), and using (4.2), we have

Γ2Γ2 = cLhQ2

where c is a scalar of modulus unity. Writing Γ2 = Γ and putting # = y(x)
in (4.11) we obtain the required result.

Lemma 4.6. /n ί/ie Hubert space (£n, define the operators Mh, he H as

follows:

Mha = Lha if heH^, aeϋ"

Mhoa = σ(h,ho)LhΓa if hh0 e H~', a e £n

where Lh,heH^ and Γ are as in Lemma 4.5. Then the map h->Mh is a
multiplier representation of the group H whose multiplier σ is given by

σ(hί9h2) = σ(hί,h2) if hγeW,h2eH

= x(h2) if M ^ h2eH

where χ is a character on H.

Proof. That h->Mh defines a multiplier representation of H is an
immediate consequence of Eqs. (4.9) and (4.10) of Lemma 4.5. Since
Mh = Lh for h e H\ it is clear that σ = σ on H+x H+. If hx e H+ and
h2 = hh0, h e H^, then for any a e (£",

MhϊMhhoa = Lhίσ(h, ho)LhΓa

= σ(h,ho)σ(huh)LhιhΓa

= σ(K K) σ(hί9 h) σi}τγh, h0) Mhιhhoa

= σ{hί9hh0)Mhίhhoa.

Thus σ(hί,hh0) = σ(hί,hh0). Since σ and σ are multipliers with respect
to the same normal subgroup H + C H, it follows that σσ is also a multiplier
for H with respect to H+. Let φ = σσ on H x H. We have φ(hί9 h2) = 1 if
hί,h2e H+. A straightforward computation now shows that φ(h1h0, h2)
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- φ(h0, h2)ϊora\\h1 e H+ andφ(/ι0, hhf) = φ(hθ9h) φ(h0, W) for all h, h'eH.
This completes the proof of the lemma.

Now we are ready to state and prove the first main theorem of this
section.

Theorem 4.1. Let G be a locally compact second countable group,
HCG a closed subgroup and X = G/H the homogeneous space of left
cosets. Let {^,Ug, P(E)} be an imprimitivity system for G on X. Let
G = G + u G~ be the UΛ decomposition of G with respect to P UA represen-
tation g -> Ug, g 6 G. Suppose that G+ acts transitively on X and σ is the
multiplier of the representation g->Ug. Let y be a one one Borel map from
X into G+ such that πy is the identity map of X onto itself. Then there
exists an equivalent imprimitivity system {L2(μ,n), Vg,P°(E)} where

KV'J)(X) σ(y(x)y(xΓigy(g-iχ))\[dμe){g X)\ (4.12)

μ is a quasi invariant measure, n is a finite or countable cardinal, h-+Mh is a
σ representation of H and P° is the canonical projection valued measure
on 0&x. This imprimitivity system is irreducible if and only if the σ represen-
tation h->Mh of H is irreducible.

Proof. Lemmas 4.1-4.3 and 4.5-4.6 imply the existence of an equiv-
alent imprimitivity system {L2(μ, ή), Vg, P°(E)} where Vg is given by the
formula

'Cc(g,g~ιx)My(xrlgyig-ίχ)f(g~1x)

where cc(g, x) is a scalar function of modulus unity, h-+Mh is a σ represen-
tation of H and σ is a multiplier of the form given by Lemma 4.6. Further
a(g,x) = l if geG+. Writing the equation Vg2Vgί = σ{g2,gi)Vg2gι for
0i, #2 e G~ and putting y — g2 *x, we obtain

gιy{g-1y)) a.e.y.

Thus a(g, y) is independent of g e G~. Writing a(y) for a(g, y) we have

Writing oc°(g) — a(π(g)\ we obtain

0))~10i7(π(0710)) a.e.g.



Projective Unitary Antiunitary Representations 319

Putting g~[λg = g'9 and noting that χ is a homomorphism on H, we obtain

Hence
α°(0) = ^([yπfe)]" 1 ^) a.e.g.

where c is a constant. Since a°(gh) = α°(#) for every heH.it follows that
χ(h) = 1 for all h e H and α is a constant. Without loss of generality we
may take this to be unity. Now h -> Mh is indeed a σ representation of H.
This completes the proof of the first part. The irreducibility part is proved
exactly as in the unitary case.

Remark. 1. If H~ = H n G~ φ 0, then Mh is antiunitary for all heH~.
Further Vg is antiunitary for g e G~.

2. Changing the quasi invariant measure μ yields only an equivalent
representation.

3. One may call the representation g~>Vg defined by (4.12) as the
σ representation induced by h->Mh.

b) The Case when G+ Action on X is not Transitive and G~ φ θ

In this case the stability subgroup H of the point x 0 (corresponding
to the coset H) is contained in G+. Hence H~ = θ. Choose and fix a point
goeG~. The homogeneous space X splits into two orbits X+ and X~
under the action of G+ where X+ = G^x0, X' = G+(goxo) = G~x0. Let
the restrictions of the quasi invariant measure μ to X+ and X~ be μ+ and
μ~ respectively. The Hubert space L2(μ,n) splits into a direct sum
L2(μ+, n) 0L 2 (μ~, n). The point g0 maps X+ onto X' in a one one manner.
For any set £ c l , let E+ = EnX+, E~ = EnX~.

We can take μ~ = μ+g~0

1 without loss of generality. We shall now
adopt the matrix notation for an operator in ^ © J f ^ , i.e., an operator

[A A \
A in Jf t ©Jf 2 will be written as n 1 2 I where Atj is an operator

γ*21 ^22/

from Jίfj into Jίfh ij = 1, 2. If P°, P + and P are the canonical projection
valued measures in L2(μ, n\ L2{μt, ή) and L2(μ~, ή) respectively, we have

Let Po be the projection valued measure defined with respect to the
Hubert space L2(μ+, n)@L2(μ^, n) and given by the equation

Ee*x. (4.13)

With these notations we have the following theorem.

23 Coramun. math. Phys., Vol. 15
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Theorem 4.2. Let G be a locally compact second countable group,
HCG a closed subgroup and X = G/H the homogeneous space of left
cosets. Let {J^ Ug, P{E)} be an ίmprimitivίty system for G on X. Let
G = G + u G be the UA decomposition for the PUA representation
g -» U~ of G. Suppose that H C G+, G~ Φ θ and g0 e G~ is any fixed point.
Let σ be the multiplier of g->Ug. Then there exists an equivalent im-
primitivity system {L2(μ+, n)©L 2(μ+, ri), Vg,P0(E)} where Vg is given by
the equations

0 a{g)s+V;omSη
 l f

9o[.9\ =

<x(g) = σ(g0, g) σ(g0, go1) σ{gog, g0

1)? g e G+,

g-*Vq is the unitary σ representation in L2(μ+,n) for the group G+

induced by a unitary σ representation h->Lhof the subgroup H, s+ denotes
the complex conjugation in L2{μY, n) and Po is the projection valued
measure defined by (4.13). This impήmίtivίty system is irreducible if and
only if the σ representation h->Lh of H is irreducible.

Proof. Using Lemmas 4.1-4.2 we can replace {^Ug,P(E)} by
{L2(μ,n), Wg,P°(E)} where the σ representation g-+Wg is given by the
right hand side of (4.1). By the comments made before the statement of
the theorem, the Hubert space L2{μ,ri) splits into a direct sum of two
Hubert spaces U = L2(μ+,n) and U = L2(μ~,ή). Since G+ leaves X+

and X~ invariant it follows from Mackey's theory [2] that Wg has the
form

+ 0 \

) if geG^ ( 4 1 4 )

where g -> W* in Lr are two σ representations of G+, induced from H.
Since g0 maps X+ onto X~ and vice versa and Wgo is antiunitary, it
follows from (4.1) that Wg has the form

where s+ and s~ are complex conjugations in U and U respectively
and A and B are unitary maps from L+ onto U and U onto U respectively.
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Since Wg, g e G+ and Wgo generate a σ representation for some
multiplier σ, it follows that

for all g e G^ '

Substituting (4.14) and (4.15) in (4.16) we have

(Bs~)W;(BsTι=oi(g)Wg
go[g]

Thus the σ-representation g-*Wg is "antiunitarily" equivalent to the
σ representation g~*Wgo[g]. Consider the unitary map from V@L~ onto
U ®U which sends an element (/,/') to (/, s+Bs~ff). Through this map
the σ representation g -> Wg of G becomes equivalent to the σ representa-
tion g —• Vg in 17 © L+ given by

w: o if geG+, (4.17)

^ o = [-, u + w + π ( 4 J 8)
Vnyo? Qo)s vvgl u /

Tt is easy to verify that (4.17) and (4.18) determine a σ representation.
Under this equivalence the canonical projection valued measure P° in
L+®L~ is taken into the projection valued measure P o in U®U defined
by (4.13). Writing V instead of W in (4.17) and (4.18) we complete the
proof of the first part.

in order to prove the second part we first observe that if the σ repre-
sentation h->Lh of H is a direct sum of two σ representations, then the
imprimitivity system described in the statement of the theorem de-
composes into a direct sum of two systems. Thus, if L is reducible then the
corresponding imprimitivity system is reducible. To prove the converse,
let us assume that L is irreducible. Let

ii K12

be an operator in L+ ®L+ which commutes with all Vg, g e G and P0{E),
EeBx. The commutativity of K and P0(E) for all Ee^x implies that
Kl2 = K2ί =0. Kn and K22 commute with all P*(E), EcX+. Further
Kn and K22 commute with all Wg,geG+, Hence from Mackey's im-
primitivity theorem it follows that Kn = al, K22 — bl where a and b are

scalars. The matrix K = l I commutes with Wgo. This implies that
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b = a. Thus the only projection operator which commutes with all
Wg, geG and P0{E), E e &x is either 0 or /. This completes the proof of
the theorem.

§ 5. The PUA Representations of the Extended Poincare Group

Following Mackey [2] and using the results of § 4 one can construct
the irreducible P UA representations of any locally compact second
countable group which is a "regular semidirect product" of a connected
abelian group and a group of its automorphisms. We shall do this in the
special case when the group under consideration is the semidirect
product of the four dimensional real Euclidean group 9ΐ4 and the group
of its automorphisms generated by 5L(2, (£), the space reflection and the
time reflection. We shall call this the extended Poincare group.

We shall now describe the extended Poincare group in slightly greater
detail. In order to do this we need the notion of a semidirect product.

Definition 5.1. Let N and H be locally compact second countable
groups. Suppose H acts on N as a group of automorphisms such that the
map (n,h)-+h(ή) from NxH into N is continuous. Then the product
space NxH can be made into a locally compact second countable group
by assigning the product topology and defining the multiplication
operation as

(nu hx) o(n2, h2) = K M ^ X KK\ nn ni e N, hu h2eH .

The group obtained in this manner is called the semidirect product of N
and H and is denoted by NQH.

Remark. Note that N and H can be considered as subgroups of NQH
in a natural manner. In such a case N is a closed normal subgroup and H
is a closed subgroup.

The space 5R4 can be identified with the space of all 2 x 2 Hermitian
matrices through the map

•ιx3 xo — x

Any h e SL(2, (£) induces an automorphism in the translation group $R4

as follows:
/z: x-^τ~1(hτ(x)h*). (5.1)

This is the well known covering map from SX(2, (£) onto the proper
Lorentz group. We shall denote by 5 and T, the space and time reflections
defined in Ώ 4 as follows:

T: (x09 xu x2, x 3 ) - * ( - x 0 , xu x29 x3).
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Let F be the finite group (consisting of four elements) generated by S and
T. SL(2, (£) acts on $R4 as a group of automorphisms according to (5.1).
F acts on SL(2, <£) and « 4 Q S L ( 2 , (£) as follows:

if /iGSL(2,e),

ST:h->h

if (x?/z)e9ί4OSL(2,(I)

Thus one can form the semidirect products [9ΐ4 Q SL(2, (£)] O F and
SL(2, ε ) Q F . The group SL(2, (£)OF acts on 9i4 as a group of auto-
morphisms (by successive application). Hence one can also form
5R 4 O[SL(2,e)QF]. Then we have the following lemma.

Lemma 5.1. Γ9

Proof. The proof is straightforward and left to the reader.
Definition 5.2. The group ^ - 5R4O[SL(2, d ) 0 F ] is called the

extended Poincare group.
We shall now proceed to the description of all the multipliers of the

extended Poincare group. The connected component of the identity of
& is ^ 0 = 9t4OSL(2,(£). It is a well known result of Bargmann and
Whitehead (cf. [6] Theorem 5.5, page 34, and Corollary 1, page 51) that
every multiplier of ^ 0 i s trivial. Since by Lemma 5.1 0> = 0>

oQF, any
element g e & can be uniquely written as g°a where g° e SPQ and ae F.
An analysis similar to that of Mackey in the unitary situation (cf.
Theorem 5.6, page 41 in [6]) and the fact that ^ 0 has no nontrivial
characters yields the following lemma.

Lemma 5.2. Let ω be any multiplier for F. Then the function σ defined by

σωtoiΛi,^2«2) = ω(α1,α2) for all g0

ug°2e^0, aua2eF

is a multiplier for 3P. Conversely every multiplier σ for the group is equiv-
alent to a σω for some multiplier ω of the group Γ.

Thus the problem of describing all the multipliers of 0> reduces to
describing those of the finite group F. We recall from Definition 3.3 that
every multiplier of F is defined with respect to a subgroup F+ which has
either two or four elements. Upto equivalence the multipliers of F are
described by the following lemma.

Lemma 5.3. Let Φ be a finite abelian group consisting of four elements
e, a, b, c such that e is the identity, a2 = b2 = c2 = e9 ab = c, bc = a and
ca = b.
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If Φ — Φ, then every multiplier with respect to Φ f is equivalent to the
one which is identically equal to unity or the multiplier ω0 given by the
following table:

T a b l e (i)

e
a
b
c

1
1
1
1

1
1

— i
i

1
i
1

— ί

1
— i

i
1

// Φ + = {e, a}, then every multiplier with respect to Φ+ is equivalent to
a multiplier ωa

Λβ given by the following table:

e
a
b
c

e

1
1
1
1

Table (ii)

a

1
1
aβ
aβ

b

1
1

a
a

c

1
1

β
β

α= ±1, β= ±1 .

Proof. Since the proof is a straightforward algebra we leave it to the
reader.

Remark. The extended Poincare group & has four distinct normal
subgroups ^ + such that 0*1^ has at the most two elements. They are
given by

(1) ^ + - ^
(2) ^ f = [K 4 0SL(2,e:)]OF f l , a = S, T or ST

where Fa denotes the subgroup of F which contains the identity and the
element a.

By Lemmas 5.2-5.3, there are two multipliers upto equivalence in the
first case. One of them is identically equal to unity and other σ0 is
given by

= co0(a1,a2) for all gϊ,g%e0>θ9 aua2eF

where ω0 is determined by Table (i) of Lemma 5.3.
In the second case there are four multipliers σ ^ , α = ± l 5 j 8 = + 1 ,

given by

Ϊ coa

aβ{al9a2) for all g°ug
o

2e0>o, aί9a2eF

where afaβ is determined by Table (ii) of Lemma 5.3. Since a can be any
one of S, T and S T we obtain twelve distinct multipliers in this case.

Thus, on the whole, there are fourteen inequivalent multipliers for
the group &>.
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We shall now proceed to describe the irreducible multiplier represen-
tations of ^ by following the method of Mackey [2]. Let G = SL{2, d)QF.
Then & = 9Ϊ 4OG. The G action in 5R4 introduces a natural action in the
character group R4 of 5H4. Under this action JR4 splits into various orbits.
Let 0 be a typical orbit and H be the stability subgroup of some fixed
point in 0. The orbit 0 can then be considered as the homogeneous
space G/H of left cosets. We shall denote an arbitrary point of 0 by
P — (Po> Pu Pi> P3) a n d define the value of the character p at
x - (x0, x1? x2, x3) as exp - ί(poxo -pίx1- p2x2 ~ £3*3)- Any point of 9
can be denoted by (x, g) where x e 9?4 and g e G. Let σ be a multiplier
of & satisfying σ{{xu gx\ (x29 g2)) = σ(gu g2) for all (xl9 gγ\ (x2, g2). Then
σ defines a multiplier for G. Suppose {Jtif, Vg, P(E)} is an imprimitivity
system for the group G on 0 where the representation g-*Vg has the
multiplier σ. Define the operator UXt9 by

u(χ,g) = ίί ( e x P ~ ^Po^o ~ Pi*i ~ P2 ̂ 2 - P3X3]) P(dp)} Vg . (5.3)
Then (JC, ̂ f)-> C/(x>ff) is a σ representation of ^ . This is irreducible if and
only if the imprimitivity system {^ Vg, P(E)} is irreducible. Every
multiplier representation of 0* is determined in this way up to equivalence.

Following the procedure outlined above we shall now classify the
"positive mass" representations of 0. Define for every m > 0 the set
OmCR*by

Om = { p : p o * 0 , p g - p ? - p ! - p i = m 2}.

Om is an orbit of the group G in R4. Indeed, it is the orbit generated by the
point (m, 0,0,0). The stability subgroup of the point (m, 0,0,0) is gen-
erated by S U2 and the space reflection S. In fact, it is the direct product
of S U2 and the space reflection S. In fact, it is the direct product of S U2

and Fs where Fs is the group consisting of the identity and S only.
The irreducible multiplier representations corresponding to the orbit

Om are now determined by the irreducible imprimitivity systems for G on
Om. According to Theorems 4.1 and 4.2 such systems are in turn deter-
mined by the irreducible multiplier representations of SU2 x Fs.

We shall now describe the invariant measure in Om and a cross section
map γ from Om into G. To this end, define

θ ; = { p : p e O m ϊ p 0 > 0 } ,

Om = {p:peOm,p0<0}.

There exists a G invariant measure μ on Om given by

^ ^ if Ptol,
Po

-Po
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For any p e Om, define

Pi~ιP3 Po-Pi

If p e 0^, τ'(p) is a positive definite Hermitian matrix. If p e 0 m , τ'(p) is
negative definite. Since every positive definite matrix has a unique posi-
tive definite square root, we can define

Then y+ is a mapping from 0^ into SL(2, (£). If p G 0 m , then
Hence we can define

if p e θ m

where the product of Tand y f(Tp) is taken in the group G. Now we write

It is now easy to verify that γ is a cross section map, i.e., γ is a one one
Borel map from Om into G such that γ(p) (m, 0,0,0) = (p0, p l 5 p2,p3).

Representations arrived at by formula (5.3) on the basis of the orbit
Om are called representations with mass m. We shall now classify these
according to the multipliers described in the Remark after Lemma 5.3
and the irreducible σ representations L of H = SU2xFs.

Case 1. ^ = ^ , ( J Ξ 1 .

In this case L is an irreducible unitary representation of H. In
particular L\ = I and

LULS = LSLU = LuS for all ue SU2.

Thus Ls= ±1 and u-^Lu is a spin 7 representation of SU2 where j is
either an integer or half integer. For any spin j , the representations with
Ls= +1 and Ls= —I are inequivalent.

Case 2. &"~ = 0>, σ = σ 0 .

Since σo(S, S) = 1, and L s is unitary we have L2

S = I; LULS = LSLU.
Thus L s = ±1 and the required representation of 3P is given by (5.3)
where the σ representation g—>Vg is induced by the σ representation L.

Case 3. ̂  = [ « 4 Q S L ( 2 , Vf]OFs, σ = σs

aβ.
In this case the stability subgroup H is included in 3P^. In (5.3), the

σ representation g-*Vg is determined according to Theorem 4.2. L is
determined by a spin j representation for SU2 and Ls = ±1 if α = + 1
and L s = ± ι7 if α = — 1.

σ = σj^, a = + 1 .
In this case HnέP^d. In (5.3), the σ representation g->Vg is in-

duced by a σ representation L oϊ H where L s is antiunitary. Since
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σ(S, S) = 1,L2

S = I. By Lemma 2.2, Ls is a conjugation. Since LULS = LSLU

for all ueSU2, u-+Lu has a real character. Hence the spin must be an
integer. Ls can now be chosen to be the complex conjugation in the basis
in which the matrix entries of u->Lu are real.

Case 4b. ^ = [9ΐ 4OSL(2, (£)] Θ F Γ , σ = στ

aβ, a = - 1 .
In (5.3), the σ representation g-+ Vg is induced by a σ representation

L oϊ H where Ls is antiunitary. Further

L2

S = -I, LSLU = LULS, ueSU2

Suppose u-+Lu is a spin j representation for SU2. If j is an integer there
is a vector u such that Luv = v for all w in a one parameter subgroup X
oΐSU2.

If v' is another vector such that Luv'= r'for all weK, then u' is a
constant multiple of r. Hence Lsv = cv where c is a scalar of modulus
unity. We have

— v = L2

sv = Ls(cv) = cLsv = v .

Hence v = 0. This implies that j cannot be an integer. It is now easy to
show that in a weight basis, Ls is given by

'0

1 0 0 0

where P is a j + | x j + | matrix and s is complex conjugation in the
chosen basis.

Cases 5a and 5b. 0>Λ = [9 i 4 05L(2, G)]QF S Γ , σ = σsj, α = ± 1 .
The representations are determined exactly as in cases 4a and 4b. The

only difference is in replacing T by ST.
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