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Abstract. In order to describe rigorously certain measurement procedures, where
observations of the arrival of quanta at a counter are made throughout an interval of time,
it is necessary to introduce the concept of a quantum stochastic process. While fully quantum
mechanical in nature, these have a great deal of similarity with classical stochastic processes
and can be characterized by and constructed from their infinitesimal generators. The
infinitesimal generators are naturally obtained from certain "fields" which we prove must
be of the boson or fermion type.

§ 1. Introduction

In the generally accepted mathematical accounts of quantum
mechanics the evolution of quantum systems is divided into two basically
different types. In the first, the system is not observed and evolves
according to a one parameter (time) unitary group of automorphisms
of the given Hubert space. The fact that this is taken to be a unitary
group rather than a representation of the positive real line by isometries
reflects the belief that the mathematical description of the evolution is
essentially unchanged by time inversion. The second kind of evolution
occurs during the process of measurement, which is supposed to occur
at an instant of time determined by the experimenter. If the state of the
system immediately before the measurement is represented by the trace
class operator ρ and the observable is described by a self-adjoint operator

00

A = X λnPn with discrete spectrum, then the state immediately after
n=ί

oo

the measurement is generally taken to be ρ' = ]Γ PnρPn. The map
71 = 1

ρ-»ρ' takes pure states to mixed states and time inversion is impossible
because ρ->ρ' is not one-one. This is generally explained by the fact
that measurement is an essentially irreversible process.

In recent years a class of optical experiments has been performed in
which neither of these types of evolution is appropriate but where some-
thing very much more complicated seems to be required. The first of
these experiments, performed by Hanbury, Brown, and Twiss, and later
developments, described in [1, 2], were of the following type. A beam
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of photons is split and directed at a small number of counters which
detect the arrival of individual photons at random times. It turns out
that the number of photons arriving at any such counter within a given
interval of time is a random variable which depends strongly, for example,
on whether the light is coherent or incoherent. It is possible to observe
and calculate in a fully quantum mechanical way such random variables
as the waiting time for the arrival of the next photon after a given one
(see [2]). Secondly it turns out that there is a definite correlation between
the random variables giving the photon counts of two different counters
and that the correlation depends upon the state describing the photon
beam (see [1, 3]).

It is fairly clear that although these measurements can be predicted
by quantum theory they do not fall within the usual description of
measurement theory, and the occurrence of waiting times and correlation
functions suggests that the proper mathematical framework for their
description is a quantum mechanical theory of stochastic processes. In
this paper we lay the foundations for such a theory and find the most
general form of a certain class of processes, which correspond in the
classical theory of stochastic processes most closely to the Markov
jump processes. As in the classical theory this turns out to involve the
analysis of certain representations of the additive semigroup of the
positive real line, in this case by positive linear endomorphisms of the
trace class operators.

In the last section of the paper we give a rather more physical descrip-
tion of the results. We show how the theory is related to the measuring
processes of quantum optics and how the correlation functions for a set
of photon counters may be derived from a certain stochastic process.
Since there are certain technical difficulties involved with this we actually
only discuss completely the quantum stochastic process related to a set
of counters sensitive to the strength of a fermion field, but it can be seen
that the results for this case are very similar to those for the boson field.
It is not claimed that any of the examples corresponds fully to a particular
physical system. Much as Gaussian processes are an idealization of
Brownian motion, so the process here are obtained by an idealization
of the quantum mechanical measuring process, but we can hope they
will be reasonably good models for certain experimental situations
where classical probability theory is not applicable.

§ 2. The Basic Formulation

We refer the reader to [4-6] for explanations of any undefined terms
in this paper, and in particular for definitions of state spaces, observables,
instruments, and the composition of instruments. Except in this section
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we shall only be interested in the case where the state space (V, τ) consists
of V= ^(Jf 7), the ordered Banach space (under the trace norm) of self-
adjoint trace class operators on a Hubert space jf, and τ = tr, the
normalised trace on V. However, for the time being we shall formulate
the idea of a stochastic process in the general situation. At the end of the
section we give an example to show that our definition contains the theory
of Markov jump processes in classical probability as a special case.

Suppose we are given an apparatus which records events, each event
being represented by a point (x, t) in X x (0, oo), where t is the instant
at which the event occurs and x e l , where X is a separable locally
compact Hausdorff space representing the set of all possible values of
some observable the apparatus is measuring. A sample point is defined
as a sequence of events {(xh tt): i — 1,2, ...} such that 0 < ί 1 < ί 2 <
and either the sequence terminates or ίn-»αo as n—>oo. The sample space
X^ is defined as the set of all sample points and is a Borel subset of

[j I f] Xx(05oo)V

is an obvious way. For each time t > 0 we define the sample space Xt as
the set of all finite sequences {(xh tt): i = 1, 2,..., n) such that
0 < tλ < < tn S t Xt is also a Borel space in a natural way and if
0 < 5 < t ^ oo there is a Borel map π of Xt onto Xs in which each sequence
{(xί} if): i = l,s, ...} is taken to the subsequence formed by dropping
all the events which occur after time s. Given any s, t > 0 there is a one-
one Borel isomorphism λ from Xs x Xt onto Xs+ί defined by

We now define a stochastic process on X, V to be a family of instruments
Sx defined on I π F for all t ^ 0 satisfying the following conditions

(i) S°{X0, Q) = Q for all ρ e K, where Xo consists of the single sample
point corresponding to a sequence of zero length,

(ii) for each ρ e F, t-±$\Xt, ρ) is continuous for all t ^ 0.
(iii) for all ρ e V and s, ί > 0

<f (F, <T(£, ρ)) = δx o Sύs{F xE,ρ) = Ss + t{λ{F x E\ ρ). (2.1)

The last condition says that the evolution after time t depends only on
the state at time ί, and the evolution is homogeneous in time. It is a
generalization of the Chapman-Kolmogorov equation. It should be ex-
plained here that the instrument $* is to be thought of as accepting a
state ρ e V at time zero and emitting an output state S\E, ρ) conditional
upon the set E Q Xt at the later time t.
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Given a stochastic process we obtain a one-parameter semigroup of
endomorphisms of V as follows. If we define Tt: F-> V by

Tt(Q) = tf(Xt,Q) (2.2)

then Tt is a bounded positive linear operator of V into V satisfying
τ[7;(ρ)] = τ[ρ] for all ί ^ 0 and ρ e V. Since Λ(Z S X X,) = Xs+t we obtain
TsTt=Ts+t from the (generalized) Chapman-Kolmogorov equations.
The continuity condition (ii) shows that Tt is a strongly continuous one-
parameter semigroup on V.

There is a second semigroup of endomorphisms of V we can define.
Writing z for the sample point in Xt which consists of zero events, we
define the bounded positive operator St:V-+Vby

St(Q) = #t(z,ρ) (2.3)

It is easily seen that for all ί ^ 0 and ρeV+

Moreover as λ(z, z) = z we have SsSt = Ss+t for all s, ί ^ 0.
It is necessary now to make a further assumption about the stochastic

process, that there exists a constant K<co such that for all ρeV^
and ί > 0

(2.4)

which is interpreted by saying that the stochastic process has a bounded
interaction rate. In order to proceed further we introduce the Borel sets

An

t = {all sample points in Xt containing exactly n events},
00

J5" = (J 4̂" = {all sample points in Xt containing at least n events}
m — n

observing that

Let m ^ n and let F^ be the family of all subsets a of (1,. . . , m) containing
exactly n points. For ae F^ and 1 ^ r ^ m define Cα r £ Xm-iί by

c = f ^ - . , if rφa
a'r \Bn-it if r e a .

Then define D f > m ς i t by
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Clearly Dn

t m Q Bn

t but conversely the characteristic functions of these sets
satisfy

Now for any state ρeV^ the hypothesis of a bounded interaction rate
K implies

Using the Fatou-Lebesgue theorem and fundamental properties of
instruments we now obtain

τ[«W, QJ] ^ {^)~ιKntnτlρ] (2.5)

As z — λ(z x x z) we have for all ρeV^

τ[#ι(z,ρ)]^l-— Jτ[ρ]

and going to the limit as m->oo gives

τ [ S f ( ρ ) ] ^ ^ X ί τ [ ρ ] . (2.6)

As the semigroup Tt is strongly continuous and

f(Bt

1,ρ) (2.7)

it follows from Eq. (2.5) that St is also a strongly continuous one
parameter semigroup on V. Using the projection mapping π from
4 f = X x ( 0 , ί] onto X we define

by the equation
f{E,Q) = rxSt(π-\E\Q) (2.8)

and observe that f* satisfies all of the axioms for an instrument in [4]
except that instead of

τ L m β ) ] = τ[ρ]

for all Q e V we have

τLW>e)]^Kτ[ρ] for all ρeV+. (2.9)

We are now able to rewrite Eq. (6) as

ρ) = r 1 ( S , ρ - ρ ) + /'(X,ρ) + o(ί). (2.10)

If we assume for the moment that βι converges to a limit as £—>0 and
that the infinitesimal generators d/dt of Tt and H of St have a common
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dense domain 3) then from (2.10) we obtain the following evolution
equation

-J^(ρ) = ff(ρ)+/(X,ρ). (2.11)

This equation is precisely the version of the Kolmogorov forward
differential equation relevant to this generalized stochastic process.

In order to show concretely how our theory is related to classical
stochastic processes, we indicate how it contains the theory of Markov
processes of the pseudo-Poisson type with linear increments as a special
case. I should like to thank J. T. Lewis for suggesting this example. Let
X be the real line 1R and let V be the ordered Banach space of all bounded
signed Borel measures on X. If we define τ on V by τ(μ) = μ(X) then τ is a
strictly positive linear functional on V and (F, τ) is a state space, [4]. The
set {μe V+: τ(μ) — 1} of normalised states in V is precisely the set of
probability measures on IR, so we are describing the Kolmogorov model
of probability. Following the notation of [7, p. 311—320] suppose that
we have a Markov jump process with linear increments. Suppose that
between jumps X(t) varies linearly at a rate c and that the interaction
rate is given by a constant α > 0 ; finally suppose the jumps when they
occur are described by a stochastic kernel K. From K, α, c it is possible
to construct a classical stochastic process, but we show how to construct
a stochastic process in our sense of the term; the two constructions can
be shown to be essentially equivalent.

First we define St: F-> V by

and verify that S is a strongly continuous semigroup on V taking pure
states to pure states. We define / on X, V by

and verify that β is a bounded stochastic kernel (in the sense of § 4)
satisfying

τ[/(X, μ)] = {/(X, μ)} (X) = a j K{x, X) μ(dx) = ατ[μ]
x

for all μeV. It is now possible to construct a stochastic process Sι with
St,/ as infinitesimal generators by similar methods to those of Theo-
rem 4.7 since for all μ e V

j U A-e-«τ[μ\ = -α <Γ"τ[μ] = -τ\J(X,St(μ))l •
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If x e X we let εx be the probability measure concentrated at x and define

Qt(x,Γ)={Tt(εx)}(Γ)

for any Borel set Γ Q X and any t ^ 0. In the special case c = 0 Eq. (10)
then becomes

- | - Qt{x9 Γ) = -αft(x, Γ) + a J βf(x, dz) K(z, Γ)
or x

which is precisely the Kolmogorov forward equation [7, p. 314].
Now that we have formulated the theory in the general setting we

want to start a much more detailed analysis in the case of interest to
quantum mechanics, where V=ίTs(jtf>) as described earlier. The main
problem is to find reasonable conditions on a stochastic process which
enable us to rigorously derive Eq. (2.11), and then to show how to
reconstruct the process from this differential equation.

§ 3. One-Parameter Semigroups

In this section we derive some technical results we shall need about
strongly continuous one-parameter semigroups of positive endo-
morphisms of V = 2Γs($e\ The theorems and proofs are basically modelled
on corresponding results for one-parameter groups as described in [8],
but seem to us sufficiently different to require explicit presentation.
Throughout this section Jf7 will denote a separable Hubert space,
^ ( J f ) will denote the ordered Banach space of self-adjoint trace class
operators on 2tf under the trace norm and tr will denote the normalised
trace on ^ p f ) . We recall that the pure states of the positive cone ,TS( J f ) +

of ^(Jf 7) are the elements of the form ς®1 where ξ e ffl. We also note
that there is a one-one correspondence between the real linear trans-
formations S: ^(Jtif)-+,Ts(jή?) and the complex linear self-adjoint trans-
formations S: .TiJtf)-* ΰΓffl), and we shall not distinguish between the
two. I should like to thank E. StΘrmer for remarks which enabled me to
very much shorten the proof of the following theorem.

Theorem 3.1. If S: ^s(^ι)->^s(^2) ^ a positive linear mapping which
takes pure states to pure states then either

(i) there exists a bounded complex linear operator B\#fx-*$f2 such
that for all ρ e ^ p ^ ) , S(ρ) = BρB*; or

(ii) there exists a bounded antilinear operator B\fflx-^ffl2 such that
for all ρ e ^ ( ^ ) , S(ρ) = BρB*; or

(iii) there exists a bounded complex linear positive operator B e i f s (J^) +

and a vector ξsJ^2

 s u c n ^ a t for a^ ρ e ^ p f j , S(ρ) = tr[JBρ] ξ®ξ.
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We make the preliminary observation that the positivity of S implies
it is bounded [9].

Lemma 3.2. // the theorem holds whenever S satisfies the further
condition

then it is generally true.

Proof. S has an adjoint S*: JS?S(^2)->JS?S(^) which is a bounded
positive linear operator. If we define A = S*(I) and let P be the ortho-
gonal projection in J ^ onto the closure of the range of A it is easy to
verify that

Ϋ : S(ρ) = 0} = {ρ e f

Let ξ = aίeί + a2e2 where Peί = 0, Pe2 = e2, 11^11=1 and | |e 2 | | = 1.
Then S(eι®eί) = 0 and S(e2®e2) = a(g)a for some non-zero ae^2.
For all complex constants j8l5 β2

^ β2e2y + (βιei- β.e^iβ^- β2e2y}

= S{2β1β1e1®e1+2β2β2e2®e2}

= 2\β2\
2a®a.

Therefore since α® a is a pure state,

It is easy to verify that K is a non-negative quadratic form on L = lin(el5e2)
so there is a positive self-adjoint operator K:L-+L such that for all

i^ β2e2)'} ^ (K(βiei+ β2e2\ βiei + β2e2} a®a .

Since ( K e l 5 et> = 0 it follows by spectral theory that

In particular we see that

It now follows by linearity that for all ρe,Ts(3tfx\ S{ρ) = S{PρP). From
this formula it is clear that if the theorem holds for the restriction of S to
Ps(P3θ it holds for S itself.

Proof of Theorem. By the lemma we need only consider the case
where A = S*(I) has dense range. Let Jfn Q JfJ be the range of the spectral
projection Pn of A corresponding to the set {λ e IR: λn ^ 1}. Then define
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by the equation

ψn is a positive bounded linear map such that for all ρ e ,T

tr[(A-^ρA-1 / 2)φ*(/)] = tr[ρ] .

Applying [10, Lemma 5.4] to the adjoint map ψ* : if5(^2)-^ifs(JfJ we
see that either (i)', there exists a bounded complex linear operator
Bn:Jfn-+J^2 such that B*Bn = PnAP and for all ρe«^(jQ we have
S(ρ) = BnρBn, or (h'X the same holds but Bn is antilinear, or (iiiX there exists
a vector ξ e Jf2 such that for all ρ e ^ ( J ί J we have S(ρ) = tr[Aρ~]ξ®ξ.

It is now clear that either S is of type (iii) or there exists N such that
for all n ^ N the restriction of S to ^ ( J Q is of type (i)' or (ii)'. In the
latter event for any m^n^N and ξ

so Bmξ = 2J3W£ for some |Λ| = 1. Simple arguments show that λ is in-
dependent of ξ e Jfn and that Bm, Bn are both linear or both antilinear. It
is now possible to multiply the Br by appropriate constants of absolute
value one so that for all m ^ n, Bm is an extension of Bn. As \\Bn\\2 = \\B*Bn\\

00

= ||Pny4Pπ|| S \\A\\, the common extension to (J ,iCn is bounded and has
« = i

a unique bounded extension to a bounded linear or antilinear operator
B on jev Continuity arguments show that S(ρ) = βρβ* for all ρ in Λ ^ ) .

The following lemma is a weakened version of the main theorem at
the end of this section.

Lemma 3.3. Let 3^ be a separable Hubert space and let St be a strongly

continuous one-parameter semigroup of positive non-zero linear maps of

^ ( J f ) into ,TS{J4?) such that St(ρ) is a pure state for all t^O whenever ρ

is a pure state. Then there exists a family At of bounded operators on Jf7

such that for all ξ,ηeJήf, t-*(Atξ, η} is a Borel function on [0, GO), and

a Borel multiplier y : [0, oo) x [0, oo)-> {z e C : \z\ = 1} such that for all

s , ί^0
As+t = y{s,t)AsAt

and for allt}>0 and ρ e ,Ts($f)

St(ρ) = AtρA* .

Proof. Except for the condition that all the above functions be Borel
functions, this is a fairly easy consequence of Theorem 3.1. Let ρ e ^(Jf)
be a state which is not pure. By strong continuity of St there is some
δ > 0 such that for 0 ^ t :g δ, St{ρ) is not pure, so for such ί, St is not of



286 E. B. Davies:

type (iii). Since S2t = St St and the square of a mapping of type (ii) is of
type (i), every St for 0 g t ^ δ is of type (i). The same now holds for all
t g: 0 since we can always find an integer n such that O^t ^nδ. Now two
non-zero mappings ρ-^BρB* and ρ-+AρA* are equal if and only if
B = λA for some |/| = 1. Choosing some At for each ί ^ O so that
St(ρ) — AtρA? we obtain As + t = y(s, t)AsAt for some \y(s, t)\ = 1. Since
we suppose S t φ 0 for all ί, y(s, t) is unique and satisfies the multiplier
equation

y(r, s)y(r + s, ί) = y{r, s + ί)y(s, 0

for all r, s, t ^ 0.
To obtain the full result we make use of the theory of standard Borel

spaces very much as in [8]. By estimates from semigroup theory [11, 12]
on the rate of growth of ||S t | | there is no loss of generality in supposing
that H5JI SK<oo for some constant K and all ί^O. Let ΩίQ^{Jf)
be the set of all operators A with \\A\\ ^ K1J2. Under the strong operator
topology Ωx is a complete separable metrisable space. Let Ω2 Q i f {,TS(#f)}
be the set of all operators A with ||^4|| ^ K. Under the strong operator
topology Ω2 is also a complete separable metrisable space. Let π:Ωί-^Ω2

be the map defined by (πA)(ρ) = AρA*. Then π is continuous and the
images of two non-zero elements ω, ω of Ωx are equal if and only if
ω — λω' for some \λ\ = 1. It is immediate that the inverse image under π
of any point in Ω2 is closed and that the saturation π~ιπ{E) of any closed
set E Q Ωx is Borel. From [13] there exists a Borel subset F ζ Ωι such
that λ = π I F is a one-one Borel map of F onto π(Ω2). By [14] it follows
that π(Ωx) is a Borel set in Ω2 and that λ is a Borel isomorphism of F
onto π(Ωλ). If now we define At for all ί > 0 by At = λ~ι(St) and Ao = I
it follows that for all ί § 0 and ρ e &s{#e\ St{ρ) = AtρA* and that for all
ξ,ηeJf, t->(Atξ,η} is a Borel function. If {en}™=ί is an orthonormal
basis for J^ as each Af is non-zero we can write [0, GO) as the disjoint
union of a countable number of Borel sets Emn such that for all t e Em n,
(Atem, eny Φ 0. Then

y I {(s, ί): s + ί G £ m > J = < Λ ^ ^ m 5 ^> <>4 s +^m, O " 1

from which we see that y is a Borel function.

Theorem 3.4. // γ is a Borel multiplier on [0, oo) x [0, oo) i/zen ί/ier^
exists a Borel function λ from [0, oo) to {ze(£: \z\ = 1} such that for

all s,t^O

Proof. Theorems of this kind for multipliers on locally compact topo-
logical groups are well known — see [8, 15, 16] — but the proofs involve
the construction of central group extensions, which do not seem easy
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to generalize to semigroups. We adopt the alternative method of proving
that every Borel multiplier on [0, oo) can be extended to a Borel multiplier
on (— oo? oo). The existence of a suitable function λ then follows from [15].
The method we use for extending the multiplier applies without alteration
if we replace [0, oo) by the semigroup of positive elements of a totally
ordered abelian group, but it would be interesting to obtain more general
results.

For our purposes we can define a Borel multiplier on [0, oo) as a Borel
function y from [0, oo) x [0, oo) to {z e C : \z\ = 1} such that

t) = y{r,s+t)y{s,t),

for all r, s, t e [0, oo). The definition of the extension y on ( — oo, oo)
x (— oo, GO) falls into six cases depending upon the signs of α, b, (a + b).
Specifically y is defined by the following table.

sign(α) sign(b) sign(α + έ>) y{a, b)

b, -b)'
y{-a-b,a)

y(b,-a-b)
y(-b, -ay1

It is immediate from the definition that y is a Borel function and that

y(0, s) = y{s, 0) = 1

for all real 5. The verification of the multiplier equation apparently
requires the consideration of 64 cases but we can reduce these to a
manageable number by use of the symmetries of the situation.

First observe that y(x, z) = y(— z, — x)~1 for all real x, z. If we can
find a, b, c such that

y(x, y) y(x + y, z) = γ(x9 y + z) y(y, z) (i)

is satisfied for x = α, y = b, z = c, it follows that (i) is also satisfied for
x = —c,y— —b,z= —a. Therefore if (i) holds whenever y ^ 0, it holds in
all cases.

Now suppose we know that for all multipliers y, Eq. (i) holds when-
ever y ^ 0 and x ^ z. Given any multiplier y we define the reversed
multiplier λ by λ(x, y) = γ(y, x) and see that λ{x, y) = γ(y, x) for all real
x,y. If a^c and b ^ 0 then Eq. (i) holds for the multiplier λ and x = c,
y = b, z = a, so Eq. (i) holds for the multiplier y and x = a, y = b, z = c.

21 Commun math Phys , Vol 15
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We now have only to verify Eq. (i) in the cases y ^ 0 and x ^ z.
There are precisely eight cases, after eliminating logical impossibilities,
depending on the signs of x, y, z, x -f y, y + z, x + 3; -f z. These are given
from the following table.

sign(x) sign(y) sign (2) sign(x4-y) sign(y-\~z) sign(x4-y + z)

(i) + 4- 4- 4- + 4-
(ii) 4- 4- - + 4- 4-

(iii) + + - 4- - 4-
(iv) + + _ + _ _

(v) - + - + 4- +
(vi) + - 4- +

(vii) + - +
(viϋ) - + - - - _

In each of these cases Eq. (i) is verified by direct computation. In Case
(vi) for example:

γ(x, y) y(x + y, z) y(χ, y + z) ~x γ(y, z) ~x

z, -x-y-z)~1y(y + z, -z)

= {y{a, b) y{a + b, c) γ(a, b + c)~ι y{b, c)'1} ~x = 1

where a = y + z ̂  0, b= —x — y — z^tO, c = x + y^0.

Theorem 3.5. Let ^ be a separable Hubert space and let St be a
strongly continuous one-parameter semigroup of positive non-zero linear
maps of >Ts(Jtf) into $~S(J?) such that St{ρ) is a pure state for allt}zθ when-
ever ρ is a pure state. Then there exists a strongly continuous one-para-
meter semigroup of bounded operators Bt on 34? such that for all t ^ 0
and all ρ e ̂ ( J f )

St(ρ) - AtρA* .

Proof. Given 7, At as in Lemma 3.4 and λ as in Theorem 3.4 we
define Bs = λ(s)~1As and see that BsBt = Bs+t for all s, ί^O, while
s-+(Bsξ,η} =λ(s)~1(Asξ,η} is a Borel function on [0,00) for all
ξ, η 6 J^ Now given any ξ e Jf

\im(Bsξ)®(Bsξy = \imSs(ξ®ξ) = ξ®ξ

is the trace norm by the strong continuity of Ss. Therefore [j Bt(jΊ?)
t>0

is a dense subspace of $C. The strong continuity of the semigroup Bt now
follows from standard results on semigroups of operators [11, 12].
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§ 4. Structure of Stochastic Processes

We now return to the analysis of stochastic processes begun in
Section 2. Throughout this section we shall suppose V=,fs(J^) where
Jf is a given separable Hubert space, and we shall suppose the stochastic
process has an interaction rate bounded by the constant K<co. The
one-parameter semigroup Tt has the property that for any countable
disjoint cover of Xt by Borel sets En, n = 1, 2,... and any ρ eV^

It is apparent from this equation that we can expect, except in totally
degenerate cases, that Tt will transform pure states into mixed states and
that as f->QO, Tt(ρ) will become more and more mixed. Such an argument
does not apply to the semigroup St. Certainly as t increases, ρ-*St(ρ)
is a transformation which is giving us more and more information about
ρ, but this information is of rather a minimal kind, that a certain type
of interaction between the quantum system and the measuring apparatus
has not occurred up to time t. It is therefore reasonable, though by no
means necessary, to suppose that the evolution represented by St is of
the "simplest kind", which we shall interpret to mean in physical terms
that if ρ is a pure state so is St(ρ) for all t ^ 0. By the work of the previous
section there exists a strongly continuous semigroup Bt on J f such that

St(ρ) = BtρBf. (4.1)
Since

for all ρ e V+ we see that

e-*κt\\ξ\\£\\Btξ\\£\\ξ\\

for allξejf and t §; 0. We shall say more about the infinitesimal genera-
tor Z of Bt later.

The following lemma will be needed in the proof of Theorem 4.2.

Lemma 4.1. Let Bt be a strongly continuous bounded semigroup of
operators on J f and let St be the corresponding strongly continuous semi-
group of operators on V= SΓs(βtf\ If ργ 6 F + is such that

converges in the weak operator topology to a limit in V for some sequence
ίw—>0, then ρι is in the domain Q)H of the infinitesimal generator H of St.
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Proof.Wt proceed by a slight variation of an argument in [12, p. 240].
If S' ζ V is defined as the subspace

converges in the weak operator topology to a limit in V}

and H'{ρ) is defined for ρ e S)' as the said limit, then S)' 2 ^H a n ^ H' is
an extension of H. If we can show that (/ — H') is one-one then as (/ — H)
maps SH one-one onto V, it follows that SH = S)'. Note that since each
St: F-> V is continuous for the weak operator topology, Si' is invariant
under the action of St.

Suppose there exists some non-zero ρeV such that (7 — H')ρ = 0,
that is H'ρ = ρ. Let φ be a weakly continuous functional on V such that
φ(ρ) — 1, for example some constant multiple of a suitable vector state,
and define / : [0, oo)-• (— oo, oo) by f(t) — φ{St(ρ)}. Then/is continuous,

l, and

Hmίn-
1{/(ί + 0 - / ( 0 }

The set {ί ^ 0:/(ί) ^ e^} is non-empty, closed, and has no right end-
point. This implies it is unbounded which contradicts the fact that / is
a bounded function; this contradiction establishes the lemma.

Theorem 4.2. The domains of the infinitesimal generators of St and
Tt are equal. Moreover for all ρ e V, fι{X, ρ) converges in norm as £->0.

Proof. The positive operators At: F-> V defined by

are uniformly bounded, ||^lr|| ^ K. If ρ e F + then {At(ρ)}t^0 are uniformly
bounded in the operator norm of ^s{^) and so there is a subsequence
tn-^0 such that ^4ίn(ρ) converges in the weak operator topology to a
limit ρ e ££s(#?y. If {en}™ = 1 is an orthonormal basis of ê f then

n

t r [ ρ ' ] = Km ^ (ρ'er9er)

n

= lim lim £ OttHteK>er>
n-* oo n—>• oo _ i

g K tr [ρ] < oc

so ρ G F + .



Quantum Stochastic Processes 291

Now suppose ρe V^n@H. By the above argument, Lemma 4.1, and
Eq. (2.10) we see that ρ is in the domain of the infinitesimal generator of
Tt. Again from Eq. (2.10) it follows that f\X, ρ) converges in the norm

topology as ί-*0. Now F4 'r\Θn contains all finite sums £ α,.ξ,. ® <f,.

where α,. ̂  0 and ξr e ̂ Z , Z being the infinitesimal generator of Bt, so
(F4"n£$H — F + r\@H) is a dense linear subspace of F. Using the uniform
boundedness of the operators An it follows that /r(X, ρ) converges in
norm as ί-»0 for all ρ e F . Again from Eq. (2.10) it follows that the
domains of the infinitesimal generators of St and Tt are equal.

We next want to consider the convergence as ί—>0 of βx{E,ρ) for
arbitrary E Q X and ρeV. In order to use separability arguments, we
are forced to change the problem somewhat. The βι are not instruments
in the sense of [4] because they do not satisfy the normalization condi-
tions so we make the following slight modifications.

If X is a separable locally compact Hausdorff space and (F, τ) is a
state space, a bounded stochastic kernel β on X, V can be defined in three
possible ways

(51) (/ί is a bounded positive σ-additive measure on the σ-field of
Borel sets in X with values in 5£(V, V).

(52) / 2 is a bilinear map / 2 : όg(X) x F-> F, where 3S(X) is the space
of bounded Borel functions on X such that

(i) if feSS(Xγ and ρ e Γ then / 2 ( / , ρ ) e Γ ;
(ii) if 0 ^ / Λ ΐ / in @(X) and ρ e F " then / 2 ( / n ? ρ ) converges to

/ 2 ( / , ρ ) i n norm.
(S 3) / 3 is a bilinear map / 3 : K(X) x F - ^ F where K(X) is the space

of continuous functions of compact support on X, such that
(i) if fe K(Xy and ρ e F4" then / 3 ( / , ρ) e F r ;

(ii) for some constant K<co

These definitions are all equivalent in the same sense as in [6]. From
now on we shall take the /f as bounded stochastic kernels in the sense
of (S 3), the advantage being that K(X) has a countable dense subset. The
following lemma from operator theory will be needed in the proof of
Lemma 4.4.

Lemma 4.3. If An e .Ts{fflγ is a sequence converging in the weak
operator topology to A e .Ts(yf)+then An converges to A in the trace norm
if and only if tr[v4π] converges to tr[^4].

Proof. The proof one way is trivial. Let us suppose that An-+Ain the
weak operator topology and tr [An~] -> tr [̂ 4], and normalise to the case
where tr [An~] ^ 1 for all n. Given 0 < ε < 1 let P be a spectral projection
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of finite rank for A such that \\Λ — PAP\\ <ε2. Since PAnP converges
weakly to PAP and P is of finite rank, there exists N such that n ̂  N
implies \\PAnP-PAP\\ <ε 2, and also |tr[>4J - tr[>4]| <ε 2. Then for
such n

|tr [4] -

|tr [PΛP] - tr [P^ B P]| < 3ε2 .

If for some n^N, An has the spectral decomposition Σ λmem®em
n = l

where {em}™=1 is an orthonormal basis for #? then

II^-P^PH ^ \\An-PAn\\ + \\PAn-PAnP\\

^ Σ λm\\{em-Pem)®em\\ + Σ λm | |Pβm(g)(e-POΊI
m - 1 m=1

2 oo

^ 2 X λm\\em-Pem\\
w = l

f oo ) l / 2 ί oo -)l/2

^ 2 Σ AJ ] Σ λm\\em-Pem\\Λ
l/2

W/2

^ 2 Σ ^m- Σ y

< 4 ε .

Therefore for all n ^ N

\\A - An\\ g M - PAPII + IIPAP - P4.PH + | |P^ n P - An\\

< ε2 + ε2 + 4 ε < 6 ε ,

which proves the lemma.
Lemma 4.4. If X is compact there exists a sequence ίn->0 of the form

tn — 2~mn and a bounded stochastic kernel β on X such that for all fe K(X)
and all ρeV, ftn{f, ρ) converges in norm to ,/(/, ρ).

Proof. Using the separability of K(X) and V, the uniform boundedness
of </2 ", the compactness in the weak operator topology of {jBeif(Jf)
: ||231| rg 1} and a diagonal selection argument we can find a sequence
tn of the required form and a function / : K(X) x V-*J?s(Jf) such that
for all feK(X) and ρ e F , / " ( / , ρ ) converges to </(/, ρ) in the weak
operator topology. If feK{X)+ and ρ e F f it follows that / ( / , ρ)
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tr [/(/, ρ)] ύ lim inf tr [/'»(/, ρ)] ^ K||/| | ||ρ|| < oo

from which we see that,/(/, ρ) e Fand /" is a bounded stochastic kernel.
Also by Lemma 4.2 if fe K(X)+ and ρeV+

^ lim inf tr [/'-(/, ρ)] + lim inf tr[/ '"( | | / | | 1 - /, ρ)]
n ~~> o o /j —+ o o

Therefore,

lim tr [/'"(/, ρ)] = lim inf tr [/'»(/, ρ)] = tr [/(/, ρ)]
n—* oo n~* oo

and norm convergence follows from Lemma 4.3.
From now on we shall suppose that X is compact, though we shall

see in Theorem 4.6 that this is only a technical requirement. We define
the total interaction rate R e J^pf) + as the unique operator such that
for all ρ e V

tr [_ρK] = lim tr[/ f(X, ρ)] = tr[/(X, ρ)] .

Lemma 4.5. If ξ e ̂ z where Q)z is the domain in Jf of the infinitesimal
generator Z of the semigroup Bt then

//ρ is an arbitrary state in V then trj^S^ρ)] is differentiable and

^ ) ] . (4.3)

Comments. This last equation gives a clear reason why we call R the
total interaction rate, since tr[Sr(ρ)] is defined as the probability of no
interaction between the quantum system and the measuring apparatus
up to time t. We note that the interaction rate is independent of the state
(supposing it is normalised) if and only if R is a scalar multiple of the
identity operator. This is clearly an unreasonable condition if the
measuring apparatus is localised in some finite region of space.

Proof. If ξ e Q)z then ξ®ξ e Q)u since
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in norm as ί->0. Taking the trace of both sides of Eq. (2.9) gives

and going to the limit as ί->0

0 - <Zξ, ξ) + <& Z O + tr [/(*, ξ®ξ)-]

which gives Eq. (4.2). Since ξ e ^ z implies Btξ e Q)z for all ί ^ 0, it follows
that Eq. (4.3) holds for all

| ; 0,^(8)^: ξ Γ 6 ® z , n = 1,2,... j g K .

Therefore for all such ρe L

tr [St(ρ)] - tr [ρ] - j tr [Ss(ρ)R] ds . (4.4)
o

Since L is dense in F and Eq. (4.4) depends continuously on ρ it holds for
all ρ e V and differentiating this proves that Eq. (4.3) holds for all ρ e F.

We have now completed the preliminary work and can prove the
main theorems of the section.

Theorem 4.6. Let Sι be a bounded stochastic process on X, V where
X is a separable locally compact Hausdorff space and V = <Ts(3tif) for a
separable Hilbert space J^. If the semigroup St takes pure states to pure
states then i ι is uniquely determined by the infinitesimal generator Z of the
semigroup Bt on $f associated with St and a bounded stochastic kernel /
on X. Conversely J* is uniquely determined by S\ Z is uniquely determined
by i ι except for addition of an arbitrary purely imaginary scalar multiple
of the identity operator and β, Z are related by the equation

where ξ e 3)z. We call Z, f the infinitesimal generators of the stochastic
process.

Proof. If X denotes the one-point compactification of X then Xt is a
subset of Xt and there is a natural extension of i ι to a bounded stochastic
process S on X such that for all ρ e V and t ^ 0

If t >0, fe K{X) and ρ e V then using the fact that / ' has a bounded
interaction rate we see that
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where [2mί] denotes the largest integer not greater than 2mt. Using
Lemma 4.4, the strong continuity of St and the uniform boundedness of
St, t~

λ β\ it follows letting mn-*co that

Af,Q) = t-1Ut-J(f>SsQ)ds (4.5)
o

for all t ^ 0, / 'e K(X) and ρ e F, the integral existing as a vector-valued
norm-convergent Riemann integral. The above integral in fact exists in
the same sense for all fe$$(X) and using familiar dominated conver-
gence arguments for the ordinary Lebesgue integral,

where B e JS?s(Jf) is arbitrary, we see that Eq. (4.5) holds for all fe3S(X).
Therefore for all ρeV and / e J ( ί ) , / ( / , ρ ) converges in norm to
β{f\ρ) as t->0. In particular β(X — X, ρ) = 0. This greatly improves
Lemma 4.4, shows that it is not necessary to assume that X is compact,
and proves that f is uniquely determined by the stochastic process.

Now let 0 < sλ < tx < < sm < ίm ^ t and let {Et)™= 1 be Borel subsets
of X. Let E Q Xt be the Borel subset defined by

£ = {x i > r i )Γ=i:s i <r,gί i and x ; e £ ; } .

Then by its defining properties

= J s,- t m (s l m - Γ m Λ.A m -J
sι<rι ^tτ

- SS2_tl(Stί -rJEγSri-sι) SSίρdr1 ... drm

or, simplifying

< ί ί (£,ρ)= j Ss-rm/EmSrn_rm_ι...Sri-rJEίSrίρdr1...drm. (4.6)
S1<ri£t1

This shows that St, / determine Sι because the sets E of the given form
constitute a semiring in the sense of [17] which generates the σ-field of all
Borel subsets of Xt. The rest of the statements of the theorem are more or
less immediate.

The following result shows that the stated conditions on Z, $ are the
only ones needed for them to be the infinitesimal generators of a (nec-
essarily unique) stochastic process.

Theorem 4.7. Let X be a separable locally compact Hausdorjf space
and V — '^l(J^) for a separable Hubert space ffl. Let Z be the infinitesimal
generator of a strongly continuous one parameter semigroup on Jf and
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let f be a bounded stochastic kernel on X, V such that for all ξ e Q)z

tr[/(X, ξ®ξ)] = -2Re<Z£, ξy . (4.7)

Then there exists a unique stochastic process such that Z, β are its in-
finitesimal generators.

Proof. We define Sι separately on each of the sets An

tQXv For the
case rc = 0 we construct the semigroups Bt, St from Z and define $\z, ρ)
= St(ρ). If ρeV+ then repeating the calculations of Lemma 4.5 yields
tr [5f(ρ)] ^ tr [ρ]. For n ^ 1, using the correspondence sf — ti + ί — tt

where tn + ι = t by convention, we can identify

An

t = {(sn,xn, . . . ,5 1 ,x 1 ):0<s 1 , ...,sn_t

and 0 ^ sn and Sj + -f sn < t}.

We define the bounded stochastic kernel ^ on (0, ί], F by

o

noting that if 0 ^ a < b ^ t and ρ G F + then

Following [4] we may define the composition 0 of ^ with β as a bounded
stochastic kernel on(0, ί] x X, V. Now for any positive integers m,ru...,rn

we denote by r the multiindex (r1 ?..., rn) and write |r| = rί + ••• + rn. We
define

^m,r = ί f e xn, .-., sl9 x x): t(rt- 1)<2 w

S l g ί r j

so that for each m as r varies {Em>J defines a partition of {(0, ί] x X}n

and as m increases the partition becomes finer and finer. We now define
the bounded stochastic kernel Sx

m on A", V by

C(E, ρ) = Σ ^(EnEmιr, S (_ 2-m ( Wρ) (4.8)
r

where 3Pn denotes the composition of 0> with itself n times, ϊϊm^l then
to each r there exists a unique k such that £ m r g Elk. For this k we have

2"/(ki - 1) ί ^ 2~m(rI - 1) ί < 2-mr ti ^ 2~%t

so that
2 - / ( | k | - n ) ^ 2 ~ m | r | ^ 2 - / | k |

and
|(ί - 2~mt\r\) - (ί - 2-^^1)1 ^ 2-fiM .

Given ρeVand ε > 0 we can now find N = N(ρ, ε) such that for all m, r
and /, k satisfying m^l^N and £ m r g E/fc, if
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then | |σm ϊ r | | < ε. It follows that for all Borel sets E Q {(0, t]xX}n

where

Dm = {r: Σ{ri -1) 12~m ^t} = {r: \r\ ̂ 2m + n}

and K is a constant satisfying

* [ / ( * , ρ)]^Ktr[ρ]

for all ρ e F+. Therefore

W^JE, Q) ~ #!(E9 ρ)|| ύ (w!)"1 (2m + n)nKntn2-mnε

and

lim sup{ | |^(£ ? ρ ) - ί / ( £ , ρ)||} ^ ( π ! ) - ^ " ^ . (4.9)

As ε > 0 is arbitrary we see that for each ρeV, SUfi, ρ) forms a Cauchy
sequence as m-*oo, uniformly with respect to E. It is immediate that the
limit function S\E, ρ) is a bounded stochastic kernel. A similar estimate
to Eq. (4.9) shows that for all ρeV+

tr [<f {An

u ρ)] ̂  (π!)" 1 Kn f tr [ρ] (4.10)

which proves that Sx can be finitely defined for all Borel sets in Xt, satis-
fying

(4.11)

for all ρ e V+.
For all sets E Q An

t of the form

E = {{sn,xn,...,sux1):t{ri-l)<2msi^tri and x^eEJ

it is easy to verify that

* f ( £ , ρ ) = ί K<fE&n-i
t(rι-l)<2rnsι^trι M j

For fixed Eu ...,En the integrand is a jointly continuous function of
s1?..., sn so it is easy to justify transforming the variables back to ίl5..., tn

to conclude that for all sets F £ An

t of the form

f ={(Xi,fi)?=i:Pi<ίi^4i and x£ e JEJ

,ρ)= ί W Λ - ^ - A Λ M ^ ^ 1 ' }
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In this form it is easy to see that for two such sets F1 Q Xs and F2 Q Xt

<?s + '(/(Fi x F2), ρ) = δs{Fu <ί*(F2, ρ)).

Since such sets form a semiring which generates the σ-field of all Borel
subsets of Xt, it follows that Sι satisfies the generalised Chapman -
Kolmogorov equation (2.1). We can now construct the semigroup Tt.

It is clear that $ι has Z, J? as infinitesimal generators in the sense of
Theorem 4.6. From Eqs. (4.10) and (4.13) we obtain

Tt(ρ) = St(ρ) + ί/(X, ρ) + o{t) (4.14)

as ί-*0. This shows that ix is strongly continuous in the sense of the
definition of stochastic processes. Taking the trace of both sides of
Eq. (4.14) and differentiating gives, by Lemma 4.5,

^ t r [ Γ t ( ρ ) ] = 0 (4.15)

for all ρ e V. It follows that tr[7](ρ)] is constant, which concludes the
proof that Sι is a stochastic process.

Corollary 4.8. Both Theorems 4.6 and 4.7 are valid if X is only a Borel
subset of any complete separable metric space.

Proof. By [14] there exists a Borel isomorphism of X onto [0, 1] or
onto a subset of the integers. None of the conditions or conclusions of
the theorems involve the topological structure of X.

§ 5. Comments and Examples

We have shown that the construction of certain quantum stochastic
processes can be reduced to the choice of a suitable Hilbert space Jf and
a pair Z, / of infinitesimal generators. In fact on physical grounds we
can present what will usually be the most suitable candidate for Z. The
process corresponds to a quantum system with a Hamiltonian Ho say,
which is perturbed by the introduction of the measuring instrument.
If R is the total interaction rate of / defined by

tr[Rρ] = tr[/(A:,ρ)]

then the operator Z defined on @ιHo by Z = iH0 — jR satisfies

for all ξ e Q)z and is the infinitesimal generator of a strongly continuous
semigroup Bt of contractions of Jf7 by [18].

If we make this choice for Z then we are left only with the construction
of β. In [6] we undertook a detailed analysis of the structure of β for a
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position-measuring instrument. Taking β as in [6, Section 5] we obtain
an approximate model of a position measuring apparatus such as a
bubble chamber, where the events are bubbles in the chamber, thought
of as points in space-time, and the sample points of the process are the
chains of bubbles left by a quantum particle traversing the chamber.
We do not claim that this is more than a crude model but is does demon-
strate that such a system can be treated in a quantum mechanical manner.

Preparatory to considering more interesting examples, we introduce a
fairly general class of bounded stochastic kernels. In the following
theorem X may be taken as the closure of an open bounded set in IR2

with Lebesgue measure if the detector has a sensitised planar surface,
or as a finite set with the counting measure, in the case where the detector
consists of a collection of particle counters.

Theorem 5.1. Let X be a separable compact Hausdorff space provided
with a bounded Borel measure μ whose support is equal to X. Let J f be
a separable Hubert space and Λx a strongly continuous family of bounded
operators on <ff defined for x e X. Then the formula

(5.1)

where ρe^Γ^W), B e J^s(3f) and E Q X, defines a bounded stochastic
kernel Moreover the equation

/(£,/(F,ρ)) = /(F,/(£,ρ)) (5.2)

holds for all E, F Q X and ρ e :fs{#) if and only if

(AxAyξ)®(ΛxAyξy = (AyAxξ)®(AvAxξy (5.3)

for all ξ e Jf and x, y e X.

Proof. Since X is compact and \\Axξ\\ is a continuous function on X
for all ξe ff, the uniform boundedness theorem implies that there exists a
constant K<co such that \\AX\\ ^ X for all xeX. We observe that
x-+tr[AxρA*B'] is always a continuous function on X. As in [6] we see
that for each ρ e F f and E Q X the right hand side of Eq. (5.1) defines a
normal positive linear functional of B and hence a positive trace-class
operator β{E, ρ) on Jf so that Eq. (5.1) is satisfied. The proof that β is
a bounded stochastic kernel proceeds exactly as in [6]. Since

tr [ / (£, / ( F , ρ)B] = f J tr lAxAyρA*A*B] μ{dx) μ(dy) (5.4)
E F

it is clear that Eq. (5.3) implies Eq. (5.2). Conversely if ί/π, Vn are decreasing
basic families of open neighborhoods of two points x, y e X then

m a o (5.5)

which shows that Eq. (5.2) implies Eq. (5.3).
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We remark that if the Ax are unbounded operators with a common
dense domain then the same sort of result holds under reasonable con-
ditions. The stochastic kernel will in this case not be bounded and will
in fact only be well-defined for nice states. In the case where X is finite,
it is easy to formulate appropriate conditions.

An interesting case occurs when X is the closure of an open relatively
compact subset of a transitive G-space Y which possesses an invariant
measure, for example where G = SO (3) © 1R3 and Y = ΪR3. If U is a unitary
representation of G on Jf7 then, generalising [6], we say that β is covariant
with respect to U if for all open sets V Q X such that VgQX

f(Vg, ρ) = U*/(V9 UgρU*)Ug . (5.6)

The corresponding condition on the operators Ax is that for all xeX
and g e G such that xg e X

Axg=Ug*AxUg. (5.7)

Now let us suppose that we have a quantum system consisting of a
number of quantum particles and represented by a Hubert space Jίf
with a Hamiltonian Ho. Let us introduce a detector which records the
arrival of the particles on a sensitive surface X and suppose that to each
x e X we can associate a bounded operator Ax which we shall call the
annihilation operator corresponding to x and such that for each ρ e 2ΓS{^Y
and xeX, tr[_A*Axρ'] gives the rate of arrival of particles at x per unit
area and time. We construct the bounded stochastic kernel / as described
above, observe that the total interaction rate R is

Λ = SA*Axμ{dx) (5.8)
x

where μ is Lebesgue measure, define Z = ίH0 — jR and obtain the cor-
responding stochastic process from Theorem 4.7.

Now let us look more closely at the case where we have two identical
non-directional, movable counters C1? C 2 placed at points x l 5 x2 in some
larger space Y and suppose they are associated with the annihilation
operators AXι and AX2 respectively. Let us look at the event that in the
initial state ρ there is exactly one count at Cί in the time interval (0, ί]
and exactly one count at C 2 in the interval (t, 2ί] and no other counts
in the interval (0, 2ί]. The conditional output state at time 2ί for this
event is

t2f(x2, / ( * i , Q)) + o(t2) = t2ΛX2AXιρAlA*2 + o(t2).

Now for relativistic reasons we should be very surprised if the conditional
output state for very small t depended critically on which of the events
occurred first, because for small enough t the events will be causally
unrelated. (Note that this does not imply that they are uncorrelated [3].)
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Causal arguments thus lead us to the conclusion that for all x1 =f= x2 e Y
and all states ρ we should expect

Moreover if Y is a transitive G-space and U is a unitary representation of
G on Jf we can restrict the annihilation operators Ax obtained for all
x e Γ b y moving the counters around to satisfy

Axβ=U*AxUβ (5.9)

for all x e 7, g e G.
These equations have been derived subject to the assumption that

Ax are bounded, but we should expect them to hold in the general case
also. I should like to thank I. T. Todorov for explaining to me the rela-
tion of the following result to axiomatic field theory.

Theorem 5.2. Let G be a Lie group and X a connected transitive
G-space such that for all x9yeX there exists g e G satisfying xg — y and
yg = x. Let U be a representation of G on a separable Hilbert space Jf7 and
suppose Q) is a dense G-invariant subspace of ffi provided with a topology
stronger than the norm topology and such that g,ξ-^Ugξ is jointly con-
tinuous from GxQ) to Θ. Let Ax be a family of continuous linear operators
from 2 into 3) parametrised by x e X and such that for all g e G and
xeX, Axg = U*AXUg. Suppose that for all x^yeX and ξe@

(AxAyξ)®(AxAyξT = (AyAxξ)®(AyAxξy

and that for all x^yeX there exists ξeίS) such that AxAyξΦ0. Then
either

AxAy-AvAx = 0 for all x.yeX (5.10)
or

AxAy + AyAx = 0 for all x,yeX. (5.11)

Remark. It is not possible by this approach to obtain any commuta-
tion relations between Ax and A* because all the expressions involving
these quantities occur in normal order automatically.

Proof. For all xΦyeX and ξ e Q) there exists a constant λ with
μ| = 1 such that

AxAyξ = λAyAxξ.

Simple calculations show that this constant can be chosen independently
of ξ so that

AxAy = λ{x,y)AyAx

for some function
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For each xo + yo the value λ(xo,yo) is unique by the non-degeneracy
condition. If ξ, η e & satisfy (AXoAyoξ, η) φ 0 it follows from the equation

0cj2) <U*2AyoUg2U*AXoUgιξ9η>

that λ is continuous in a neighbourhood of (x 0 ?y 0). The transformation
properties of Ax imply that if x φ y then λ(x, y) = λ(y, x)'1 and λ(xg, yg)
= Λ(X, y). It follows that λ(x, y) = + 1. If dim (X)^ 2 then as M is obtained
by removing a manifold of dimension dim(X) from a manifold of
dimension dim(X)2, it must be connected and so λ must be constantly
either 1 or - 1 . If dim(X) = 1 then either X = {z e C : \z\ = 1} in which
case M is again connected, or X = R In the second case M has two
components but x, y->>', x interchanges them so λ must again be constant.

We are now able to write down explicitly the stochastic process cor-
responding to a finite number of counters set up to measure the arrival of
particles in a beam of fermions. We take Jf to be the antisymmetric
Fock space built on Mx = ^ 2(IR 3)®<C 2 n + 1 so that

Let xu ...,xn be points in 1R3 representing the positions of the counters
Cu ...,Cr respectively and let j \ , ...,/„ e ^ be concentrated in small
neighbourhoods of x l J...,x / 1 respectively. Let A: Jfj->if(-^f) be the
mapping taking test functions in ^ to the bounded annihilation opera-
tors associated with the representation of the canonical anti-commuta-
tion relation on ~/f (see [19]). We define the annihilation operator A{

associated with the counter Ct to be A(fι) so that C£ is supposed to be
sensitive to the field averaged over a small neighbourhood of xf. We
suppose the unperturbed Hamiltonian on ffl is Ho. Then Jf is defined by

)=ΣAiρAΐ (5.12)
ieE

and Z is defined by

Z = iHo- Σ A?Ai- (5 1 3 )

The stochastic process Sι may now be constructed by Theorem 4.7.
The corresponding theory for a beam of bosons runs into difficulties

because the annihilation operators are unbounded and so the cor-
responding stochastic processes will have unbounded total interaction
rates. Although these processes do not generally fall within the scope
of this paper, we can by good fortune treat one very special case, where
the particles have no interaction with each other.



Quantum Stochastic Processes 303

Take 2/e to be the symmetric Fock space built on tfx = i?2(lR3)®<C2"
so that

Let counters C l 5 ..., Cn be located at x1 ?..., xn; let / l 5 ...,/„ be C00 test
functions in Jf̂  with supports in small neighbourhoods of x1? ...,xn;
let A be the annihilation operator for the representation of the canonical
commutation relations on Fock space [20] and define the annihilation
operators Au...,An for the counters Q , . . . ,C n to be A(fι),...,A(fn)
respectively. Let Hί be the appropriate Hamiltonian for the motion of
a single particle in J ^ and let Ho be the corresponding Hamiltonian on
Jf which leaves each of the subspaces ( ^ ® ••• ® ^ ) s invariant.

If Jίfn is the subspace of Jf corresponding to ^n particles, then
^ni^n + i a n d #fn is invariant under Ho. Moreover At: <&„-*^n~\ and
are bounded on ffln. Therefore we can use the same construction as in the
fermion case to construct a stochastic process Sx

n with a bounded inter-
action rate on &?n. The Sx

n are compatible in the sense that if ρe.Ts(J^n)
EQXt then

The construction is completed by proving that Sx

n have a common
extension to Jf.

Theorem 5.3. Lei X be a separable locally compact Hausdorff space
and {^,}^=i an increasing sequence of closed subspaces with dense union
in a separable Hilbert space Jf0. // Vn = «^pQ and < , n = 1, 2,... is α
sequence of compatible quantum stochastic processes on X, Vn respectively
then there exists a unique stochastic process Sι

0 on X, Vo which extends
each of the ix

n.

Proof. The injection i: Jfn~+Jtfn + 1 induces an isometric injection
CO

i: Vn-> Vn + ι and the union W — [J Vn is a dense subspace of Vo. More-

00

over W is positively generated and W+ = [j V^ is dense in VQ. If βx is
« = i

defined as the common extension of Sx

n to X, W then for each t ^ 0 and
£ Q ( , ρ - > / ( £ , ρ) is a positive linear map of W into W of norm one
and so has a unique extension to a positive linear map of norm one of
Vo into Vo. That is there exists a function <̂0 such that for each t ^ 0,
E Q Xt and ρ e Fo

+, <?£(£, ρ) e Fo

h, and for each t ^ 0, £ £ Xt and ρ e Fn

It is easy to verify that $$ satisfies all the axioms for a stochastic process,
by making use of the fact that the operators ρ-+$x

n{E, ρ) are uniformly
bounded independently of n, t, and E.

22 Commun math Phys., Vol. 15
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