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Abstract. Given a representation of the canonical commutation relations (OCR)
for Bose fields in a separable (or, under an additional assumption, nonseparable)
Hubert space § it is shown that there exists a decreasing sequence of finite and
quasi-invariant measures μn on the space V of all linear functional on the test
function space "Γ, μ± ̂  μ2 ^> . . ., such that ξ) can be realized as the direct sum
of the.Lμn, the space of all μ^-square-integrable functions on i^'. In this realization
U(f) becomes multiplication by eί(F>f\ F ζ y. The action of V(g) is similar as
in the case of cyclic U(f) which has been treated by ARAKI and GELFAND. But
different L?μn can be mixed now. Simply transcribing the results in terms of direct
integrals one obtains a form of the representations which turns out to be essentially
the direct integral form of LEW. All results are independent of the dimensionality
of y and hold in particular for dim^ < oo. Thus one has obtained a form of the
OCR- which is the same for a finite and an infinite number of degrees of freedom.
From this form it is in no way obvious why there is such a great distinction between
the finite and infinite case. In order to explore this question we derive von Neumanns
theorem about the uniqueness of the Schrodinger operators in a constructive way
from this dimensionally independent form and show explicitly at which point the
same procedure fails for the infinite case.

A. Introduction

Several branches of quantum field theory are based on the canonical
(equal time) commutation relations between the field Φ(x) and the
conjugate field π(x). Putting x = (0, xl9 x2ί #3) one demands

[Φ(x)9 π(x')] = ίδW(x - x') (1.1)

with the other commutators vanishing.
In order to treat the OCR in a mathematically rigorous manner, one

has to regard the fields as operator-valued distributions on a test function
space. This can be achieved by replacing Φ(x) and n(x) by Φ(f), n(g)
where /, g are elements of a subspace i^ of all real square-integrable

* Part of this paper is contained in Section IV of the Habilίtationsschrίft' Άspekte
der kanonischen Vertauschungsrelationen fύr Quantenfelder" by G. C. HEGEBΓELDT,
University of Marburg 1968.
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functions on j?3 and where Φ(/), π(g) can be regarded heuristically as
smeared field operators,

Φ(f) = fΦ(x)f(x)d*x, π(g) = / π(x)g(x)&x . (1.2)

In order to avoid domain questions connected with unbounded operators
one introduces the unitary Weyl operators U(f) and V(g) whose formal
relationship to the fields is given by

U(f) = eiφ(f>, F(0r) = e< Λ <*>. (1.3)

Using Eqs. (1.2) and (1.3) one obtains by formal calculation from
Eq. (1.1)

ϋ U = U F Fίflr,) = V(9l + g2),

where (/, g) is the usual scalar product in ̂ . Unitarity of U (/) and V (g)
implies

17(0) = F(0) = 1,

Equations (1.4) and (1.5) are usually taken as a starting point for a
rigorous investigation of the OCR. It should be pointed out, however,
that there are more representations of the fields than of the Weyl opera-
tors since the transition from Eq. (1.2) to Eq. (1.4) may not be possible
in a well-defined mathematical way. But, under a continuity assumption,
one can always obtain the fields Φ(/), π(g) from U(f), V(g) by STONE'S
theorem. The continuity condition imposed in this paper is the custo-
mary one. For fixed /and g it is assumed that U(λf) and V(λg) are weakly
continuous in λ. This implies strong continuity and the (weak and strong)

, gi .
In \ / m \

continuity of U \Σ λifΛ and F I Σ ^i9i I i*1 b for fixed
\ i I \ i /

We note that the OCR of quantum mechanics are contained in
Eq. (1.4). To see this take i^ to be finite-dimensional, dim^ = n say,
and introduce an orthonormal basis h^ , . . . , hn in .̂ For any /, g ζ i^
one can write / = Σ αA> 9 — βjhj Defining Qό and Ps by

= eu<& (1.6)

via STONE'S theorem, one obtains

ϋ(f) - e*Σ"*Q', V(g) = eiΣβ*pι . (1.7)

The QJ, Pj obey the usual commutation relations. Thus one can treat
representations of the OCR for a finite number and an infinite number of
degrees of freedom (fields) on equal footing.

The structure of representations of the OCR for fields has been
investigated in several papers. We mention in particular the results of
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ARAKI [1], GELFAND [2], and LEW [3]. The first named author showed
that representations with cyclic U(f) can be realized by means of a
finite quasi-invariant measure μ on the space i^' of all linear functional
on i^. In this realization the Hilbert space consists of the space L2

μ of
all μ-square-integrable functions φ(F) on fγrl. U(f) is given by multi-
plication by ei^F'f^ and V(g) by multiplication with a certain function
a g ( F ) and simultaneous translation of φ(F) by gl. In [2] the same
construction has been carried through for nuclear spaces i^ and cyclic
U (f) which are continuous in the nuclear topology. In this case one can
confine oneself to continuous functionals. LEW has shown in a very Jong-
paper that any representation of the CCR in a separable Hilbert space
can be realized by means of a direct integral with a quasi-invariant
measure on a space which is somewhat larger than i^'. Under certain
restrictions on U (f) this result can be carried over to non-separable
Hilbert spaces.

In this paper we first derive in a fairly short way an alternative
realization of the general case in terms of a direct sum of Hilbert spaces.
We show that there exists a decreasing sequence of finite and quasi-
invariant measures μn on 'Ϋrt', μ^ ^ μ2 ^ . . ., such that the Hilbert
space § can be realized as the direct sum of the L2

μn and such that U (/)
is given by multiplication with ei (F>f). The action of V(g) is similar to the
cyclic case, but now different Ljln can be mixed by V(g). The derivation
is based on a generalization of BOCHNER'S theorem for positive-definite
continuous functions [1,2] already used in the case of cyclic U(f).
The main task is to show that all measures can be chosen to be quasi -
invariant and to determine the form of V(g). This is carried through in
Section B. At the end of Section B it is shown that by means of the
measure μ1 one can write § as a direct integral of Hilbert spaces $)(F).
Simply transcribing our results we get a direct integral form of the
representation. This turns out to be essentially the form of LEW, the
only difference being that the measure is defined on the smaller space ^'.
Thus, as a by-product, one has obtained a fairly short derivation of
LEW'S result.

Our results are independent of the number of degrees of freedom.
However, according to VON NEUMANN'S theorem [4] every representation
of the CCR for finitely many degrees of freedom is unitarily equivalent
to a direct sum of Schrόdinger representations. Thus, in spite of the same
structural form of the representations, there exist uncountably many
inequivalent irreducible ones in the infinite case while, as soon as i^ is
finite-dimensional, all irreducible representations become equivalent.

1 Every element g ζ y defines a linear functional Fg on y by means of the
scalar product in ̂  (Fgt /) = (g, /). Identifying Fg and g one can consider V as
a subspace of



Canonical Commutation Relations 307

The reason for this strong degeneracy cannot be understood by the
original proof of VON NEUMANN because it admits of no parallels to the
infinite case. Recently there appeared another proof [5] of von NEUMANN'S
theorem which could have been of help for this question. Unfortunately
it contains an error at a central place, and it is not obvious how to cure
this. Another, earlier sketch of a proof [6] which runs on the same lines
as [5] apparently contains this error also.

Therefore, in order to see explicitly why the case of finitely many
degrees of freedom is so simple in comparison to the infinite case, we start
from the dimensionally independent realization of the OCR by measures
on '̂, specialize this to finite-dimensional test function spaces, and
step by step exploiting their particular properties we obtain in a con-
structive way VON NEUMANN'S result. The reduction is based on certain
measure theoretic properties of the field operators. It turns out that the
simplicity of the finite case is due to two facts which make a carrying
over of our construction to the infinite case impossible. Firstly, for
dim^ = n< oo there exists, up to equivalence, only one quasi-invariant
measure. And secondly, equally important, in the finite case the space
i^' adjoint to i^ is equal to i^ while in the infinite case i^ φ i^1 holds.
This allows several inequivalent representations for one measure.

B. Form of the Field Operators

1. Case of Cyclic U(f)

First we briefly review representations of the OCR in which U(f) is
cyclic. This case has been treated in [1] and [2].

Let φ be some fixed vector in §, and define a complex-valued
function E(f) on i^ by

E(f) = < φ , U ( f ) φ y . (2.1)

Then E (/) is a positive functional on i^. Due to the assumed continuity

of the representation E I Σ ^ίh I *s continuous in the real variables
\ i /

λl9 . . ., λm for fixed /0 , . . . , fm £ i^ . As a generalization of a theorem of
BOCHNER [7], ARAKI [1] has shown that for any such continuous
positive functional E(f) on i^ there exists a (countably additive, non-
negative) finite measure μ on the Borel sets of the space y of all linear
functional2 F on i^ such that E(f) is the Fourier transform of μ,

E ( f ) = feiΦΛdμφ). (2.2)

The Borel sets of i^' are generated by the cylinder sets of i^' . For finite-
dimensional y one deals with the usual Borel sets in Euclidean spaces.

2 i.e., algebraically all, not only those which are continuous in some topology
of ir.
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A more detailed exposition of these questions can be found in [2], [8],
[9]. If y is a nuclear space and if E(f) is continuous in the nuclear
topology one can take μ to be a measure on the space of all continuous
functionals [2]. For other topologies this need not be true.

Equation (2.2) is used for a realization of representations with cyclic
U(f). Let cpQ be a vector cyclic for U ( f ) , f ζ l f " , and take φ — φQ in
Eqs. (2.1-2). With each vector in § of the form

Ψ= Σ Λκϋ(fκ)φQ (2.3)
κ = ι

one associates the function

φ(F) = Σ λzeW-M (2 4)
1

in LPμ. The mapping ψ -> ψ(F) is isometric, by Eq. (2.2). It can be ex-
tended isometrically to all vectors of $). Moreover, since also the set of
all functions of the form of Eq. (2.4) is dense3 in LPμ9 one has obtained
an isometric mapping of § onto L\. Obviously φ0(F) = 1.

To find the form of U (/) in Ljt induced by this mapping, one applies
U(f) to Eq. (2.3) and finds that U (f) acts on a dense set in LPμ as multi-
plication by e i ( ^ F ' f ) . Then, by continuity, this holds for every element
φ(F)θ£I?μ.

To find the form of V(g), denote by ag the image of φQ under V(g),
and let ag (F) be a representative function in the corresponding equiva -
lence class in L^. Applying V(g) to vectors of the form of Eq. (2.3) one
obtains by Eq. (1.4) and footnote1

(V{g) Ψ) (F) = ag(F) Σ λκe«f + » M = a,(F)φ(F + g) . (2.5)
1

One has to exercise some care when extending this relation to all elements
of 1% by denseness arguments. For any φ ζ L2

μ there exists a sequence
of functions ψΛ(F) of the form of Eq. (2.4) converging in norm to φ(F).
One can further assume that the ψΛ(F) converge to φ(F) pointwise
almost everywhere (a. e.), i. e., ψκ(F) -> φ(F) for F (£ 91, where 91 is a
μ-null set. By the norm convergence of ipK one knows that

\\V(g)ψa- V(g)φ\\-*0 for α - > c » .

On the other hand,

_ (V (g) vO (F) = ag (F) γx (F + g) .
3 Since the Borel sets in i^f are generated by the cylinder sets in ir/ it suffices

that characteristic functions of cylinder sets can be approximated. Going over to
the finite-dimensional factor spaces y'/W associated with these cylinder sets one
is led to usual finite -dimensional Borel measures (cf., e.g., [9]) for which the
completeness of the exponential functions follows from a theorem on Fourier
transform of finite Borel measures [10].



Canonical Commutation Relations 309

Now, from the convergence in norm of ψy one cannot conclude that also
the translated functions ψ^ (F) = ψΛ(F -}- g) converge in norm. Therefore,
in order to determine the form of the limit, we use the point wise conver-
gence of ψa(F) to φ(F) for ̂  $ 21.

Now, in order to conclude that

g) (2.6)

a. e. it suffices that 21 — g is a μ-null set, i. e., that μ is (i^ — ) quasi-
invariant*. To show this consider

< Ψ o , U ( f ) φ 0 ) = fe*V+ .t>dμ(F + g). (2.7)

Due to the unitarity of V(g) this equals

{V(g}φ», V(ff)U(f)φoy = e*«.f>feW> aβ(F)\*dμ(F) . (2.8)

Hence dμ(F + g) and \ag(F)\2d μ(F) possess the same Fourier transform
and give therefore5 rise to the same measure. Integrating over 91 one
obtains μ (21 + 00 =- 0 .

From V(g + g') = V(g) V(gf) one obtains for almost all F

ag+g.(F) = aβ(F)ag (F + g). (2.9)

For every finite quasi-invariant measure μ on the Borel sets of Ίf' there
exists conversely at least one unitary representation of the OCR with
cyclic U(f). Choose L*μ as Hubert space, define U(f) as multiplication by
eW) and V(g) as in Eq. (2.6) with ag(F) = {dμ(F + g)/dμ(F)}1/*.

2. General Case as a Direct Sum

Now the theorem of ABAKI for positive functional, Eq. (2.2), will be
applied to the general case. First we note the following simple lemma

(of. [11]).
Lemma 2.1. Let Gbea group and D (9), $ ζ G, be a unitary representation

oj G in a Hubert space ίj. Then ξ) decomposes into a (possibly uncountable)
direct sum of invariant subspaces in which the representation D is cyclic.
If ί) is separable then the sum is countable.

A separable Hubert space § can be written as a countable direct sum
of subspaces £jw in which U(f) is cyclic. For each n let φn be a cyclic
vector in §w with \\φn\\ ^ 1. Then En(f) — (φnί U(f)φny is a positive
functional on 7 ,̂ and Eq. (2.2) applies to En(f) with a measure μn. As
before each $)n is mapped isometrically onto L^nΐ and under this mapping
U (/) becomes multiplication by ei (F> ̂  in § = Σ ® ^μn

1 One can also obtain the form of V (g) directly, without the quasi-invariance
(ARAKI, private communication).

5 This follows from the completeness of the exponential functions, or, as in
footnote 3, directly from the corresponding theorem for finite-dimensional spaces
in [10].
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Now put μ = Σ %~ n μn - Obviously μ (A ) = 0 implies μn(A) = 0 for each
n

n. The Badon-Nikodym derivative ηn(F) = dμn(F)/dμ(F) is uniquely
determined up to a set of μ -measure zero. Define 3ln = {F £ 1^' ηn (F) φ 0}.
One has μn (31) = \\ φn\\ 2 ̂  1 , μn (V - 31J = 0. Let φ (F) be a function in L\n.
Then the mapping φ (F) -> 99 (F) {ηn (.F)}1/2 is an isometric mapping from
L^n onto the space LPμ (3lw) of all functions in ̂  vanishing outside 2ίn .
Thus one can write § = J^ 0 JD|(3ln), and ?7(/) is still the multiplication

By induction one can show that one can assume the 3(n to be ordered
by inclusion, S^ D 312 D 3 corresponding to a minimal number of
measures. Defining measures μn on i^' by μn(93) = μ(3ln π 93), one

trivially has £|w(^') == .L|(3ln). Then μ = μlf and the other measures
are restrictions of μ to 3ln . One therefore can assume from the beginning
that the decomposition of § has these properties. We summarize this in
the next lemma.

Lemma 2.2. // ξ) is separable, or if § is a direct countable sum of sub-
spaces which are cyclic for U(f), then one can decompose ίj as

in such a way that μ = μλ is normed and such that the μn are restrictions
of μ to a decreasing sequence of subsets $in of '̂, i^' = 2^ )̂ 312 D . . . , μn (93)
= μ(3ίnr\ 93) = / χ n ( F ) dμ(F), ivhere χn(F) is the characteristic function

93

of 2ίn . In each L^n the operator U (/) is given by multiplication by eί (F> ft .

To determine the form of V(g) in this decomposition, let φ^ ζ § be
the vector with the constant function 1 as component in L*μn and zero
components otherwise. Denote by ag^ the component of V(g) φ^ in I%m.
Let ψ(n) be a vector of the form

M

M
(ψW)m(F} = δnmψn(F) = δnm Σ λκeW M . (2.11)

1

Analogously to Eq. (2.5) one finds

»(F) = ag™(F)ψ"(F + g) . (2.12)

We extend this relation to all elements of L?μn . A sequence of functions
converging in L2

μn need not converge in I?μm for m < n, and in Eq. (2.12)
the product on the r.h.s., which belongs to £|m, contains a function from
L2

μn . So we first consider characteristic functions χΔ (F) where A is a Borel
set in i^' . Since χΔ ζL2

μn for every n, in particular χΔ ζLfy, there exists
a sequence of functions ψ^F) of the form (2.11) converging in 1% to χΔ .
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This implies convergence in each L2

μn. One can assume that *ψΛ(F) con-
verges to χ^(F) pointwise ^-almost everywhere, i.e., for F (£31 with
μ ($1) — 0 . Let χ%\ ψ^ ζ £) be vectors with n-ih component χΔ and ψ^ ,
respectively, and zero otherwise. Then (V (g) χ^f*)m (F) , the component of

V(g}χ(A} in ^L' is the limit in the norm of Llm

 of (v(ff)ψ(^)m = aβn(F)
X y<z(F 4 gr) for α — >oo. To find the form of this limit we proceed as
before. For F (£ 3t — £7 one has by pointwise convergence

F + g) . (2.13)

To obtain an equality of both sides in L^m, one needs that 91 — g is a
μm-null set. For this it suffices that μ(3l — g) = 0, i.e., that μ is quasi-
invariant. This will be shown further below. With this proviso one has
obtained the form of V(g) for characteristic functions, and the transition
to arbitrary elements of L^n is immediate.

It remains to show the quasi-in variance of μ. The unitarity of V (g)
implies

«, U(f)<f%> = e<V.«) { V ( g } φ » m , U(f) V(g) (g)ψl} . (2.14)

Similar to Eqs. (2.7) and (2.8) this leads to

<S»» f e<(*.f>dμn(F + g)=Σf e<<F>/) ά,'m(F) a.'n(F) dμv(F) . (2.15)
V

By Lemma 2.2 one has d μv(F] = χv(F) dμ(F). Inserting this and
noting that now one can interchange sum and integral6 one obtains an
equality for Fourier transforms of (complex- valued) measures. Therefore5

F) dμ(F) (2.16)

and for m Φ n

V

a.e., i.e., for F $ 91 = 3ϊ(g) with μ(2l) = 0. 91 can be taken to be inde-
pendent of n, m. For a μ-null set Zl Eq. (2.16) when integrated over A
leads to μn(A + <7) = 0 for each ? .̂ Hence μ = μl is quasi-invariant7. One
can also show the following important result.

Lemma 2.3. All measures μn of Lemma 2.2 are quasi-invariant.
6 If the sum is infinite, Eq. (2.15), with m = n and / = 0 implies the con-

vergence of Σ \aan(F)\2χv(F) for μ-almost all F. From this it follows that

Σ άβm(F) ' agVn(F) χv(F) converges for //-almost all F. Since

one can apply Lebesgue's bounded convergence theorem.
7 To determine the form of V (g) one actually does not need that the measures

μn are ordered as in Lemma 2.2. Up to now only the quasi-invariance of μ has
been used, and this follows from Eq. (2.16) if one writes dμn(F -f- g) = χn(F + g)
x d μ (F -f g) and if one decomposes Δ into disjoint parts lying in 2ίrt — g, n = 1,2...
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Proof. We use induction on n. For n = 1, μ1 = μ is quasi-invariant.

Assume μm to be quasi-invariant for m = 1, . . ., n — 1. Let μn(A) = 0.

It suffices to consider Borel sets A which lie in 21̂  = 2lw-ι — Sin? since
on 2ln μn coincides with μ and since outside of <^in-1 also /^.j vanishes,
the quasi-invariance of which has been assumed as induction hypothesis.

So let A C 21*. For any J7 ζ Sl£ one has ^(.F) = 0 f or v ̂  n and χv(.F) - 1
otherwise. Therefore, for any Ωc*Άn an(^ arbitrary m, one obtains by
Eq. (2.16)

μm(Ω + g) = fnΣ KOT2 <W) - (2.18)
β v = l

Equation (2.17) becomes for F ζ 21* , F ξ 91 (00 and any m, m' with
m =j= m'

"Σ1δl, m(F)at m.(F) = 0. (2.19)
? = 1

As a first step we are going to show that there exists a μ-null set 91 = ?l(g)
such that for m = 1,2, . . . , π — 1

m (F) | 2 φO for Fζ2i*,F$?ϊ. (2.20)

Indeed, let 93W = < J1 ζ 21* 27 |α/m(i012 = 0 Then, by Eq. (2.18),
( " = ι J

/^w (93w + 9) = 0- The quasi-invariance of μw for m < n implies
μm(33m) = 0. Since on 21̂  //OT and μ coincide for m< n, one has
μ(33J = 0. Putting §t = U 23m one obtains Eq. (2.20).

Now consider, for fixed F ζ 21J and for m < n, the % — 1 row vectors

Equations (2.19) and (2.20) state that for F $9l(gr) U§1 these 9^ - 1
vectors are mutually orthogonal and nonzero, hence they are linearly

independent. Putting m' = n in Eq. (2.19) one sees that for F (j! 91(00 the
row vector (αg^(.F), . . ., α^"1^)) is orthogonal to these. It follows that

f or v = 1 , . . . , n — I

ag

v

n(F) = 0 for F ζZ&F ί 91(0) w§t, (2.21)

i.e., μ-almost everywhere on 2lJ. Hence, putting m = n and Ώ = zl in

Eq. (2.18), one obtains μn(Δ + g) = 0. q.e.d.
The quasi-invariance of μn and μn(i^f — 2ln) = 0 imply by Eq. (2.16)

that ag

v

n(F] ^(ί7) = 0 ^-almost everywhere on ̂ ' — 2ln. Hence one can
insert the factor χn(F) on the r.h.s. of Eq. (2.16). With dμn = ^w ίί// one
obtains d ̂  (f + g) = 27 |αβ (ί1) a χ, (ί1) d ̂ n (F) (2.22)

and thus an expression for the Radon-Nikodym derivative

dμn(F + g)ldμa(F).
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When generalizing Eq. (2.12) to all vectors of § one has to distinguish
between different kinds of convergence. Any φ ζ £j can be written as a
finite or infinite sum of vectors φ(n) which possess only in Lfyn a non-
vanisliing component, φn(F) say. Therefore

(V(g)ψ)m(F) = l.i.m.2; aa»(F) φ-(F + g) in L\m , (2.23)
n

where the limit in the mean on the r.h.s. is a limit in the norm of L\ .
f hn

We now prove that the sum on the r.h.s. converges even pointwise
μm- almost everywhere.

Lemma 2.4. Let φ ζ $), with component φn in L^n. Then for μm-
almost all F

(V{g) ψ)m(F) = Σ a

an(F) ψn(F + g) ,
n

or, for μ-almosl all F,

(V(g) φ)m(F) = Σ ag^(F) χm(F) ψ"(F + g) , (2.24)
n

where the sum, if infinite, is to be understood as a pointwise limit.
Proof. In case of a finite sum the statement is trivial. For an infinite

sum it follows as in footnote6 that Σ \ψn(F)\* Xn(F) converges for F not
n

in some //-null set 9lv. Denote by χ'n(F) the characteristic function of
Λ/^' — 9ln. Then χ'n(F) vanishes ^-almost everywhere, and Eq. (2.13)
implies that ag™(F) χ'n(F -j- g) vanishes μm— a.e., hence

a9f(F)χm(F)χ'n(F+g) = V (2.25)

μ — a.e., i.e., for F not in some μ-imll set 9Ig)1 which may be assumed to be
independent of n, m. Hence for F $ 91̂

ag%(F) Xm(F) φn(F + g) = ag™(F) χm(F] χn(F + g) ψ-(F + g) ,

and to prove Eq. (2.24) it suffices to show that Σ K

converges μ— a.e. To this end let χ^ ζ ξ> be a vector with the characte-
ristic function χ^(F) as m-th component and zero otherwise. Unitarity
implies

(%(f\ V(g)Ψy> = <F(-fir) χ(f\ φ»} .

Evaluating this in terms of integrals the arbitrariness of Δ yields

afJf(F) χm(F) - a_9*m(F + g) χv(F + g) ~~ μ- a.e., (2.26)

for F not in some null set 9^,2. By Eqs. (2.16) and (2.17), with 91 (g) the
respective null set, one obtains

Σ agf(F) ag«(F) χm(F) χn(F) = δnm χn(F) +y) μ- a.e., (2.27)

for F $ 9ϊg,3 = 21^,2 ^ (9i("~^) ~ ff) Thus one has in particular pointwise
convergence for m = n and F $ 9^,3 which is again a null set. Hence the
sum in Eq. (2.24) converges pointwise for F $ %lg, 3 w (^lφ — g). q.e.d.
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The equality V(g) V(g') ψn^ V(g + $'} ψn> considered in each Ljtm.
yields as an analogue to Eq. (2.9)

Noting that ag

v

n(F + g) is a particular φv(F -\- g) the first part of Lem-
ma 2.4 shows that the sum converges pointwise for F not in some

μm-null set 91,,^ (μw)»

ag + g,%(F) = Σ <*β?(F) agSn(F + g) μm~ a.e. (2.28)
V

The following theorem summarizes our results.
Theorem 1. Let U(f), V(g) be a unitary representation of the OCR in

a separable** Hilbert space §, with f,gζ"^. Then there exist quasi-in-
variant measures μ1 ^ μ2 2> . . . on the Borel sets of '̂, where μ1 is normed
and each μn is a restriction of the preceding measures to a subset 2ln of '̂,
such that $) can be realized as

ξ> = Σ®Lz

μnn

with the action of U(f) and V (g) on a vector φ with components φn in L^n

given by
(U(f) φ}m(F) = e*<*V) φm(F]

(V(g) Ψy-(F} = Σ *gϊ(F) Ψn(F + 9) μm - a.e,
n

with pointwise convergence μm-almost everywhere. The functions ag™(F)
satisfy Eq. (2.28),anddμn(F + g)jdμn (F) is given by Eq. (2.22). Conversely,
for any set of such quasi-invariant measures there exists a unitary represen-
tation of the CCE.

Sometimes one allows the test function spaces for U(f) and V(g) to
be different, / £ i^ and g ζ 1^g say. The above construction is easily
carried over to this more general case. The only change is that i^' is
replaced by 7^ and that the measures are ^-quasi-invariant, i. e,
under translation by g £ i^g . It is also obvious that the above construc-
tion is immediately carried over to multi- component fields.

3. General Case as a Direct Integral

Theorem 1 can easily be rewritten in direct integral form. This will
lead essentially to the form of representations of the OCR obtained by
LEW [3].

Consider the !2-space of sequences of complex numbers,

(z\z*,...),Σ\zv\*<°° (2.29)

8 From the derivation it is clear that the same theorem holds also for a non-
separable Hilbert space § if § decomposes into a countable direct sum of subspaces
which are cyclic for U(f).
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With each F ζ i^' associate a subspace f)(F) of 12 consisting of those
sequences which in addition satisfy

zn = 0 if F $ 2^ .

From the quasi-invariance of μn it follows that μn (2ln — 0r) =r μn (9ln)
and hence μn(2ln Γ\ (Άn - g)) = μn(^n) Therefore 3ίw - g and 2ln differ
at most by a μ-null set, and consequently

χ9tΛ-a(F)^χn(F + ff) = Xa(F) μ-a.e. (2.30)
This implies

άimξ>(F) = dim§(^ + g) μ - a.e., (2.31)

i.e., for F not in some μ-τmll set 9ΐd(0).
For each ψ ζ § with components ^n in Z/|n define a function ^ (_F) on

if' with values in $>(F) for ^-almost all JF by"(cf. [12])

Ψ(F) = (^(J?) fc^), y'(JO χa(n •)

That condition (2.29) is satisfied for μ-almost all^ folloΛvs from footnote 6.
Denote for each F the norm of ψ(F) by \\Ψ(F)\\, and define

Then obviously \\ψ\\ = ||γj||, and one has obtained a realization of § as
a direct integral. In this realization U (f) acts as multiplication by
eiΦ V and V(g) as

a.e. (2.32)

where
a'ffy(F) = aay(F)Xn(F) (2.33)

and where Ψn(F] is the n-th component of ψ(F). The sums in Eq. (2.32)
converge μ — a.e.

Consider the matrix function

From Eq. (2.33) one has agi(F} = 0 for i > n(F), and from Eqs. (2.25)
and (2.30) a'g\(F) = 0 f or k > n(F) and F not in the exceptional null sets
of those equations. Hence, for F not in some null set (3H9t 4, Bg(F] is non-
trivial only for this n(F) X n(F) submatrix. Eqs. (2.16-2.17) and
(2.27), together with Eq. (2.30), show that this submatrix is unitary for
F not in some null set. Since £j (F + g) and § (F) are equal for F $ <Sld(g))

by Eq. (2.31), Bg(F] can be considered as a unitary operator from
$(F + g) onto $>(F) for //-almost all F. Eq. (2.28) becomes

Ba(F) Bg,(F + g) = Bg + g,(F) a.e., (2.34)

i.e., for F not in some null set Sl^, α / . The results for the direct integral
formulation can be summarized as follows.
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Theorem 2. Let U(f), V(g) be a unitary representation of the CCR in
a separable 8 Hubert space § with f, g ζ i^ . Then there exists a quasi-
invariant normed measure μ on the Borel sets of Ί^' and a direct integral
decomposition of §,

3 = f $ ) ( F ) d μ ( F ) 9
Θ

with the follotving properties.
1 . For given g £ ̂  one has for μ-almost all F ζ i^'

dim$(F) = aim$)(F + g) .

2. Let ψ ζ ίj, and let Ψ(F) be the corresponding vector function. Then
U(f), V (g) are given by

where Bg is a measurable operator function on i^' and where, for μ-almost
all F,Bg(F] is a unitary operator from $>(F + g} onto ξ)(F). For any
{/>$' ζ^ Eq. (2.34) holds. Each ξ)(F) can be realized as l2-space of all
sequences (zl, z2, . . . zn, 0, . . .) with n = n(F) being the dimension of S)(F).

This is essentially the form of LEW [3] (representations satisfying
the condition of footnote 8 are called countable there). The only difference
is that instead of i^' the somewhat larger space i^'^ is used where i^'^
consists of all (real) linear functionals on i/~ taking on finite or infinite
values. To see the connection with a finite number of degrees of freedom
i^1 is more suitable. Again the results can be carried over to different test
function spaces for U(f) and V(g).

C. Connection with Finitely Many Degrees of Freedom

1. Specialization to Finite- Dimensional I/"

Theorems 1 and 2 hold both for finite- and infinite -dimensional Ϋ\
In the former case one knows from VON NEUMANN'S theorem that all
representations decompose into a direct sum of Schrόdinger representa-
tions. That this is so is in no way obvious from the general form, and it
is also not obvious why there is such a great distinction between the
CCR with finite- and infinite -dimensional i/~ . In the following we are
therefore going to explore this question. By deriving VON NEUMANN'S
theorem from the results of Section 2 we intend to show the peculiarities
of the finite case which prevent the carrying over of the derivation to
the infinite case. We start from Theorem 1, but Theorem 2 can be used
as well.

For dim^ = N < oo γ~ is a finite -dimensional real Euclidean space,
and therefore i^' ~ i^ = EN. Introducing an orthonormal basis hλ , . . . , JιN

and denoting the coordinates of a general element by x = (x1 , . . . , XN)
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one can consider the elements /, g £ i^ to be coordinate row vectors,
similarly for the linear functionals. Therefore we replace F by x in the
preceding formulas. The differential of the Lebesgue measure induced by
the scalar product in RN will be denoted by dNx, dNx = dx1 . . . dxN.

The first important restriction now comes from the quasi-invariance
of the measures μn. For a finite -dimensional space any such measure is
equivalent to the Lebesgue measure [13], which means that there exist
functions ρn(x) positive almost everywhere and satisfying

(3.1)

Since the measures μn are restrictions of μ it follows from the positivity
of ρn (x) that all μn are equal,

dμn(x) = dμ(x) = ρ(x) dNx . (3.2)

As in the general case one can now go over to the Lebesgue measure
since only the equivalence class of the measures matters. But for one
such class there could still be many inequivalent representations, due
to a possible freedom in the choice of the ag^(x). The main task therefore
consists in showing that for finite -dimensional i^ any possible choice of
the ag

1fc(x) leads to a direct sum of Schrόdinger representations and why
in the infinite case an analogous result does not hold. In order to retain
the connection to the infinite case we use dμ(x) instead of ρ(x) dNx as
long as possible.

It is clear that one has to exploit the functional Eq. (2.28). Define

bg»(x) by

Then the matrix Bg(x) = (bg\(x}} is, by Eqs. (2.16), (2.17) and (2.27)
unitary for almost all x9 i.e., for x not in some null set 91 = 9l(<7). Eq.
(2.28) now reads

Bg(x) Bg,(x +g) = Bg + g,(x] a.e., (3.4)

i.e., for x not in some null set 91 (gr, g').
KIRILLOV [6] has briefly sketched how one can obtain VON NEUMANN'S

theorem starting from a direct integral realization of the Hubert space
of quantum mechanics (cf. also [5]). He is led to the same functional
relation as in Eq. (3.4), and putting x = 0 finds

JB9,(Sr) = 5s,(0)*ΰ9 + 9-(0). (3.5)

From this he concludes in two lines VON NEUMANN'S result. However,
Eq. (3.5) is in general not true since Eq. (3.4) is an almost- every where
equality with the exceptional set depending on g, g'. The underlying
misunderstanding in [6] as well as in [5] seems to be due to considering
Lμ as a space of functions and not as a space of equivalence classes of
22 Commun . math . Phys . , Vol . 1 2
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functions. In the equivalence classes belonging to V(g) φ% one could have
chosen representatives agf(x) which equal any prescribed numerical
value for x = 0, thus one could choose bg^(0) = δnm for all g. Then
Eq. (3.5), if correct, would mean that Bg(x) is always the unit matrix.
Similarly one could make Bg (x) vanish ^identically. Furthermore, since
2ΐ(ί7> g') may depend on g, g' there may exist no XQ such that Eq. (3.4)
holds for all or almost all g, g'. If one has such an x0 one would get an
expression similar to Eq. (3.5). That this cannot hold in general follows
immediately from the fact that Eq. (3.5) implies that Bg (x) is measurable
in g for fixed x which is certainly not the case for an arbitrary selection
of the representatives Bg(x). The same remarks apply to the existence
of the (unitary) inverse of Bg(x).

However, further below it will be shown that one only has to know
that the Bg(x) can be chosen to possess a structural form similar to
Eq. (3.5), and in this sense Eq. (3.5) gives an important heuristic hint.
The following lemma will allow an immediate proof of VON NEUMANN'S
result.

Lemma 3.1. There exist a matrix β (x) consisting of measurable functions
β'lZ(x) and unitary a.e., a null set 9ί̂  in RN X EN, and a particular
choice of the Bg (x) such that

Bg (x) = β* (x) β(x + g) for (x, g) $ g$>. (3.6)

Nothing more than this form of Bg(x) is needed. The proof of Eq.
(3.6) is based on the next three lemmas pertaining to measure theoretic
properties of the bg™(x).

2. Measure Theoretic Properties of the Operators Bg (x)

Now it will be shown that the ag%(x) and Bg(x) can be chosen to
fulfil additional properties9.

Lemma 3.2. There exist measurable junctions b™(x,g) on EN x RN

and a null set 2ΐr such that for any choice of the bg™(x) one has

b™(x, g) = b g f ( x ) for g ξ 2ίr, x <£ 2lb(g) (3.7)

ivhere 3ib(g) is a null set depending on g (and on the choice of bg™(xty.

Proof. Let E', E" be measurable sets in RN

9 and let χE>, χE» be the
corresponding characteristic functions. Denote by χtjfi the vector in
φ L2

μn whose components are χw in L|m and zero otherwise. Consider

<χ(ff\ V(g) φl} = / χE,(x) agf(x) dμ(x) . (3.8)
RN

9 ARAKI has pointed out to us that in the context of induced representations
such measurability questions have been investigated by MACKEY (for Lemma 3.2
cf. in particular Duke Math. J. 16, 313 (1949)).
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The l.h.s. is a bounded continuous function of g. Hence the integral
over d μ ( g ) exists, in particular

v(E' x E") ^fdμ(g) χE»(g}fdμ(x} χE,(x) ag™(x) (3.9)

is well-defined. Denote by 911 the algebra of sets in EN X BN obtained
by finite unions and differences of product sets in BN x BN. It is clear
that v can be extended to a finitely additive set function on 9IΪ. Let EQ

and.Fj C F2 . . . be in 9S, and let.Fn f EQ. By means of Schwarz's inequality
and unitarity of V (g) one obtains

\v(E0)-v(FΛ)\*£fdμ(ff)fdμ(x)Xlll>_ftί(x,g). (3.10)

For Fn f EQ this tends to 0. Hence v is countably additive on 911.
Therefore v can be uniquely extended by the Hahn extension [14]

to a countably additive set function on the σ- algebra determined by 92 c,
i.e., on the Borel sets of EN X BN. If E is a μ x μ-null set in EN X BN,
Eq. (3.10) implies v(E) = Q.

Hence there exists a measurable function a™ (x, g) on EN X RN, the
Radon-Nikodym derivative of v with respect to μ X μ [15] such that
for each Borel set E in EN x BN

v(E)= fd(μ X μ)(x,g)a$(x,g). (3.11)
E

Applying FUBINI'S theorem to the r.h.s. of this relation one obtains for
product sets E' X E"

f d μ ( g ) ( f dμ(x) ag%(x)\ = f d μ ( g ) l f dμ(x) a%(x, g)
I?" I 77" I 77"' I 77"h (E ) E (E

Since this holds for all E" C B^9 the terms in curly brackets are equal for
almost all g, where the exceptional null set 31̂ , may depend on E'. In
order to get rid of this dependence let first E' be a rational rectangle in
RN, i.e., an 2V-rectangle with sides parallel to the coordinate axes and
with rational coordinates for the end points. Denote by 9lr the union of
all such 91 ,̂. Then 2Zr is again a null set. Since each 2V-rectangle is a
union of countably many rational ^-rectangles, the equality holds for
all measurable sets if g $ 9lr. This implies that for g $ 9Zr the integrands
are a.e. equal, where the exceptional null set 9*1 (g) can depend on g.
Putting I™ (x, g) = {dμ(x + g)/dμ (x)}~ V* αj* (x, g) this becomes Eq. (3.7),
The null sets may be assumed to be independent of m, n. q.e.d.

The previous lemma means that for g $ 9tr we can take a™ (x, g) and
b%(x, g) as representatives for a g f ( x ) and ~bgf(x), respectively. Hence the
matrix B(x, g) = (£4(#, g)) satisfies Eq. (3.4) for g, g', g + g' $ 9lr and x
not in some null set 91 (g,g') The matrix is furthermore unitary for
g $ 3ϊr and x $ 31 (g). We now show that these properties can be sharpened
in the following way.
22*
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Lemma 3.3. There exists a null set 9l^2) in EN x EN such that for
(x, g) $ 9ΐ^P the matrix (b\ (x, g] is unitary.

Proof. For each g § 9tr , there exists an 91 (g) such that for x $ 91 (gr)

QT

- (3 13)
y hm(τ a} bn(r o\ — fi ' 'Z.j υ<x V^J \}) υoί\x> y) — unm
α

In order to proceed similarly as in the proof of Lemma 3.2 we have to
show that the sums define measurable functions. This is only a question
of convergence for arbitrary x and g. For m — n all terms are positive
so that in this case the sums define extended real- valued non-negative
measurable functions. Integrating with respect to x over W and then
with respect to g over W and applying FTJBINI'S theorem one abtains
in the same way as above that for (x, g) not in some null set 2Z^2) C RN X RN

the sums converge and equal 1. This implies that the sums in Eq. (3.13)
converge for (x, g) $ U 9I^2). Therefore, if χ ( x , g) is the characteristic

function of the complement of U 9ΐ$2\ one has
n

for (x. g) $ U 9Z?

(2), g $ 2ΐr , x $ 91 (g)9 and the sum converges for all (x, g), thus

defining a measurable function on RN x RN. Integrating with respect to
dμ(x) and then with respect to d μ ( g ) over E± and E2 one proceeds as
before, q.e.d.

In a similar fashion Eq. (3.4) can be sharpened for b\(x,g) in the
following way.

Lemma 3.4. There exists a null set 9Z^C^vX-βxYX^ lV such that for
all (x, g, g') $ 2t(3) the matrices (b*k(x, g}}, (b\(x + g, g')) and (b\(x, g + g'))
are unitary and satisfy for all m, n

Σ bl(x, g} b«m(x + g, g') = b?H(x, g + g')

(convergence of the sum for (x, g, g'} ^ 31^ is implied).
Now we are in a position to prove Lemma 3.1.

Proof of Lemma 3.1. For almost all x9 i.e., for x not in some null set 91 (1)

5

9ί̂  = {(?,»');(*, 17, l/ ')€9lw}

is a null set. Here 9Z<3) is the null set of Lemma 2.4. In the same way one
has for x not in some null set 9Z(1) that

is a null set, where 91̂  is the null set of Lemma 2.3. Let now XQ be some

fixed element not in Q^1) w St*1). Then the matrix B(x0, g) = (b\(xQ, g)}
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is unitary for almost all g ζ JRN, by Lemma 3.3, and by Lemma 3.4 one
has for (g,g')t^v(9l$xRN) that B(x0,g), B(x0 + g, g'), and
B(x0, g -f- g') are unitary and satisfy

B(x0, g) B(x0 + g, g') = B(x0> g + g') .

Hence for (g, g') $ 9lg> w (Tc^xE^)

B(x* + g, g'} = B(a0, gr)* B(s0, gr + g') . (3.14)

Put /? (x) = B (xQ , α; — #0) and

91 W = (*, ί7') (* - x,, g'}

Then j f f ( α ) is a unitary matrix for almost all x, and Eq. (3.14) can be
rewritten as

B (x, g'} = β (x)* β (x + g') for (x, g') $ 97 <2> .

Now, for </ $ 9lr one can take B(x, g) as a representative for Bg(x)9 by
Lemma 3.2. Hence, putting 9^2) = 31^ \j (EN x 9Tr) one arrives at
Lemma 3.1.

5. Few Neumann's Theorem and Comparison with the Infinite Case

In a similar way as in [6] where VON NEUMANN'S theorem was
deduced from the (unjustified) Eq. (3.5) one obtains this theorem from
Lemma 3.1. If in the realization of § as a direct sum, ί) = (J) L

the component of a vector ψ ζ ί) in L^n is ψn(x), one can associate ψ with
the vector function ψ(x) = (ψ^fa), ip (x), -), and one knows that for
almost all x

Now put

where ρ(x) is given by Eq. (3.2). Due to the unitarity of β(x) for almost
all x one has

Therefore the mapping ψ(x) <-> ψ(x) defines an isometric mapping,

It is clear that under this mapping U (/) remains multiplication by eί (χ> f) .
To see what V(g) becomes under this mapping, we note that for

almost all g, i.e., g not in some null set 91',
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is a null set. So let g <£ 21'. Then Lemma 3.1 gives, for x $ 2lgP and x not
in the null set where β (x) is possibly non-unitary,

(V(g)ψ) (x) = ρίs)1/8 0 (s) (F(flr)ψ) (α)

Thus £/(/) and V(g), for (/ ^ 21', do not mix the different terms in the
direct sum Θ L2 (MN) and act in each as in the Schrόdinger representation.
Since BN — 21' is dense in EN it follows from the continuity of the
representation that all V (g) have the Schrόdinger form in each L2 (RN) .

Up to now we have assumed that £j is separable. But since by Lem-
ma 2.1 every representation is a (possibly uncountable) direct sum of
cyclic representations and since for a cyclic representation of the OCR
for finitely many degrees of freedom the Hubert space is separable the
problem is reduced to this case. Thus one has obtained VON NEUMANN'S
theorem, that every continuous representation of the OCR for finitely
many degrees of freedom in a separable or nonseparable Hubert space
is unitarily equivalent to a direct sum of Schrόdinger representations.

If the representation is not continuous but only measurable one can
show for a separable Hubert space that the representation is also con-
tinuous [16]. Thus continuous can be replaced by measurable if § is
separable.

If the representation is cyclic with respect to U(f) there is only one
term in the decomposition of § so that the representation is unitarily
equivalent to the Schrόdinger representation and therefore irreducible.

Now it is easy to see why the results cannot be taken over to the
infinite case. First of all it has already been remarked that for dim^ = co
there can exist many inequivalent quasi-invariant measures on '̂.
Representations belonging to inequivalent measures are, however,
already inequivalent with respect to Z7(/). Secondly, for one measure μ
there can exist many possible ag(F) (or agy£(F), respectively) leading to
different inequivalent representations. All this is due to the fact that
Lemma 3.1 for the form of Bg(F] no longer holds. A part of the proof
of this lemma could be carried over to the infinite case if one has an
appropriate measure on ̂ . But the crucial point is Eq. (3.14). In order
to get from B(F0 + g, g'} the form of B(F, g1} for all F ζ y one needs
that g runs through the same set as F does, i.e., through all of ̂  '. But
for dim^ = oo one has ̂  J i^' .

Summarizing the reasons for the great distinction between the OCR
for a finite and an infinite number of degrees of freedom one can say
that the richness for the infinite case is due to the existence of many
inequivalent quasi-invariant measures and to the none quality of i^
and -T'.
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