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Abstract. We use cohomology of Lie algebras to analyse the abelian extensions
of the Poincaré algebra 2. We study particularly the irreducible and truly irreducible
extensions: some irreducibility criteria are proved and applied to obtain a classi-
fication of types of irreducible abelian extensions of #. We give a characterization
of the minimal essential extensions in terms of truly irreducible extensions.

Infroduction

The investigation of Lie algebra extensions of the Poincaré algebra
has a short history. The only contribution to this analysis is essentially a
paper by Garinpo [1]. The more difficult problem of group extensions
of the Poincaré group had been discussed formerly by MicrErL [2], in
connection with the mixing of internal and space-time symmetry groups.
The group extension problem is very hard, especially from the topolo-
gical point of view, even in the case where only Lie group extensions are
considered. This immediately brings about the consideration of Lie
algebra extensions. In general, one cannot state that the extensions so
obtained have corresponding Lie group extensions. With some connec-
tedness requirements this correspondence can be established [3]. The
study of Lie algebra extensions shows up the intrinsic, rather than topo-
logical difficulties of the problem. Some manifestations of Lie algebras
as fundamental structures in physics suggest also the idea of such an
analysis, independently of the corresponding group problem.

We recall in Section I how the cohomology theory of CHEVALLEY-
ErENBERG [4] provides for the determination of Lie algebra extensions
with abelian kernels [5].

In Section II an important theorem of HOCHSCHILD-SERRE [6] is
applied to the study of the abelian extensions of the Poincaré algebra 2.

The structure of the Lie algebra obtained by extending & is analysed
in Section III. The irreducibility and true irreducibility of the abelian
extensions of & are examined in Section IV. A classification of types of
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irreducible abelian extensions and a characterization of the minimal
essential extensions are given.

Some Conventions

We denote Lie algebras by capital script letters: &7, %, . .. and the
underlying vector spaces by the corresponding capital print-like charac-
ters: 4, B, ...

If ¢ is a Lie algebra, 44, denotes the ¥-module structure induced
by the representation @:¥ — Endg(4) on the vector space A. We
symbolise the usual exceptional cases of morphisms ¢: - B of a given
algebraic structure as follows:

epimorphism: p:U—> B,
monomorphism: ¢: %> B,
isomorphism : p:A>>>B or A~B.

The direct sum of 2 and B is denoted by A & B and for a semidirect
sum of two Lie algebras &/ and % we use the symbol & b %, if & is
the ideal. A x B will stand for the (direct) product of 2 and B, and
Ay ® By, for the tensor product (relative to the field F considered)
of the ¥-modules 44 and B,.

Let L, (G, K) be the vector space of the n-linear maps G»— K
Vn>0. We define Ly(G, K)= K and write L,(G, K)= L(G, K). 1f
A, (G, K)CL,(G, K) is the subspace of the n-linear alternating maps,
then A4,(G, K) = L(Q, K). We define 4,(@, K) = K. N* will stand for
the set of positive integers and N = N+ U {0}. The symbol > (2) denotes
proper (improper) set or extension inclusion throughout the paper.

Only Lie algebras, modules and vector spaces of finite dimension
over a field F of characteristic 0 are considered. These restrictions are
tacitly understood throughout the paper. Whenever we view F as a
%-module we understand it with trivial action: g-f =0V (g €¥Y;f€F),
i.e. F is seen as a trivial ¥-module.

We define in a ¥-module 44 the invariant vector x by g - @ = 0V g € %.
The invariant vectors of 4, make up a trivial submodule 47 .

We call Poincaré algebra & the real Lie algebra of the Poincaré group.
Therefore, whenever we mention the Poincaré algebra, the field F in
consideration is R.

Let us use the standard symbols ©( ) for the irreducible finite
complex representations of the Lorentz algebra .# (i.e. the real Lie
algebra of the Lorentz group). The irreducible finite real representations
of & are then written:

©fis, det = i, d2) @ Dz i) jfjl > jg; O, 3} = ©U,9) ,
16 Commun.math.Phys.,Vol.13
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1. Cohomology of Lie Algebras and Extensions with Abelian Kernels

1. 1. The Chevalley — Eilenberg Cohomology [4]
Let 4 be a Lie algebra and V, the @-module associated with the
representation @:¥ — Endg (V). We define the vector spaces:

C"(G, Vo) ={fulfn €As(G, V)} VR EN .

The alternating maps f, are said V,-cochains of degree » or simply
(n; 9, Vg)-cochains.
On each C*(¥9, V) we define the structure of a ¥-module [4], [6]:
n=20:0%¥9, Vy) = Vp is already a ¥-module,

YN (g fa) G590 = DPG) falgrs - - > 9n)

n
_'.2 fn(gl’ cees i1 [gs gz]’ Fit1s -+ gn) (Il)

=1
V(.fn eon(g, Vdi);% gl’ AR gn Eg) .
We consider the linear maps:
i,(9):C™ (G, Vo) > C* UG, Vo)V (g €G3 n ENT)
such that
n(9) fn) G5 - s Gn1) = (F)o (@15 - - > Gned) = (9, 91> - - -5 Gnd)
V(fn €ECY, Vo) s e o»Gnoy € g) .

Ifn=0:0(9) fo=0V( €Y, €CG, Vy)) - 1.3)

Then there exists one and only one linear mapd,: C* (¥, Vg) = C**+1(Z,V )
Y » € N such that

(1.2)

Onfds =9 fn = On_slf)y V(@E€EZ;n ENF) (1.4)
and
Bofo) 9) =P fo VYg€F. (L5)
0O, is referrred to as the coboundary operator and reads explicitly:
n+1 .
(5njn) (gl’ ce gn-)-l) =2 (_ 1)"+1@(gi) fn(gl’ c gi’ te gn+1)
i=1 (I.6)
+ 2 (_ l)j-Hcin([gj’ gk]’ Jis - - o> gy" RS gk: L) gn+1),

i<k

where the “sign indicates the omission of the argument below it. The
coboundary operator satisfies the identities

0n(g fa) =9 Oufn) VmEN;9€¥;f 0%, Vs) (L7)

and
Ons16,=0 VnEN. : (L.8)
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Once (1.8) is verified we can define the vector spaces:
- Z™M(Y, V) = Kerd, VneN,

B"(%,Vy) =Imd,_;, VYncNT,

B, Vg) = {0},

and the quotients H* (¥4, Vg) = Z*(9, V)| B* (9, Vg) V1 €N.

Z" (9, Vg) is the vector space of the Vg-cocycles of degree n or
(n; G, Vg)-cocycles; B (¥, V) the vector space of the Vg4-coboundaries
of degree n or (n; ¢, Vy)-coboundaries. The quotient H"(¥, V) is the
cohomology space of degree n of & over V.

The %-module structure of C7(¥, V) induces a ¥-module structure
on Z*"(¥9,Vg) and B*(9,Vys) Y €N by virtue of identity (I.7). By
passing to the quotient we obtain a %-module structure on H*(¥, V)
VY n €N.

If {; €CUG, Vo) 915 925 95 € 9, then:

(Sofo) (91) = P(g0) fo
(0111) (91> 92) = D(g4) }1(92) — F1([915 92]) — D(g2) f1(91)
(Oaf2) (915 925 93) = P(91) f2(925 93) + P (92) f2(935 1) + P (g3) f2(915 92)

— fa[915 921> 93) — f2([92, 93], 91) — F2([93> 91))s 92) -

The linear maps f, € L(G, V) such that d,f, = O are referred to as
crossed homomorphisms of 4 into V4 and the linear maps 8,f, € L(G, V)
as principal crossed homomorphisms.

1.2. Extensions of Lie Algebras with Abelian Kernels
Let &7 and & be Lie algebras. We call a short exact sequence
A E(B, A) > B
where & is a Lie algebra, an extension of # by </ [7].
The kernel " of f is called the kernel of the extension.
Two extensions
A E(B, A)L>> B and A & (B, A) o> B

are equivalent if there is an homomorphism y:8 — &’ such that the

following diagram is commutative:
« E(B, L) 8
of — lv T
B
& ( gg,’ ,,(2() /ﬁ'??

% .

16*
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Necessarily & ~ &’ and the relation between the two extensions of %
by & is an equivalence relation.

An extension of & by 7 can be described also as a pair (&, g) where
ois an epimorphism & —> % and & = Kerp. Each such pair determines
a short exact sequence

A r—> E—>> B~ E|A

and every extension of & by &7 is equivalent to one so obtained. In this
paper we shall always use this definition.

The following exceptional cases of extensions are of particular impor-
tance:

1. (&, o) is inessential if there exists a supplementary Lie algebra of
Kerp in &.

2. (&, p) is trivial if it is inessential and the supplementary Lie
algebra of Kerp is an ideal.

3. (&, o) is central if Kerp is contained in the center of &.

In the following we shall consider only extensions with abelian kernels,
abreviated as abelian extensions.

A section of (&, ) over # is a linear map ¢:% - - - & such that
(0oo)(b)=bVbcA.

We can associate uniquely to any abelian extension (&, g) of # by &
a representation @:% — Endg(A4). We choose any section ¢ of (&, p)
over # and define @ (b) ¢ Endp(A4) YV b € Z as follows: @ (b) a = [0 (D), a]
VacA([ , ]is the Lie product of &). It is easy to verify that @
is independent of the choice of ¢ and that the relation [D(b), D (b')] a
=@([b,b'))a V¥ (b,b' €#;ac A) holds, using the Jacobi identity. We
call @ the representation associated with the extension (&, g) of # by .
@ induces canonically on A the #Z-module structure 4.

Given the #-module 44 and the structure of abelian Lie algebra <7
on 4, there generally exist several extensions (&, g) of # by 7 such that
the associated representation is @. These extensions are called the
extensions of % by D or extensions of % by Ag.

We can define a vector space structure Ext(#, A;) on the set of
equivalence classes of extensions of & by Ag. The zero element of this
space is the class of inessential extensions.

Let (&, ) be a representative element of the class {(&, )} of equi-
valent extensions of & by 44, and ¢ a section of (&, g) over %.

Then ¢([o(b), o(b')]) = [b, b']= (o ([b, b'])) Vb,b" €% and an ele-
ment f,(b, b’) € Ay exists such that

[o(b), o(0)] = o ([b,b']) + f,(b, ") V b, 0" € & . (L.9)

fs € Ay(B, A4) is called the factor set corresponding to the section ¢. The
Jacobi identity requires f, € Z2(%, Ay).
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If we choose another section ¢’ of (&, g) over # we have

') — o) =F0)C4s VO CZ (L.10)
and f; € CY(%, Ag).
It follows that
f2(b,b) = f5(b, b') + (6:f,) (b, b)YV b, " €A, (L.11)

if f; is the factor set corresponding to the section o’. Then f; and f,
belong to the same class of Z%(#, A,) and the choice of different sections
of (&, p) over % leaves the cohomology class of the factor set unchanged.

Conversely: given a factor set f, € Z%(#, Ap) we can determine a
corresponding extension (&, p) of # by Ag. Obviously £~ B & 4 and
we can then identify the elements of £ with the couples (b, @), where
b ¢ Band a € 4, on account of the canonical isomorphismB X A~ B & 4.

We define: g(b,a) = b and ¢(b) = (b,0) V (@ € 4; b € B) (this corres-
ponds to the choice of a normalised section). The Lie algebra product
is then defined by the bilinear alternating map w:E X B — E such that

w((bu a,), (by, az)) = [(b1, @), (bg; @5)]
= ([bl’ by], D (by) ay — D(by) ay + fa(by, bz)) (L12)
VY (b,,b, € B;a,,a,cA)
as is easily verified.

Then Ext(#, Ag) ~ H*(B, Ay) (L13)
and we can infer immediately that an extension of # by 4, is inessential
if and only if H?*(%, 4,) = {0}.

We have the following interpretation of the cohomology spaces
Hi(#,A4)1=0,1,2:

H(%, Ag) = A;’f is the vector space of the invariant vectors of A,;

HY (B, Ap) is the vector space of the crossed homomorphisms
fL EL(B, A) modulo the principal crossed homo-
morphisms;

H* (%, Ag) is isomorphic to the vector space of equivalence

classes of extensions of #Z by 4.

II. The Hochschild-Serre Theorem and the Abelian Extensions of the
Poincaré Algebra
I1.1. Relative Cohomology and the Hochschild-Serre Theorem

Let ¥ again be a Lie algebra and Vg the ¥-module associated with
the representation @: ¥ — Endg(V).
If o is a subalgebra of ¥, f, € C"(¥9, V) is called orthogonal to #°

provided that: h-f,=0 VYVYhcH,

(hn=0 Ve, (H-1)
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The orthogonality of f, to s# implies that of ,f, and as a conse-
quence we can define the vector spaces:

C(F, H, Vo) = {fulfs €O™(F, V)i b fo =0, (fu)a = OVh €},
MG, H, V) =2Z" (G, V) NCEG, H, V),
BYG, H, V) =0,_,C" NG, H, V) VneNt,
BY(9,,Vs) = {0}.
The relative cohomology space of degree n of ¢ mod J# is given by:
HY (G, H, Vo) =274, H, Vg)|B*(Z, H, Vg) .

The relative cohomology spaces are very important in the case where
H# is a Levi subalgebra of & since the following factorization theorem
can be applied.

Theorem 1 (Hochschild-Serre). Let 4 be a Lie algebra and Vg a 9-
module. Suppose that F is an ideal of G such that G|F is semisimple.
Then:

H"(9,Vy)~ Y H{YF F)® H(F,Vy)? VncN (IL2)
i+i=n
(9-module isomorphism).

Proof. [6], pp. 602—603.

If 9| is semisimple, there is a subalgebra & of 4 such that 4/~ &
by virtue of the canonical epimorphism ¥ —> ¢/%. H(¥,F) and
Hi{(9|F,F) can then obviously be identified and it is easy to verify
that Hi(F, Vy)? ~ H (Y, &, V). Therefore we write:

HY (G, Vy)~ 3 H{(S,F)YQHI(Y,%,Vy) YneN. (IL3)
it+i=n

We have that H°(<, F) ~ F and H'(<, F) = {0}, since a Lie algebra
& is semisimple if and only if the condition H! (%, Vy) = {0} is verified
for every &-module V. Also H?(&, F) = {0}, because of the fact that
all extensions by a trivial &-module of a semisimple Lie algebra &
are trivial.

Remarks. 1. More generally: H2(S, Vg) = H\(&, V4) = {0} for every
semisimple Lie algebra % and every #-module V. This is the coho-
mological translation of the two Lemmas of WHITEHREAD [8].

2. Let & be a semisimple Lie algebra, then H?(&, F) = {0} is not
necessarily true.

‘We consider the case of the real Lie algebra so, of the group SO,.
Let {2;};, 1, 5, 5 be the standard basis of so, with [»;, ;] = &;;,2;. Then:

a) H°(soy,R) ~ Z°(s0,,R) = (°(so;, R) = R.

b) Z'(so,, R) = {0}, since 0ufy) (@i, ;) = fi(lws, 2]) =0V
(f, € Z'(soq4, R); x;, z; € {2}) implies fi=0YV f, €Z*(sos, R). Therefore
Bl(so,, R) = {0} and H*(so,, R) = {0}.
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c) Z*(s03,R) = C*(s 0y, R)since (0yf5) (;, %5, %) = Z; — fa(lz:, 5], 1)
cycl.
=0V (f, €C%(s0,, R); x;, ;, ;, € {x;}). It is easy to verify the relation:
B%(soy, R) = C2(so,, R). Hence H?(so3, R) = {0}.

d) Z3(so,, R) = C®(s0,, R), as d;f; = OV f; € C3(s0,, R). B*(soz, R)
= 0,0%(so4, R) = {0} and then H3(soz, R)~ C3(soz, R) & {0} (the
mixed product (x|y|2) is a trilinear alternating form over so,).

e) Cn(soy, R) = {0} V n > 3, hence H"(so,, R) = {0} too.

By the Hochschild-Serre theorem we have in particular for the
%-modules H* (9, V) (¢ = 0,1, 2):

H (G, Vo)~ F @ HY (G, S, Vo) = V.
H 9,Vy)~F @ H(9, S, Vo)~ H(Y, &, Vo), (IL4)
H*(Y,Vy)~F @ HX Y, S, Vg)~ H} (Y, L, V) .

For these exceptional cases the existence of an isomorphism between

the cohomology spaces and the relative cohomology spaces can also be
proved directly [9].

I11.2. The #-Modules HI(?, Ky) (1 =0, 1, 2)

Now let £ be the Poincaré algebra with the subalgebras Z (Lorentz
algebra) and  (translation algebra). We shall discuss the cohomology
spaces HY(#?, K;) (1=0,1, 2) of & with values in the Z-module K.

The abelian Lie algebra structure on Kgis tacitly understood through-
out. Of course K, can be considered as a semisimple #-module asso-
ciated with the restriction @|.Z of @ to &L.

a) H%(Z, K4): The relevant vector spaces are:

02, Ky) = Kyp; BY(2, Kp) = {0},

2P, Kg) = {(kk CKp; D(p) k=0V p ¢ Py =KZ,  (ILb)

HY(P, Ky) ~ Z°(2P, Ky) = K5 .
In the Lie algebra &(Z, X") the elements of K2 make up the center
% (6). Therefore if H°(Z?, Ky) = {0}, we have only extensions (&, 7)
of Z by K4 with € (&) = {0} and conversely.

b) HY(Z?, K3):

CUZ2, 2, Ko) = {hlL €L(P, K); (1) =0V 1 ¢ Z; (IL.6)
OO LB =HLINY (L5t €T}

If f, + 0 we have the induced structure of simple #-module K s, 170
on the set Imf, = {f,(t)[¢ € T} C Ko.

ZMP, L, Ky) = {1}, €CHP, L, Kg); D(ty) fy(t2)
= gD("‘z fit) Vb, by GF} (IL7)
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and

BYZ, %, Ko) = {hi|l(t) = Pt) fo; L) = P () fo=0
V(T 1e2L: 1, cKD)}. (IL8)
By the theorem of HocHSCHILD-SERRE we can choose a representa-
tive element f, € ZY(?, £, K¢) in every cohomology class of Z* (2, K,).
Proposition 1. If the semisimple L-module K 4 has no simple components
K®{1/2’1/2}, tken Hl(g, Kq)) = {O}-
c) H*(Z, Ky):
CUP, &, Ky) = {falf2 € As(P, K); fo(ly, 1) = fo(1, t) = O
VUL, 1L, cZL;t€T); D) falty, ta) = fo([l, 4], 8)
+ falty, [, 821) V (b5 8 Eﬁ',lég)} (IL.9)
On the set Imf, = {fy(t;,%)|t, % €T} < Ky we have the induced
structure of simple #-module K {10} if fo = 0.
Z2(P, &, Ko) = {falf, € CXP, &, Ko); D) falt, ts) (IL.10)
=+ @(tz) fz(ts’ tl) + Q(ts) fz(tp tz) = Oth’ by t3 6,?'} .
We consider in J the standard basis {t,,?,t,,;}. The condition
fo €22(P, Z, Kp) reads:
@(t,u)fz(t )+¢ fz (X ,u (t,,)fg.(t,,,t,,)=0V‘u,11,0'€{0, l’ 2; 3}
Let us define f,,, = f,(t,, ) and @6 = @ (1,). The vectors D,f,,, belong
to a g-module K®{1/2,1/2}®©{1,0} ~ K®{3/2,1/2} (23] 2K®{1/2:1/2}' The two
simple #-modules K 12 1) are generated by the vectors t, = &yq,, D f5”
and ¢, = @*fy . Therefore: f,€Z*(P, ¥, K,), provided that t,
=0VYp€{0,1,2,3}, that is if the Z-module generated by {t,} is
identically zero.
The theorem of HocHSCHILD-SERRE states that every cohomology
class of Z2(#, K;) contains a representative element f, € Z3(Z, £, Kg).

Proposition 2. If the semisimple L-module K4 does not contain any
simple component K (1 o), then H*(?, K4) = {0}.

Corollary. All extensions (&, t) of P by Kq are inessential, provided
that the semisimple L-module Kq does mot contain simple components
K ©{L0}

I1.3. Essential and Inessential Extensions

We are going to discuss the extensions of & with an abelian kernel 7.
Given a representation @:% — Endp (K) which defines the structure of
a #-module K4 on K and given a representative element of an equivalence
class of Z%(%, K4), we have a representative element of the corresponding
class of equivalent extensions of Z by K.
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There is an extension with factor set f, € Z2(%, &£, K;), constructed
according to (I.12), in every equivalence class. (&, 7)g,,, Will denote the
extension (&,7) of # by K, considered with the factor set
fs €Z*3(P, ¥, K4) throughout the paper.

We consider an extension (&, 7)g,s,. If f, =+ 0, a simple #-module
K0 € Kp is associated with f,.

We call such a simple Z-module the fundamental £ -module K (f,)
of (€, 7)g,s,- The Z-module K (f,) = {0} is associated with f, = 0.

If K(f,) = {0} the extensions of the class {(&, 7)s,,} are inessential.

If K(f,) + {0} and OY(Z, &, K¢) = ZY (P, £, K) are satisfied, then
the extensions of the class {(&, 7)s,s,} are essential (i.e. not inessential).
This is clearly the case if K (f,) & {0} and C*(Z, &, Ky) = {0}, i.e. if K,
does not contain simple components K, o {1/2,1/2)

Proposition 3. The extensions of the class {(&, ©)p, s} with K (f,) + {0}
are inessential if and only if there exists a f; € CY(P 3 Kg) and a pair
of elements t,, t, € T, such that:

(Oufy) (b1, 85) € K (fa); (01fy) (B, 80) £ 0. (IL.11)

Proof. The necessity of this condition is obvious. The condition is
also sufficient: if (I1.11) is satisfied we have (6,f,) (¢, t,) = k € K (f,) and
the application to k of the endomorphisms (I) V1€ & gives the vectors

(0uf) ¢, #) V1,8 € 7. Thus Im (6, f;) = K(f,).

Let 4 be the linear transformation defined by 4 (6,f,) (¢, t') = fa (¢, t')
Vt,t' €T and O()|K(f,) the restriction of D) to K(f,). Then
AP DK ) A=D1 K(f)VIEL and by ScrHUR'S Lemma
A = AI.If we choose f; = Af;, then d,f; = f,. This proves the proposition.

III. The Structure of &(2,X")

II1.1. A Levi Decomposition of & (P, A)

By Levr’s theorem [7, 8] every Lie algebra ¢ has a decomposition
Y =& b X where & and Z denote a Levi subalgebra and the radical
of & respectively. We have the following structure theorem.

Theorem 2. Let (&, 7) be an abelian extension of . The Lie algebra &
then contains a subalgebra isomorphic to L by .

Proof. The Lie algebra structure on E ~ P & K is defined by a
bilinear alternating map «': E X E — E such that:

&' (P15 0), (P2, 0)) = (x(py, o), o (01> P2)) Y2y, D2 €P,
(0, ky), (0, ky)) = (0,0) Vi, k€K, (IT.1)
«'(0,0),(0,k)=(0,P() k)Y (p € P; k€ K),

where «: P X P P is the bilinear alternating map which defines the Lie
product of Z. @ and f, are respectively the representation and the factor set
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determining the extension (&, ). The Lie algebra & being isomorphic
to all Lie algebras of the class of equivalent extensions {(&, 7)}, we can
choose f, € Z*(Z, £, K;) and the corresponding extension (&, 7')g, 5, in
{(&,7)}. If we identify & and &, then &'((l;,0), (5, 0)) = (x(l, ), 0)
Vi,,l,€ L. We consider the monomorphism ¢:ZL>— K such that y(l)
= (1,0) Y1 € L. pis a Lie algebra monomorphism as can easily be veri-
fied. Therefore: £ ~ Imy and 7|Imy = p~L

Every extension of the Lorentz algebra (abelian or not) is inessential
because of the simplicity of .Z. The following theorem is a generalization
of the trivial statement that every inessential extension of the Poincaré
algebra & is also an extension of Z.

Theorem 3. Let (&, t) be an abelian extension of # by A . Then there
exists an tnessential extension (&,7') of £ such that ©' factors uniquely
through ©. (&, t') 1s an abelian extension of L if and only if (&,7) is an
inessential abelian extension of P where & ~ L (7 & X).

Proof. We use the notation of the proof of Theorem 2. By this theorem
there exists a monomorphism y:.%£ > &. Imyp has a supplementary Lie
algebra in & which is an ideal. This is easy to verify: we see that o
induces the structure of a Lie algebra on the subspace R=T" & K, RCE
and 7" ~ T by 7, making it an ideal of &. # contains the abelian ideal £,
but we have in & no Lie algebra structure on 7" ~ T if f, & 0, since
o' ((f,0), (t3, 0)) = (0, fo(ty, b)) V¥, 8, € T. We consider 7'": % > 2.
Then 7’ =1t""ot is an epimorphism 7': 8-> % and (&,7') is an
inessential extension of #. The Lie algebra £ is abelian if and only if
o' ((t,0), ¢, 0)=(0,0) Vi, t, cTand Z~ T & A .

From the proof of Theorem 3 we infer that every abelian extension
(&, 1) of # by A is such that & = Imy b # where the abelian ideal ¢~
belongsto Z, R~ T & K,

[(tlzo)’(tz’o)]:(0’f2(t1’t2))th’t2€T a“nd fzezz('@w’g’K@)'

Therefore & = %' % where ¥’ ~ % by t. This is a Levi decom-
position of & since the ideal Z is solvable, with D% = [Z, %] <A
and D22 = [D'Z, D'%) = {0}.

Corollary. If (&, t) is an abelian extension of P, then & = ¥’ b %,
where &'~ L by 1, is a Levi decomposition of &. The radical X 1is
such that D*% = {0}.

Z is the biggest nilpotent ideal of &:

1. If K does not contain any simple trivial #-module K, oy % {0},
then Z is the nil-radical of &, since [&, Z] = #. Hence Z is the inter-
section of the kernels of all the finite irreducible representations of &.
In this case each simple &-module is also a simple #-module and con-
versely. Z is of course the biggest nilpotent ideal of &.
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2. If K, contains a simple #-module K gy + {0}, we consider

the descending central series {C*Z%} of ideals of Z. C'% = [#, ] < A,
CR=[R,CR CPI)VA,....CR=[RCIRZ DT A, ...
where @H(T) A = {Du(ty) Do(ty) . .. DU(ty) klty, by, . . ., t; €T
Gty =0keX T {'} means the natural abelian Lie algebra
spanned by { }. There exists » ¢ N* such that @*(J) = {0}, since J is
the nil-radic al of &. Therefore C*+'# = {0} and Z is the biggest nil-
potent ideal of &.

Clearly, if (&, 1) is an extension of the Poincaré algebra by K, &
contains a subalgebra isomorphic to & in the following cases:

1. (&, 7) is an inessential extension of Z by K ,

2. the semisimple #-module K, has a simple component K ©{l/2,1/2)-

I111.2. Extensions of P by Simple P-modules K4

The structure K4 of simple Z-module is induced on the vector space
K by the irreducible representation @:% — Endg(K). The simple £-
module Ky has also a simple #-module structure K g, ;3. This follows
from the fact that 7 is the nil-radical of 2. It follows from the Corollary
to Proposition 2 that among the extensions by the simple #-modules
Ky=K only those by K _y; oy can be essential. Therefore:

Ext(2, K g, ;) = {0}V {51, 4o} = {1, 0} . (IIL.2)

Or, equivalently, the only essential extensions of & by a finite irreducible
representation, are those by an abelian Lie algebra of dimension 6. As
a consequence of SCHUR’S Lemma we have

dimEXt (e@, KQ{I’O}) = dij2 (g, K@{I,O}) = ]. . (III.3)

oUnis}?

Definition 1. The essential extensions of P by a simple P-module
K 1,0 are referred to as minimal essential extensions.

Let (&, 7,) be a minimal essential extension. &; = %1 %,, with
L1~ Ly 1y, is a Lie algebra of dimension 16 whose radical satisfies:
DR, = C1%y = A", D*%y = C* %, = {0} (Ko = K 1,00 = K(f2))-

Let usintroduce in & the basis{l,,,},..,c1» {to}oc 1> {¥s2}o,zer L =10,1,2,3},
such that:

{l.,} generates a subalgebra #; ~ & by 7y,

{t;}  generates a vector subspace 7" isomorphic to 7' by 7,

{k,:} generates the abelian subalgebra ",
and with: [, t;] = f5(bs, t,) = kg

These subspaces and Lie algebras are linked in &; by: adp %7
~ adpZ, adg L1 ~ ad; Z, and ad, A = {0} (see also [1]).
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If K, is a semisimple 2-module, i.e. if the representation @ is com-
pletely reducible, only the extensions by K, with simple components
K (1,0) can give essential extensions. Then we have: & ~ & 47, with
Ky = Ko & K(f,), provided that (&, 7)g, ;,is an essential extension of &
by K4 semisimple.

Let @ be the trivial representation of & in K, ie. @ = 0. There
exists one and only one equivalence class {(&, 1)y} of extensions
of # by K, (the class of the central extensions of & by X#") since
fo=0V fy €Z3(P, £, K,). Moreover any central extension of Z by A~
is obviously trivial. This is an exceptional case of a result of MicHEL
[2] and Gauixpo [1].

1V. The Irreducible and Truly Irreducible Abelian Extensions of 2

IV.1. Irreducibility and True Irreducibility of Abelian Extensions

An abelian extension (&, p) of # can contain an extension (&, g)
in a sense to be specified later on.

Definition 2. [4] Let (&, o) be an abelian extension of #. We call (&, p)
trreducible if there is mo proper subalgebra &' C & such that o' (&)
=p|&(8") = A.

When an abelian extension (&, ) is irreducible (reducible), all
extensions of the equivalence class {(&, g)} are irreducible (reducible).
(8,0)D(8", o) means that (&, ) is reducible and &> &, p|é" = ¢’.
(&, 0) = (&', ¢') means & = &', p = ¢'. It is clear that if (&, o) 2 (&, o)
and (&', 0") 2 (8", @"'), then (&, p) 2 (6", 0”"). We say that (&, ) con-
tains (&”, ¢') if (&, 0) 2 (6", ¢)-

An abelian extension (&, g) can contain several extensions (£, o®).
Thus we get sequences of abelian extensions:

(€,0)2(6,0)D -+ D(ED, ) >+

Every sequence ends with a lower irreducible extension (6™, g™) which
is uniquely determined by the following theorem :

Theorem 4. Every abelian extension (&, p) of # contains one and only
one trreducible extension (&, o').

Proof. It is obvious that there exists one irreducible extension
(&', ¢') which is contained in (&, g). We suppose that there exists another
irreducible extension (&, ¢"') & (&, 0') contained in (&, ) and we
consider the Lie subalgebra &’ N &' of &. Let o' N o' = p|6'N&", then
' N"N(E' NE")=0"E'NE"(E'NE")=H and (&' N &, 0 N o)
is an abelian extension of % such that (& N &, 0" N ") (&, o).
Hence the extension (&”, ¢’) is not irreducible in contradiction with the
assumption.
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We can now say that an abelian extension (&, g) reduces to (&, o')
if (&, o) contains the irreducible extension (&”, o).

Let &/*C o/ be a proper ideal of & (%, &/). The abelian extension
(&, 0) of # by &/ induces an extension (&//*,0,) of B by /%,
0, denotes the epimorphism &//* —> # obtained by passing to the quo-
tient and the extension (&/%7%, g,) is of course abelian.

It is easy to see that if (&/2/*, p,), with «o7* C .o/ proper ideal of &,
is reducible, then also (&, p) is reducible.

Theorem 5. (Irreducibility criterion) [4]. The abelian extension (&, o)
of # by A is irreducible if and only if the induced extensions (&|L*, g,)
of B by A|* are essential for every proper ideal 7* C of of &.

Proof. Necessity: Let (&, g) be irreducible and 7% C o/ be a proper
ideal of &. Then (&%, o,) is an abelian extension of # by 7/s/*.
We prove that this extension is essential. If (&/2/*, g,) is inessential,
E|lA* =R b HL|A* and g,|# is an isomorphism #' ~ #. Hence &
is such that we have the structure of a Lie algebra on a subspace
E'CE, with E'=B" @ A* and B"~B by . Thus (&,9) is
reducible in contradiction with the assumption.

Sufficiency: Let (&, g) be such that the induced extensions (&/s7*, g,)
are essential for every proper ideal &/* C o/ of &. If (&, g) is reducible,
then there exists a subalgebra 6’ C & such that g| &’ (6”) = %. We consider
the subalgebra &/’ = &/ N &', which is also an ideal of &. Hence &/</’
=% b A" with B' ~ B by p,, and (&', p,) is an inessential exten-
sion of & by /o', It follows that necessarily (&, p) is an irreducible
extension of # by .

Definition 3. By a truly irreducible extension we mean an abelian exten-
ston of & by < such that no proper ideal o/* C o of &(H, H) exists.

It follows immediately from this definition that only an irreducible
abelian extension can be truly irreducible. The minimal essential exten-
sions of & are truly irreducible as well as the truly trivial extension
(2, I), with I = identity map.

The following theorem is a direct consequence of the Chevalley-
Eilenberg’s construction of abelian extensions by a representation.

Theorem 6. An extension (€, 7) of P by Ky s truly irreducible if and
only if Ky is a simple P-module or K4 = {0}.

The considerations of Section IIT.2 can now be stated as follows:

Corollary. An abelian extension (&, t) of P is truly irreducible if and
only if it is minimal essential or truly trivial.

This corollary gives a characterization of the minimal essential
extensions of & in terms of truly irreducible extensions.

Another useful concept is the following:

Definition 4. We say that the abelian extensions (&, p) of # by & and
(&', 0') of B by L’ are of the same type if & ~ &'
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This definition induces an equivalence relation on the set Ext, %
of the abelian extensions of #. The extensions of the same equivalence
class of Ext (%, 4) are all of the same type, but we also have extensions
of the same type belonging to different classes of Ext (%, A,) or belon-
ging to two different spaces Ext (#, 49) 1 =1, 2.

Let us concentrate again on the extensions (&, t) of # by K;. We
consider the extension (&, 7)g, s, in the equivalence class {(&, 7)}.

We say that K(f,) is maximal in K4 if K(f,) = K¢ and no 2-
submodule Ky of K, exists such that K (f,) < K5 C Kgp. Then:

Theorem 7. The extension (&, 1), s, of P by Ky is irreducible if and
only if K (f,) = Kg or K(f,) maximal in K.

Proof. The condition is necessary: If K (f,) is not maximal in K,
there exists a #-module Kg such that K(f,) < Ko C Kg or K(f,) = K.
In the first case the extension (&), 7,) is inessential and not truly tri-
vial. Therefore (&, 7)g,s, is reducible. The irreducibility of (&, 7)s,;,
requires K (f;) = K4 or K (f,) maximal in K.

Sufficiency of the condition: If K (f,) = K4, then we have a minimal
essential extension (&, 1)y, s, or the truly trivial extension (£, I), both
irreducible. If K (f,) is maximal in K4 then (&/A", t,) is essential for
every proper ideal ' C A" of &, since K (f,) C K is excluded.

Corollary. If K (f,) = Ky and D) k =0V (t € T ; k € K(f,)) the exten-
ston (&, T)g,s, of P by Ky is reducible.

The theorem has to be understood in the following way : the necessary
and sufficient condition for an irreducible extension (&, 7)g, s, of & by
Ky is n—1
Z,:) DI(T) K (fs) = Ko (Iv.1)
i=

where @¢(T) K (fo) = {D(t) Dix(ty) . .. Di(t;) klty, by, ..o 6 €T 50+ 14y
+rtdy=10 kCE(R)}IVIENT OF) K(fy) = K(f;) and
o™ (J) K(f,) = {0}. { } means the natural vector space spanned by { }.

We consider an extension (&, 7)g,, of Z by Ky, such that the 2-
module K, contains simple components K ;1 with (j, +j,) half

integer. This means that the representation @|# contains spinorial
irreducible subrepresentations. By Theorem 7 we can infer that the
extension (&, T)g,s, is reducible. In the study of irreducible extensions
of # we have therefore to consider extensions by #-modules K4 with
only tensorial simple components.

IV .2. Examples
a) We consider the extension (&, 7)g, s, 0f Z by Ko = K (f,) ® K 372,12y

(&L-module decomposition), where f, & 0. The radical # of & is then
also the nil-radical and we can apply the following corollaries to ENGEL’S
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theorem:

Proposition 4. Let & be a Lie algebra and let £, % and A" be Lie
subalgebras of &. Suppose that % is a nilpotent ideal of & and A an ideal
of R. Assume furthermore that A carries the structure of a simple &-
module Kyqo. Then [r, k] =0V (r E&; k €X', and A 1is abelian.

Proof. We consider the representation adzZ# of #%. There exists a
vector k=4 0,k € Kyq o, such that (adgr) k=0 V r € Z (ENgEL’S theo-
rem). Thereforein &:0 = [I, [r, k]| = [r, [, K]} + [[I, 7], k] V (r €Z;1€%)
and [[I, 7], k] = (adg[l, r]) & =0 since [I,7] € %. Then [r, [I, k]]
= (adgr) (adgl) k=0V (r €#; 1 €.£). By the simplicity of the -
module K,4 o there exists for any k' € Kyq o a ' € £ such that (adgl’)
k = k'. So we obtain the quoted result.

Proposition 5. Let £, %, A" be Lie subalgebras of the Lie algebra &.
Suppose that & is a nilpotent ideal of & and A~ an ideal of #. Assume
furthermore that A~ carries the structure K,q & of @ semisimple £-module.
There exists an abelian ideal A~ C A of X with the induced structure
K4 o of a simple Z-module such that [r, E'1=0VY (r €R; k' € A).

Proof. We consider adzZ and we apply ENGEL’s theorem as in the
proof of Proposition 4. The simple #Z-module K 4 o is constructed by
applying the endomorphisms adzl VI ¢ % to a vector k € K30,k 0
such that (adgzr) k=0 V r €Z. A" is then an abelian ideal of #Z and
[r,E1=0V (rcZ; k' cA").

We return to our example and we apply the foregoing propositions.
We have the following possibilities:

1. () K (f;) = {0}: The extension (&, 7)g, s, reduces to a minimal
essential extension (&, 7;)e, s, (Exceptional case: @(J) Ky = {0}).

2. O(T)K(fo) =Kggpimand P(T) K g,170 = {0}: The extension
(€, T)a,y, is irreducible. We denote by (&1}, 71}))s, ;, this irreducible
extension. Then dim &1 = 32. The existence of a pair (k’,¢’) where
t' €7,k €K(fy) such that @ (') k' & 0 already implies this result.

b) Let f, 40 and K4 = K (f5) ® K 1)2,1/2; (£ -module decomposition).
We have the same possibilities as in case a). The only difference is that
in case b) 2. we obtain another irreducible extension (&3}, 73l)4, , with
dim &1 = 20. In this case K 15,1/ is generated by the vectors {t,}

(see Section I1.2).

IV.3. Classtfication of Types of Irreducible Abelian Extensions
of the Poincaré Algebra
We consider an extension (&, 7)g, s, of # by K and the descending
central series {C?%} of nilpotent ideals of the radical Z of &. The sub-
algebras (2 are nilpotent ideals of & and therefore, for ¢ ¢ Nt, 2.
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submodules of K4 too. We have the following possibilities:

1. O*'Z = {0}: the extension (&, 7)o, ,, is inessential. It is irreducible
(and truly irreducible) if and only if #" = {0}, i.e. if the extension is the
truly trivial extension (£, I) [of type (0)].

2. C*Z + {0}, C*Z C A" : by passing to the quotient we have the ines-
sential extension (&/C'%,7,), since Z/C*'% is abelian. The extension
(&, T)g, 5, is therefore reducible.

Theorem 8. Let % be the radical of & in the extension (&, T)g,s, of P
by Ky. Then (&, T)g, 5, 18 trreducible if and only if C*'R = A,

Proof. The necessity of C*% = A follows from the foregoing consi-
derations. Let C*% = ". Then C*% = ®(J) A is such that @(J) K,
® K(f,) = Ky (L-module decomposition). If K (f,) = {0} the nilpotency
of # requires " = {0}, i.e. the irreducibility of the extension. If K (f,)
=+ {0} we remark that:

j—1
Kpy=DI(T) Ky + 72 D(T)K(f) VjENT. (IV.2)
i=0

(IV.2) is easily proved by induction on 4. Since £ is nilpotent, there exists

n—1
an n € N* such that () K4 = {0} and thus K4 = ' D(T) K(f,).
i=0
By Theorem 7 the extension (&, 7)g, ,, is irreducible.

3. C'Z = A" + {0} : this brings about C*% = @ (J") A" C A . Then we
have:

a) C*Z = {0}: in this case K4 = K (f,) which gives a minimal essen-
tial extension [of type (1)].

We can now give another proof of the statement of the Corollary to
Theorem 6 that only the minimal essential and truly trivial extensions
of & are truly irreducible. Let (&, t) be a truly irreducible abelian exten-
sion of & and consider (&, 7)g, 7,. If C*'% = {0}, then " = {0} and (&, 7)
is truly trivial. If C'Z% = {0}, we have to require C'%# = " Let
C*Z + {0}, then C2Z is a proper ideal contained in ¢’ in contradiction
with the assumption. Therefore we must have C*Z% = {0} and (&, 7)
is minimal essential.

b) C*% = {0}: From the Z-module decomposition Ko = K(f,)
® D(T) Ky we infer C*% N A (f,) = {0}. We consider the induced
extension (&/C*%,71,) of P by A|C*%. (6|C*%, 1,) is irreducible and
minimal essential. We consider now C3%. If O3% = {0} we obtain
(€, T)g, s, = (613, 7l4))g, ;,, where the index ¢ characterises the different
types of irreducible abelian extensions (2, [¢]) with C3Z% = {0}:

1. the extension (&3, 7'§))g, ;, With @ (F) K (f) = K (312,172 1s of type
@, [1D);
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2. the extension (813, 713)),, ;, with D () K (fo) = K 1/s,1/2 is of type
2, [2]); :

3. the extension (&13), 71))s,,, such that @(7) K(fa) = K 55,12
® Koz, Is of type (2, [3]).

Let C°2 + {0}. A straightforward consequence of C*%Z = 4 is
C3% N A (fy) = {0}. We consider the induced extension (&/C3Z, 7,).
The irreducibility of (6/C3Z, t,) implies that it is of type (2, [¢]).

The above particular remarks can be stated more generally. We
consider the set €,, with n € N, of all abelian extensions (&, 7) of & with
the radical Z of & satisfying O"+1% = {0} and C'Z + {0} V (j < n;j €N).
(&, 7)a,y, is an irreducible extension of # by K, belonging to €, with
n €N, only if:

H(fo) N C'R = A (f,)
and (IV.3)
H(fo) NCR={0} V([G+1;j€NY).

The following proposition is a straightforward consequence of the
nilpotency of Z:

Proposition 6. Let (&, T) be an extension of # by Ky and let K* be o
simple L -submodule of K4. Then:

P2(T) K* n K* = {0}. (IV4)

Corollary. We consider the extension (&, T)p,s, of # by Ko. Then:

D*(T) K (fs) N K(fy) = {0} .

Let I,, be an index set of the types of irreducible abelian extensions
of & belonging to €,. We say that the irreducible abelian extension
(611, 71y of 2 belonging to &, is of type (n, [¢]) if 1 €I,,.

Theorem 9. We consider the extension (&, t)g, s, of P by Ko. If n €N,
(&, 7)o, 5, 18 trreducible of type (n, [1]) if and only if:

D(T) K (f2) ={0}; DI(T) K(f) {0}V (j <n;j EN)

and (IV.5)
n—1
.20 DIT) K(fo) = Ko -
i=
If n=0 the necessary and sufficient condition for the irreducibility s
A = {0}.

Proof. The necessity of the requirements (IV.5) or " = {0} follows
from the definition of €, and Theorem 7. 2 = {0} is obviously also
sufficient if » = 0. The conditions (IV.5) imply C*'Z% = X, hence the
irreducibility of (&, 7)g, 7, by Theorem 8, as well as (&, 7)q,7, €€,,n EN™.

Let & be the set of all types of irreducible abelian extensions of £.
We can then consider families of types &, = {(n, [¢])|? € I,} n €N, such
that § = ngN G- In particular we have the family &, of the truly trivial

17 Commun.math.Phys.,Vol.13
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extension (£, I) and the family &, of the minimal essential extensions,
both containing only one element. &, contains 3 elements as can easily
be proved.

It is possible to construct from an extension of type (1) a representa-
tive element of the classes of type (n, [¢]) V (n € N't; ¢ €1,) by induction.
It is sufficient to consider condition (IV.4) and to recall that, by Theorem

9, Ko =n§ Qi(T) K (fp) where D (t) D(ty) = D(t)) P(ty) V by, 8, €T .
i=0

The minimal essential extensions, or extensions of type (1), play an
important role in the set of all abelian extensions of the Poincaré algebra
2. They are the starting point for constructing any irreducible essential
abelian extension of . They are also the only extensions of Z by K,
(besides the truly trivial extension) with the property that £ contains
no proper subalgebra which is an ideal of &.
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Appendix

Abelian Extensions of ¢
Let Z¢ be the complexification of & and consider Lie algebras over C.
The finite irreducible representations of #¢ are no longer s, but
the well known ®0u7%) such that DUnit = Ui @ DUs ) if j, > j,;
DU, i} = 90,9,

For the abelian extensions of ¢ we have results analogous to the
abelian extensions of #. Any theorem for the abelian extensions of &
can be easily translated into a corresponding theorem for extensions
of Z¢.

In particular: L% = 910 ¢ ©©.1) and as a consequence there
exist two types (1, [1]) and (1, [2]) of minimal essential extensions.
If (&1, 711, 5, and (&13), 713))g, , are respectively of type (1, [1]) and
(1, [2]), then dim &3] = dim &1! = 18. The two corresponding fundamen-
tal #-modules are respectively Koq,0) and Kge,1. The (2; Z#, Ky)-cocycle
condition (I1.10) transforms into the conditions:

Qj(f ) K@(l.o) = K@(ﬂ/&l/m; Q(f ) K@(O.l) = K®(1/2,3/2)-

The family &, now contains 3 elements, since besides the types (1,[1])
and (1, [2]) we also have (1, [3]) corresponding to the minimal essential
extensions of Z. If (£1], 718)), ; is of type (1, [3]), then dim £§! = 16
and the fundamental #-module is Kgu.0 g 90,1 '
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