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Abstraet. Given a representation of the canonical commutation relations (CCR)
for Bose fields in a separable (or, under an additional assumption, nonseparable)
Hilbert space $ it is shown that there exists a decreasing sequence of finite and
quasi-invariant measures u, on the space 7" of all linear functionals on the test
function space ¥, u; = p,= ..., such that $ can be realized as the direct sum
of the L?,n, the space of all u,-square-integrable functions on ¥”. In this realization
U(f) becomes multiplication by e*#, F ¢ 7. The action of V(g) is similar as
in the case of cyclic U(f) which has been treated by AraxI and GELFAND. But
different L?,n can be mixed now. Simply transcribing the results in terms of direct
integrals one obtains a form of the representations which turns out to be essentially
the direct integral form of Luw. All results are independent of the dimensionality
of 7" and hold in particular for dim ¥~ <C co. Thus one has obtained a form of the
CCR which is the same for a finite and an infinite number of degrees of freedom.
From this form it is in no way obvious why there is such a great distinction between
the finite and infinite case. In order to explore this question we derive von Neumanns
theorem about the uniqueness of the Schrodinger operators in a constructive way
from this dimensionally independent form and show explicitly at which point the
same procedure fails for the infinite case.

A. Introduction

Several branches of quantum field theory are based on the canonical
(equal time) commutation relations between the field @ (x) and the
conjugate field 7 (z). Putting & = (0, z,, 2,, x;) one demands

[D (@), ()] = i 6O (@ — ) (L.1)

with the other commutators vanishing.

In order to treat the CCR in a mathematically rigorous manner, one
has to regard the fields as operator-valued distributions on a test function
space. This can be achieved by replacing @(x) and z(x) by D(f), 7 (9)
where f, g are elements of a subspace ¥~ of all real square-integrable

* Part of this paper is contained in Section IV of the Habilitationsschrift < Aspekte

der kanonischen Vertauschungsrelationen fiir Quantenfelder” by G. C. HEGERFELDT,
University of Marburg 1968.
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functions on R3 and where @ (f), m(g) can be regarded heuristically as
smeared field operators,

D(f)= [ P@)f(@)dPz, =n(g) = [n(x)g(@)d. (1.2)
In order to avoid domain questions connected with unbounded operators
one introduces the unitary Weyl operators U (f) and V (g) whose formal
relationship to the fields is given by
U(f) = ei®®), V(g)=eno. (1.3)
Using Egs. (1.2) and (1.3) one obtains by formal calculation from
Eq. (1.1)
Uf) U(f) = U(fr+ 12), V(gy) V(ga) = V(g1 + g2)s
Vig) Uf) =2 U(f) Vig)

where (f, g) is the usual scalar product in ¥”. Unitarity of U (f) and V (g)
implies

(1.4)

U@0)=7v(0)=1,

U*=U=NTV@*=V(-9)-

Equations (1.4) and (1.5) are usually taken as a starting point for a
rigorous investigation of the CCR. It should be pointed out, however,
that there are more representations of the fields than of the Weyl opera-
tors since the transition from Eq. (1.2) to Eq. (1.4) may not be possible
in a well-defined mathematical way. But, under a continuity assumption,
one can always obtain the fields @(f), 7 (g) from U (f), V(g) by SToNE’S
theorem. The continuity condition imposed in this paper is the custo-
mary one. For fixed fand ¢ it is assumed that U (1f) and V (1g) are weakly
continuous in A. This implies strong continuity and the (weak and strong)

n m
continuity of U ( 2 f,-) and ¥V ( P ligi) in A, for fixed §;, g9,.
1 1

We note that the CCR of quantum mechanics are contained in
Eq. (1.4). To see this take ¥~ to be finite-dimensional, dim 7~ = n say,

(1.5)

and introduce an orthonormal basis %;,..., %, in #". For any f,g € ¥~
one can write f = 3 a;h;, g = B;h;. Defining @; and P; by

U(Ah;) = €29 V (Ah;) = €2 (1.6)
via STONE’S theorem, one obtains

U(f) = 674, V(g) = =07 (L7)

The Q;, P; obey the usual commutation relations. Thus one can treat
representations of the CCR for a finite number and an infinite number of
degrees of freedom (fields) on equal footing.

The structure of representations of the CCR for fields has been
investigated in several papers. We mention in particular the results of
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Arax1 [1], GELFAND [2], and LeEw [3]. The first named author showed
that representations with cyclic U(f) can be realized by means of a
finite quasi-invariant measure u on the space ¥ of all linear functionals
on 7", In this realization the Hilbert space consists of the space L2 of
all p-square-integrable functions ¢ (F) on ¥™. U(f) is given by multi-
plication by e*@.%) and V(g) by multiplication with a certain function
a,(F') and simultaneous translation of ¢(F) by ¢'. In [2] the same
construction has been carried through for nuclear spaces ¥~ and cyclic
U (f) which are continuous in the nuclear topology. In this case one can
confine oneself to continuous functionals. LEw has shown in a very long
paper that any representation of the CCR in a separable Hilbert space
can be realized by means of a direct integral with a quasi-invariant
measure on a space which is somewhat larger than #”'. Under certain
restrictions on U (f) this result can be carried over to non-separable
Hilbert spaces.

In this paper we first derive in a fairly short way an alternative
realization of the general case in terms of a direct sum of Hilbert spaces.
We show that there exists a decreasing sequence of finite and quasi-
invariant measures u, on ¥, u; = u, = ..., such that the Hilbert
space 9 can be realized as the direct sum of the L2 and such that U (f)
is given by multiplication with e?(F.%). The action of V (g) is similar to the
cyclic case, but now different L2 can be mixed by ¥ (g). The derivation
is based on a generalization of BocHNER’s theorem for positive-definite
continuous functions [1, 2] already used in the case of cyclic U(f).
The main task is to show that all measures can be chosen to be quasi-
invariant and to determine the form of ¥V (g). This is carried through in
Section B. At the end of Section B it is shown that by means of the
measure y, one can write § as a direct integral of Hilbert spaces § (F).
Simply transcribing our results we get a direct integral form of the
representation. This turns out to be essentially the form of Lew, the
only difference being that the measure is defined on the smaller space 7"’.
Thus, as a by-product, one has obtained a fairly short derivation of
Lew’s result.

Our results are independent of the number of degrees of freedom.
However, according to voN NEUMANN’S theorem [4] every representation
of the CCR for finitely many degrees of freedom is unitarily equivalent
to a direct sum of Schrodinger representations. Thus, in spite of the same
structural form of the representations, there exist uncountably many
inequivalent irreducible ones in the infinite case while, as soon as ¥ is
finite-dimensional, all irreducible representations become equivalent.

t Every element ¢ ¢ ¥~ defines a linear functional F; on ¥ by means of the
scalar product in ¢, (F,, f) = (g, f). Identifying F, and g one can consider 7~ as
a subspace of ¥, ¥"C ¥”.
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The reason for this strong degeneracy cannot be understood by the
original proof of voN NEUMANN because it admits of no parallels to the
infinite case. Recently there appeared another proof [5] of von NEUMANN’S
theorem which could have been of help for this question. Unfortunately
it contains an error at a central place, and it is not obvious how to cure
this. Another, earlier sketch of a proof [6] which runs on the same lines
as [5] apparently contains this error also.

Therefore, in order to see explicitly why the case of finitely many
degrees of freedom is so simple in comparison to the infinite case, we start
from the dimensionally independent realization of the CCR by measures
on ¥, specialize this to finite-dimensional test function spaces, and
step by step exploiting their particular properties we obtain in a con-
structive way voN NEUMANN’S result. The reduction is based on certain
measure theoretic properties of the field operators. It turns out that the
simplicity of the finite case is due to two facts which make a carrying
over of our construction to the infinite case impossible. Firstly, for
dim¥” = n < oo there exists, up to equivalence, only one quasi-invariant
measure. And secondly, equally important, in the finite case the space
¥ adjoint to ¥ is equal to ¥~ while in the infinite case ¥” <= ¥ holds.
This allows several inequivalent representations for one measure.

B. Form of the Field Operators

1. Case of Cyclic U (f)
First we briefly review representations of the CCR in which U (f) is
cyclic. This case has been treated in [1] and [2].

Let ¢ be some fixed vector in §, and define a complex-valued
function E(f) on ¥~ by

() =L, U ) (2.1)

Then # (f) is a positive functional on ¥”. Due to the assumed continuity
m

of the representation F ( 2 fl) is continuous in the real variables
1

Al o ooy Do for fixed fo, .. ., fn €77. As a generalization of a theorem of
BocuNER [7], ArAxT [1] has shown that for any such continuous
positive functional # (f) on ¥~ there exists a (countably additive, non-
negative) finite measure x4 on the Borel sets of the space ¥ of all linear
functionals? F on ¥~ such that F(f) is the Fourier transform of u,

B(f) = [e®Ndu(F). 2.2)

s
The Borel sets of ™" are generated by the cylinder sets of ¥™. For finite-
dimensional ¥~ one deals with the usual Borel sets in Euclidean spaces.

% i.e., algebraically all, not only those which are continuous in some topology
of ¥,



308 G. C. HEGERFELDT and O. MELSHEIMER :

A more detailed exposition of these questions can be found in [2], [8].
[9]. If ¥ is a nuclear space and if Z(f) is continuous in the nuclear
topology one can take u to be a measure on the space of all continuous
functionals [2]. For other topologies this need not be true.

Equation (2.2) is used for a realization of representations with cyclic
U(f). Let @, be a vector cyclic for U(f),f ¢ 7", and take ¢ = ¢, in
Eqgs. (2.1-2). With each vector in § of the form

m

14 =K21 Az U(fg) ®o (2.3)
one associates the function
m
@(F) =3 Age o (2.4)
1

in L3. The mapping v — o (F) is isometric, by Eq. (2.2). 1t can be ex-
tended isometrically to all vectors of §. Moreover, since also the set of
all functions of the form of Eq. (2.4) is dense® in L2, one has obtained
an isometric mapping of § onto L2. Obviously ¢, (F) = 1.

To find the form of U (f) in L% induced by this mapping, one applies
U (f) to Eq. (2.3) and finds that U (f) acts on a dense set in L2 as multi-
plication by e?(*.%. Then, by continuity, this holds for every element
@(I) of L2.

To find the form of V(g), denote by a, the image of ¢, under V (g),
and let a,(I") be a representative function in the corresponding equiva-
lence class in L2. Applying V (g) to vectors of the form of Eq. (2.3) onc
obtains by Eq. (1.4) and footnote!

V(@) ) (F) = a, (F))ff IR EH0I0 — a (Fyp(F +g).  (2.5)

One has to exercise some care when extending this relation to all elements
of L2 by denseness arguments. For any ¢ € L2 there exists a sequence
of functions vy, () of the form of Eq. (2.4) converging in norm to ¢(F).
One can further assume that the y,(F) converge to ¢(F) pointwise
almost everywhere (a.e.), i. e., 9, (I!) > @(F) for F ¢ N, where N is a
w-null set. By the norm convergence of p, one knows that

IVg)p., — V(g)ep| -0 for a—oco.
On the other hand,

V@) p.) (F) = a,(F)yp,(F +g) .

3 Since the Borel sets in ¥ are generated by the cylinder sets in ¥ it suffices
that characteristic functions of cylinder sets can be approximated. Going over to
the finite-dimensional factor spaces 7”/W associated with these cylinder sets one
is led to usual finite-dimensional Borel measures (cf., e.g., [9]) for which the
completeness of the exponential functions follows from a theorem on Fourier
transform of finite Borel measures [10].



Canonical Commutation Relations 309

Now, from the convergence in norm of y, one cannot conclude that also
the translated functions @ (F) = u, (F + g) converge in norm. Therefore,
in order to determine the form of the limit, we use the pointwise conver-
gence of y, (F) to ¢ (F) for F ¢ AN.

Now, in order to conclude that

(V(g)g) ) = a,(F) p(F + g) (2.6)
a. e. it suffices that N — g is a p-null set, i. e., that u is (¥ —) quasi-
tnwariant®. To show this consider

{@o, U(f) o) = [ et F+0NAp(F + g) . 2.7
Due to the unitarity of V(g) this equals

V@ os V) U(f) oy = €@ [ e Jay (F)Pdp(F) . (2.8)
Hence d u(F + g) and |a, (F)|2d u(F') possess the same Fourier transform
and give therefore® rise to the same measure. Integrating over 9 one
obtains (N +g)=0.
From V(g + ¢’') = V(g) V(g’) one obtains for almost all I

@y g (F) = a,(F)ay (F + g) . (2.9)

For every finite quasi-invariant measure u on the Borel sets of ¥ there
exists conversely at least one unitary representation of the CCR with
cyclic U(f). Choose L2 as Hilbert space, define U (f) as multiplication by
et (#.9) and V(g) as in Eq. (2.6) with a,(F) = {d u(F + g)/d u(F)} /2.

2. General Case as a Direct Sum

Now the theorem of ArRAXI for positive functionals, Eq. (2.2), will be
applied to the general case. First we note the following simple lemma
(cf. [11]).

Lemma 2.1. Let G be a group and D (g), g € G, be a unitary representation
of @ in a Hilbert space $. Then § decomposes into a (possibly uncountable)
direct sum of invariant subspaces in which the representation D is cyclic.
I} 9 s separable then the sum is countable.

A separable Hilbert space £) can be written as a countable direct sum
of subspaces 9, in which U (f) is cyclic. For each n let ¢, be a cyclic
vector in 9, with |, =< 1. Then E,(f) = (@, U(f) p,» is a positive
functional on 77, and Eq. (2.2) applies to E,(f) with a measure u,. As
before each $, is mapped isometrically onto L2 , and under this mapping
U (f) becomes multiplication by e?:)in § = 3' & L2 .

n

1 One can also obtain the form of V(g) directly, without the quasi-invariance
(ARAKI, private communication).

5 This follows from the completeness of the exponential functions, or, as in
footnote 3, directly from the corresponding theorem for finite-dimensional spaces
in [10].
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Now put p = 2 2= u,. Obviously u(4) = 0 implies p,, (4) = 0 for each

n. The Radon-leodym derivative #,(F) = du, (I")/d p(F) is uniquely

determined up to a set of y-measure zero. Define 2, = {F € 7" ; n,, (F) == 0}.

One has p,, (A) = | @a]? = L, p, (¥ — AU,) = 0. Let ¢ (F) be afunction in L2 .

Then the mapping ¢ (F) = @(F) {n,(F)}'/? is an isometric mapping {from

L2 onto the space L2(2l,) of all functions in L2 vanishing outside 2, .

Thus one can write § = 3 & L2(2l,), and U (f) is still the multiplication
n

by ef (F.9).

By induction one can show that one can assume the 2, to be ordered
by inclusion, A; DA, >..., corresponding to a minimal number of
measures. Defining measures f, on ¥ by (,(B) = u(,NB), one
trivially has L;n(V ) = L%(2,). Then u = @, and the other measures
are restrictions of u to 2l,,. One therefore can assume from the beginning
that the decomposition of $ has these properties. We summarize this in
the next lemma.

Lemma 2.2. If  is separable, or if § is a direct countable sum of sub-
spaces which are cyclic for U (f), then one can decompose $) as

9=Yeo L
ki3

in such a way that u = p, is normed and such that the u, are restrictions
of ,u to adecreasing sequence of subsets U, of V', V" =A; DU D ..., U (B)
2N B) = f wn(F) du(F), where y,(F) is the characteristic function

of AU,,. In each LG the operator U (f) is given by multiplication by et (&N,

To determine the form of V (g) in this decomposition, let ¢3 € $ be
the vector with the constant function 1 as component in L2 and Z€ero
components otherwise. Denote by a,% the component of V(g ) in L2 .
Let ™ be a vector of the form

P = 2 AxU(f ) o » (2.10)
Mo
(#"”’)m(F) = 5nm¢n(F) = 5nm2 Z’Kez(F’fK)' (2.11)
1
Analogously to Eq. (2.5) one finds
(V(g)p®)™(F) = a, 2 (F)y™(F + ¢) . (2.12)

We extend this relation to all elements of L% . A sequence of functions
converging in L2 need not converge in L2 for m < n, and in Eq. (2.12)
the product on the r.h.s., which belongs to L,%m, contains a function from
L2, . So we first consider characteristic functions y,(#') where 4 is a Borel
set in ¥, Since y, € L2 for every n, in particular y, € L2, there exists
a sequence of functions y, (F) of the form (2.11) converging in L2 to y,.
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This implies convergence in each L% . One can assume that y,(F) con-
verges to y,(F) pointwise u-almost everywhere, ie., for F ¢ U with
w(Q) = 0. Let z, p{™ ¢ 9 be vectors with n-th component y, and p,,
respectively, and zero otherwise. Then (V (g) 4%)™ (F), the component of
V(g)z% in L2 , is the limit in the norm of L2 of (V(g)p)" = a,2(F)

X p,(F+ g) for o —oco. To find the form of this limit we proceed as
before. For F ¢ A — g one has by pointwise convergence

V(g)pP)y™(F) = a, 2 (F) g4 (F + g) . (2.13)

To obtain an equality of both sides in LZ , one needs that N — g is a
pm-null set. For this it suffices that u (N — g) = 0, i.e., that u is quasi-
invariant. This will be shown further below. With this proviso one has
obtained the form of V (g) for characteristic functions, and the transition
to arbitrary elements of L2 is immediate.

It remains to show the quas1-1nvar1ance of p. The unitarity of V (g)
implies

(P U = 00 Vgl UN V() (gl . (2.14)

Similar to Eqgs. (2.7) and (2.8) this leads to

Onm [ €N py (F 4 g) = Zfe”F Ny, (F) agh, (F) du, (F) . (2.15)

By Lemma 2.2 one has du,(F) = y,(F)-dp(F). Inserting this and
noting that now one can interchange sum and integral® one obtains an
equality for Fourier transforms of (complex-valued) measures. Therefore?

dpn(F + g) = 2 |agy,(F)? 2,(F) d u(F) (2.16)

and for m == n
2 @yt (F) a,t(F) 3,(F) =0 (2.17)

a.e., i.e., for F ¢ 9 = Q(g) with u(RN) = 0. N can be taken to be inde-
pendent of n, m. For a y-null set 4 Eq. (2.16) when integrated over 4
leads to u, (4 + g) = 0 for each n. Hence y = y, is quasi-invariant”. One
can also show the following important result.

Lemma 2.3. All measures pu, of Lemma 2.2 are quasi-invariant.

6 If the sum is mﬁmte, Eq. (2.15), with m = n and f = 0 implies the con-
vergence of 3 |a,h(F)|2 0 (F) for p-almost all F. From this it follows that
2

4

2 @y (F) - a,%(F) x (F) converges for u-almost all F. Since
v
et @0 3@, (Fa,o(F) 4 (F)| = (2 ia,,f,.m)m)w . (2 lag% (F)[2 xv)w,
v v v

one can apply Lebesgue’s bounded convergence theorem.

” To determine the form of V(g) one actually does not need that the measures
1, are ordered as in Lemma 2.2. Up to now only the quasi-invariance of u has
been used, and this follows from Eq. (2.16) if one writes d u,,(F + g) = y,(F + ¢)
X du(F + g) and if one decomposes 4 into disjoint partslyingin ¥, — g, n = 1,2...
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Proof. We use induction on n. For n = 1, u, = p is quasi-invariant.
Assume u,, to be quasi-invariant for m=1,...,n — 1. Let u,(4)=0.
It suffices to consider Borel sets 4 which lie in AZ =, _, — 2, since
on 2, u, coincides with u and since outside of 2,_, also u, _, vanishes,
the quasi-invariance of which has been assumed as induction hypothesis.
So let A C AE. For any F ¢ AL one has y,(F) =0 for » = n and y,(F) = 1
otherwise. Therefore, for any 2 C AE and arbitrary m, one obtains by
Eq. (2.16)

n—1
U (L2 + 9) =Qf ;’1 lagh (B2 dp(F) . (2.18)

Equation (2.17) becomes for F ¢UAE, F ¢ N(g) and any m,m’ with

m %= m'
n—1

2 @ (F) agy (F)=0. (2.19)
=1

As a first step we are going to show that there exists a y-null set %t = % (g)
such that form=1,2,...,n— 1

n—1

X la (BP0 for F AR F ¢ (2.20)
v=1
n—1
Indeed, let %mz{F cAE 37 ]ag’;n(F)P:O}. Then, by Eq. (2.18),
v=1

U (B +g) = 0. The quasi-invariance of pu, for m< n implies
Um (By) = 0. Since on AE p,, and u coincide for m< m, one has
1 (By) = 0. Putting 9 = gnl B,, one obtains Eq. (2.20).
Now consider, for fixed F € 2(E and for m < », the n — 1 row vectors
(@ F), - s (F)).
Equations (2.19) and (2.20) state that for F ¢ R(g) U these n — 1

vectors are mutually orthogonal and nonzero, hence they are linearly
independent. Putting m’ = # in Eq. (2.19) one sees that for F ¢ N (g) the

row vector (a5 (F), . .., a,2~1(F)) is orthogonal to these. It follows that
fory=1,...,n—1
at(F)=0 for F AR F ¢(g) v, (2.21)

ie., u-almost everywhere on 2E. Hence, putting m =n and 2 = 4 in
Eg. (2.18), one obtains u, (4 + g) = 0. q.e.d.

The quasi-invariance of u, and u, (¥"" — U,) = 0 imply by Eq. (2.16)
that a,% (F) - x,(F) = 0 u-almost everywhere on ¥™' — ,,. Hence one can
insert the factor y, (¥) on the r.h.s. of Eq. (2.16). With d u,, = y, d 4 one

obtains dpn(F + g) = X |, ()2 2, (F) d py (F) (2.22)

and thus an expression for the Radon-Nikodym derivative
d pin (' + g)|d i () -
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When generalizing Eq. (2.12) to all vectors of § one has to distinguish
between different kinds of convergence. Any ¢ € $ can be written as a
finite or infinite sum of vectors ¢ which possess only in L% a non-
vanishing component, ¢* (&) say. Therefore

(V(g) @)™ (F) = Lim. 2“ ¢*(F +¢) in L2, (2.23)

where the limit in the mean on the r.h.s. is a limit in the norm of LZ .
We now prove that the sum on the r.h.s. converges even pointwise
Un-almost everywhere.

Lemma 2.4. Let ¢ ¢ %, with component ¢* in L% . Then for w,,-
almost all F

V(g) pm(F Zagn F) ¢*(F +9),
or, for p-almost all F,
(Vg) @)™ (F) = X it (F) g (F) ¢"(F +g) (2.24)
n

where the sum, if infinite, is to be understood as a pointwise limat.
Proof. In case of a finite sum the statement is trivial. For an infinite
sum it follows as in footnote® that 3 |¢"(F)|? x,(F) converges for F not

n
in some y-null set 9N, Denote by y,(F) the characteristic function of
¥ — A,. Then y,(F) vanishes u,-almost everywhere, and Eq. (2.13)
implies that a,2(F) - v, (F + g) vanishes u,, — a.e., hence
g (F) tm(F) g+ g) =0 (2.25)
u—a.e.,ie., for F notin some y-null set N, ; which may be assumed to be
independent of n, m. Hence for F ¢ 9, ,

o7 (F) ym(F) 9" (F + ) = @y} (F) g (F) sn(F + 9) ¢"(F + 9) ,
and to prove Eq. (2.24) it suffices to show that 2 |y ™(F)|? g (F

converges y— a.e. To this end let % € § be a vector With the characte-
ristic function y,(F) as m-th component and zero otherwise. Unitarity
implies

G V(@) @0y = V(=) 249, 90 -
Ivaluating this in terms of integrals the arbitrariness of A yields

_ dulF + \
@2 E) ) = T+ 9) 1 F + ) EEED e, (226)
for F' not in some null set 9N, ,. By Hgs. (2.16) and (2.17), with R (g) the
respective null set, one obtains

_ dpF g
2 8,2 F) a2 F) 1 F) 10 (F) = b 1) bl p— e, (227)
for F ¢ Ny, 5=N,,5 U (A(—g) — g)- Thus one has in particular pointwise
convergence for m = n and F ¢ R, , which is again a null set. Hence the
sum in Eq. (2.24) converges pointwise for F ¢ 9,3 v (RN, —g). qed.
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The equality V(g) V(9') n = V(g + g’) ¢3), considered in each L? .
yields as an analogue to Eq. (2.9)

Lim. 2 “gZ”(F) ag’Z(F + g) = ag+g’77{l(F) in L%m .

Noting that a,} (I + ¢) is a particular ¢*(F + g) the first part of Lem-
ma 2.4 shows that the sum converges pointwise for F' not in some
] set R, oo (),

g (F) =X ag (F)agy,(F +9)  pn—ae. (2.28)

The following theorem summarizes our results.

Theorem 1. Let U (f), V(g) be a unitary representation of the CCR in
a separable® Hilbert space ), with f,q € ¥". Then there exist quasi-in-
variant measures g, = iy = . . . on the Borel sets of ¥, where p, ts normed
and each i, is a restriction of the preceding measures to a subset U, of ¥,
such that $ can be realized as

9=2eolLZ
n

with the action of U(f) and V (g) on a vector ¢ with components ¢" in L
given by

2
Hn

(U(f) (P)m(F) = e’i(F,f) (pm(F)
V(9) )" (F) = X afs(F) ¢"(F + ) o, — e,

with pointwise convergence p,-almost everywhere. The functions a,%(F)
satisfy Bq. (2.28),and d u, (F + g)/d p, (F) isgiven by Eq. (2.22). Conversely,
for any set of such quasi-invariant measures there exists a unitary represen-
tation of the CCR.

Sometimes one allows the test function spaces for U(f) and V (g) to
be different, f €77 and g € ¥, say. The above construction is easily
carried over to this more general case. The only change is that ¥ is
replaced by 77} and that the measures are 7,-quasi-invariant, i.e.,
under translation by ¢ € ¥,. It is also obvious that the above construc-
tion is immediately carried over to multi-component fields.

3. General Case as a Direct Integral

Theorem 1 can easily be rewritten in direct integral form. This will
lead essentially to the form of representations of the CCR obtained by
Lew [3].

Consider the 1,-space of sequences of complex numbers,

(=1, 2% .. ),2 |z”]2< 0. (2.29)
v
8 From the derivation it is clear that the same theorem holds also for a non-

separable Hilbert space & if $ decomposes into a countable direct sum of subspaces
which are cyclic for U (f).
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With each F €7 associate a subspace 9 (F) of 1, consisting of those
sequences which in addition satisfy

=0 i F¢a,.

From the quasi-invariance of u, it follows that wu, (21, — g) = ©,(,)
and hence u, (A, N (A, — 9)) = 1, (A,). Therefore A, — g and 2, differ
at most by a w-null set, and consequently

This implies
dimH(F)=dim HF +g) wu—a.e., (2.31)
i.e., for ¥ not in some y-null set N,(g).

For each y € 9 with components y in L2 define a function y(F) on
¥ with values in 9 () for y-almost all F' by (cf. [12])

V(F) = @' (F) g1 (F), p*(F) yo(F), - . ).
That condition (2.29) is satisfied for u-almost all F' follows from footnote 6.
Denote for each F the norm of ¥ (F) by | ¥ (F)|, and define

12 = [P E)Ndp(F) .

Then obviously || = |v|, and one has obtained a realization of & as
a direct integral. In this realization U(f) acts as multiplication by
et @7 and V(g) as

(V(g)¥) (F) = (2 a)L(F) ¥ (F + g), . . ) a.e. (2.32)

where
ag(F) = a2 (F) g, (F) (2.33)

and where ¥ (F) is the n-th component of ¥ (F'). The sums in Eq. (2.32)
converge 4 — a.e.
Consider the matrix function
, s du(F 1/2
B,(F) = (a0 - {2

From Eq. (2.33) one has a,} (F) = 0 for ¢ > »(F), and from Eqgs. (2.25)
and (2.30) ;% (F) = 0 for & > n(F) and F not in the exceptional null sets
of those equations. Hence, for ¥ not in some null set %, ,, B, (¥) is non-
trivial only for this »(F) X n(F) submatrix. Egs. (2.16—2.17) and
(2.27), together with Eq. (2.30), show that this submatrix is unitary for
F not in some null set. Since § (F' + ¢) and 9 (F) are equal for F ¢ N,4(9),
by Eq. (2.31), B,(F) can be considered as a unitary operator from
HF + g) onto H(F) for py-almost all F. Eq. (2.28) becomes

B,(F) By(F + g) = B,y p(F) e, (2.34)

i.e., for F not in some null set AN, ... The results for the direct integral
formulation can be summarized as follows.
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Theorem 2. Let U(f), V(g) be a unitary representation of the COR in
a separable® Hilbert space 9 with f, g €. Then there exists a quasi-
wnvariant normed measure u on the Borel sets of ¥ and a direct integral
decomposition of 9,

9 =®f@(F)dM(F) ;

with the following properties.
1. For given g ¢ ¥~ one has for p-almost all F € ¥

dim H(F) =dim H(F + g) .
2. Let w €9, and let Y (F) be the corresponding vector function. Then
U(f), V(g) are given by

UNYP)F) = @I (F)
du(l 4 g) |12

V(g ®) () = {L s B + ),
where B, is a measurable operator function on ¥ and where, for p-almost
all F, B,(F) is a unitary operator from £ (F + g) onto $(F). For any
7,9 €7 Eq. (2.34) holds. Each $(F) can be realized as 1,-space of all
sequences (2%, 2%, ...2%, 0, ...) with n = n(F) being the dimension of $(F').

This is essentially the form of LEw [3] (representations satisfying

the condition of footnote 8 are called countable there). The only difference
is that instead of ¥ the somewhat larger space 7", is used where ¥ ¢,
consists of all (real) linear functionals on ¥~ taking on finite or infinite
values. To see the connection with a finite number of degrees of freedom
¥ is more suitable. Again the results can be carried over to different test
function spaces for U (f) and V (g).

C. Connection with Finitely Many Degrees of Freedom

1. Specialization to Finite-Dimensional ¥~

Theorems 1 and 2 hold both for finite- and infinite-dimensional ¥
In the former case one knows from voN NEUMANN’S theorem that all
representations decompose into a direct sum of Schrodinger representa-
tions. That this is so is in no way obvious from the general form, and it
is also not obvious why there is such a great distinction between the
CCR with finite- and infinite-dimensional ¥”. In the following we are
therefore going to explore this question. By deriving voN NEUMANN’S
theorem from the results of Section 2 we intend to show the peculiarities
of the finite case which prevent the carrying over of the derivation to
the infinite case. We start from Theorem 1, but Theorem 2 can be used
as well.

For dim?" = N < o ¥  is a finite-dimensional real Euclidean space,
and therefore ¥ = ¥ = RY¥. Introducing an orthonormal basis ;,...,%
and denoting the coordinates of a general element by z = (a1, . . ., 2%)



Canonical Commutation Relations 317

one can consider the elements f,g € ¥~ to be coordinate row vectors,
similarly for the linear functionals. Therefore we replace F' by z in the
preceding formulas. The differential of the Lebesgue measure induced by
the scalar product in R¥ will be denoted by d¥z, d¥z = dat ... dz".

The first important restriction now comes from the quasi-invariance
of the measures u,. For a finite-dimensional space any such measure is
equivalent to the Lebesgue measure [13], which means that there exist
functions g, (v) positive almost everywhere and satisfying

d pp (@) = 0, () d¥x . (3.1)

Since the measures y, are restrictions of u it follows from the positivity
of g, (x) that all u, are equal,

dn () = dp(@) = () ¥ . (3.2)

As in the general case one can now go over to the Lebesgue measure
since only the equivalence class of the measures matters. But for one
such class there could still be many inequivalent representations, due
to a possible freedom in the choice of the a,%(x). The main task therefore
consists in showing that for finite-dimensional ¥~ any possible choice of
the a,7(x) leads to a direct sum of Schrodinger representations and why
in the infinite case an analogous result does not hold. In order to retain
the connection to the infinite case we use d p (x) instead of g(x) d¥x as
long as possible.
It is clear that one has to exploit the functional Eq. (2.28). Define
by (x) by p e
ayi @) = {0 by ) (33)
Then the matrix B,(z) = (b,%(x)) is, by Egs. (2.16), (2.17) and (2.27)
unitary for almost all z, i.e., for  not in some null set 9t = AN(g). Eq.
(2.28) now reads
Bg(x) Bg’(x +9) = Bg+g'(x) a.6., (3.4)

i.e., for # not in some null set N(g, ¢’).

Kirirrov [6] has briefly sketched how one can obtain voN NEUMANN'S
theorem starting from a direct integral realization of the Hilbert space
of quantum mechanics (cf. also [5]). He is led to the same functional
relation as in Eq. (3.4), and putting = 0 finds

B,(g9) = B,(0)* By 4(0) . (3.5)

From this he concludes in two lines voN NEUMANK’S result. However,
Eq. (3.5) is in general not true since Eq. (3.4) is an almost-everywhere
equality with the exceptional set depending on g, ¢’. The underlying
misunderstanding in [6] as well as in [5] seems to be due to considering
L2 as a space of functions and not as a space of equivalence classes of
22 Commun, math, Phys.,Vol.12
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functions. In the equivalence classes belonging to ¥V (g) g9 one could have
chosen representatives @, (x) which equal any prescribed numerical
value for z = 0, thus one could choose b,%(0) = d,,, for all g. Then
Eq. (3.5), if correct, would mean that B,(x) is always the unit matrix.
Similarly one could make B, (x) vanish indentically. Furthermore, since
(g, ¢') may depend on g, g’ there may exist no , such that Eq. (3.4)
holds for all or almost all g, g’. If one has such an @, one would get an
expression similar to Eq. (3.5). That this cannot hold in general follows
immediately from the fact that Eq. (3.5) implies that B, (x) is measurable
in g for fixed = which is certainly not the case for an arbitrary selection
of the representatives B, (z). The same remarks apply to the existence
of the (unitary) inverse of B, ().

However, further below it will be shown that one only has to know
that the B,(x) can be chosen to possess a structural form similar to
Eq. (3.5), and in this sense Eq. (3.5) gives an important heuristic hint.
The following lemma will allow an immediate proof of voN NEUMANN’S
result.

Lemma 3.1. There exist a matriz §(x) consisting of measurable functions
B (x) and unitary a.e., a null set R in RY X RY, and a particular
choice of the B, (x) such that

B,(x) = p*(@) fle+g) for (2,9) ¢RP. (3.6)

Nothing more than this form of B,(z) is needed. The proof of Eq.
(3.6) is based on the next three lemmas pertaining to measure theoretic
properties of the b,% ().

2. Measure Theoretic Properties of the Operators B, (x)
Now it will be shown that the a,7(x) and B,(x) can be chosen to
fulfil additional properties®.
Lemma 3.2. There exist measurable functions b (2, g) on RY x RY
and a null set R, such that for any choice of the b, (x) one has

bp(e, g) = by (@) for g ¢R,, 2 ¢N(g) 3.7)

where N°(g) s a null set depending on g (and on the choice of b,1(x)).

Proof. Let E', E'" be measurable sets in RY, and let yz., xp- be the
corresponding characteristic functions. Denote by y% the vector in
® L2 whose components are yz in L% and zero otherwise. Consider

GV (g) %) = [ xw(@) ag (@) du(@) . (3.8)
RN

® Araxi has pointed out to us that in the context of induced representations
such measurability questions have been investigated by Mackry (for Lemma 3.2
cf. in particular Duke Math. J. 16, 313 (1949)).
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The Lh.s. is a bounded continuous function of g. Hence the integral
over d u(g) exists, in particular

V(B X E')= [dpg) xe (@) [ dp@) 1m @) e (@) (3.9)

is well-defined. Denote by M the algebra of sets in RY x R¥ obtained
by finite unions and differences of product sets in B¥ x R¥. It is clear
that » can be extended to a finitely additive set function on IR. Let E,
and F; CF, ... bein M, and let F,, 4 K. By means of Schwarz’s inequality
and unitarity of V(g) one obtains

[v(Ey) —v(F)> = [dulg) [ du(®) yg—r,(® 9) - (3.10)

For F,, ¢ E,this tends to 0. Hence v is countably additive on 9.

Therefore » can be uniquely extended by the Hahn extension [14]
to a countably additive set function on the ¢-algebra determined by M,
i.e., on the Borel sets of RY X RY. If Fis a p X p-null set in RY X RY,
Eq. (3.10) implies » (E) = 0.

Hence there exists a measurable function a(x, g) on RY x RY, the
Radon-Nikodym derivative of » with respect to u X u [15] such that
for each Borel set B in RY x RY

=Ef dp X p) (2, g) ap(x, g) . (3.11)

Applying Fusint’s theorem to the r.h.s. of this relation one obtains for
product sets B’ X E"

Jdnt {fd,u a,m )}:E[du(g){F[dM(w)a%(w,g)}. (3.12)

Since this holds for all E”” C R¥, the terms in curly brackets are equal for
almost all g, where the exceptional null set N5 may depend on E’. In
order to get rid of this dependence let first B’ be a rational rectangle in
R¥, ie., an N-rectangle with sides parallel to the coordinate axes and
with rational coordinates for the end points. Denote by 2, the union of
all such Qz. Then AN, is again a null set. Since each N-rectangle is a
union of countably many rational N-rectangles, the equality holds for
all measurable sets if g ¢ N,.. This implies that for g ¢ N, the integrands
are a.e. equal, where the exceptional null set (g) can depend on g.
Putting b7 (x, 9) = {d u(x + g)/d u (@)}~ V2 @l (x, g) this becomes Eq. (3.7).
The null sets may be assumed to be independent of m, n. q.e.d.

The previous lemma means that for g ¢ 9%, we can take a’(x, g) and
b (x, g) as representatives for a,7(x) and b,%(x), respectively Hence the
matrix B(z, g) = (b%(x, g)) satisfies Eq. (3. 4) for g, 9,9+ 9 ¢ N, andx
not in some null set (g, ¢'). The matrix is furthermore unitary for
g ¢ N, and z ¢ N(g). We now show that these properties can be sharpened
in the following way.
22+
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Lemma 3.3. There exists a null set NP in RN x RN such that for
(@, 9) ¢ RND the matriz (b (x, g) is unitary.
Proof. For each g ¢ N,., there exists an A (g) such that for x ¢ N(g)

2 b5, 9) b, 9) = Oum

2 0, 9) V(@ g) = O - 049

In order to proceed similarly as in the proof of Lemma 3.2 we have to
show that the sums define measurable functions. This is only a question
of convergence for arbitrary x and g. For m = n all terms are positive
so that in this case the sums define extended real-valued non-negative
measurable functions. Integrating with respect to x over £’ and then
with respect to g over E'' and applying FuBINT's theorem one abtaing
in the same way as above that for (z, ) not in some null set 2 < R¥ x RY
the sums converge and equal 1. This implies that the sums in Eq. (3.13)
converge for (z,g) ¢ L«Z' NP, Therefore, if (v, g) is the characteristic

function of the complement of U ND, one has
Zb (z, g)b“ (x, g) 7(x, g) = 6nm

for (z, g) ¢ li ND, g ¢ N,, 2 ¢N(g), and the sum converges for all (x, g), thus

defining a measurable function on R¥ x RY. Integrating with respect to
du(x) and then with respect to d u(g) over B, and K, one proceeds as
before. q.e.d.

In a similar fashion Eq. (3.4) can be sharpened for b%(x, g) in the
following way.

Lemma 3.4. There exists a null set NS C RY x RY X RN such that for
all (z,g,9') § RN the matrices (b (z, 9)), (bi(x + g, ¢")) and bl (x, g +¢'))
are unitary and satisfy for all m, n

Z'b“w 9 bgx+g,9) =002, 9+9)

(convergence of the sum for (x, g, g') ¢ N® is implied ).
Now we are in a position to prove Lemma 3.1.

Proof of Lemma 3.1. For almost all #, i.e., for  not in some null set R,
R ={(g,9); (v, 9. 9) €RO}

is a null set. Here N is the null set of Lemma 2.4. In the same way one
has for « not in some null set @ that

gz(l) = {g z, g 691(2)}

is a null set, where 91(2) is the null set of Lemma 2.3. Let now x, be some
fixed element not in R U RO, Then the matrix B(wy, §) = (bi(2, §))
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is unitary for almost all § ¢ RY, by Lemma 3.3, and by Lemma 3.4 one
has for (g,¢') ¢ QZ%) U (QZ%)XRN) that B(z,,9), B+ ¢,9), and
B(zy, g - ¢') are unitary and satisfy

B(wg: 9) Bl + ¢, 9') = B, g+ ¢) -
Hence for (g, ') ¢ L U (R x RY)

Bz +g,9") = B(xo, 9)* B(xo, 9+ 9¢') - (3.14)
Put f(z) = B(xy,  — %) and

NO = {(@,9); (@ — 2, 9") €RP U (AP X RN}

Then fB(z) is a unitary matrix for almost all z, and Eq. (3.14) can be
rewritten as

Bz, g) = B@)* Bz +g¢) for (2,9)¢NO.

Now, for g ¢ 9, one can take B(x, g) as a representative for B, (x), by
Lemma 3.2. Hence, putting NP =N® U (RYXRN,) one arrives at
Lemma 3.1.

3. Von Neumann’s Theorem and Comparison with the Infinite Case

In a similar way as in [6] where voN NEUMANN’S theorem was
deduced from the (unjustified) Eq. (3.5) one obtains this theorem from
Lemma 3.1. If in the realization of §) as a direct sum, $ = P L2 (RY),

n

the component of a vector p €9Hin L2 is y*(x), one can associate yp with
the vector function y(z) = (y!(x), 1/)2( ...), and one knows that for
almost all

lw@))2 =2 [p(x)]2< oo
Now put
P(@) = o ()2 B(x) p(x)

where g (z) is given by Eq. (3.2). Due to the unitarity of §(x) for almost
all x one has

Jip@| d¥a = [o@)| =) p@)|*d¥e = [p@)]*dpulw) .
Therefore the mapping y(z) <> ¥ (xv) defines an isometric mapping,
® L2 (RY) & o L*(RY).

It is clear that under this mapping U (f) remains multiplication by e?@ 1.
To see what V(g) becomes under this mapping, we note that for
almost all g, i.e., g not in some null set N,

N = {21 (¢, g) € XD}
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is a null set. So let g ¢ N’. Then Lemma 3.1 gives, for z ¢ Qlf,l) and z not
in the null set where f(z) is possibly non-unitary,

(V(@)P) (x) = 0@ B(x) (V(9) ) (x)
=0+ g2 ) f*(x) B+ g) plx+g) =P+ g).

Thus U(f) and V(g), for g ¢ R, do not mix the different terms in the
direct sum @ L?(RY) and act in each as in the Schrodinger representation.
Since RY — N’ is dense in RY it follows from the continuity of the
representation that all ¥ (g) have the Schrodinger form in each L2(RY).

Up to now we have assumed that $ is separable. But since by Lem-
ma 2.1 every representation is a (possibly uncountable) direct sum of
cyclic representations and since for a cyeclic representation of the CCR
for finitely many degrees of freedom the Hilbert space is separable the
problem is reduced to this case. Thus one has obtained vON NEUMANN’S
theorem, that every continuous representation of the CCR for finitely
many degrees of freedom in a separable or nonseparable Hilbert space
is unitarily equivalent to a direct sum of Schrodinger representations.

If the representation is not continuous but only measurable one can
show for a separable Hilbert space that the representation is also con-
tinuous [16]. Thus continuous can be replaced by measurable if & is
separable.

If the representation is cyclic with respect to U (f) there is only one
term in the decomposition of £ so that the representation is unitarily
equivalent to the Schrodinger representation and therefore irreducible.

Now it is easy to see why the results cannot be taken over to the
infinite case. First of all it has already been remarked that for dim 7" = co
there can exist many inequivalent quasi-invariant measures on 7.
Representations belonging to inequivalent measures are, however,
already inequivalent with respect to U (f). Secondly, for one measure y
there can exist many possible a, (¥) (or a,?(F), respectively) leading to
different inequivalent representations. All this is due to the fact that
Lemma 3.1 for the form of B, (F) no longer holds. A part of the proof
of this lemma could be carried over to the infinite case if one has an
appropriate measure on #”. But the crucial point is Eq. (3.14). In order
to get from B(F,+ g,g’) the form of B(F,g¢’) for all F ¢ ¥ one needs
that g runs through the same set as F does, i.e., through all of ¥”'. But
for dim¥” = oo one has ¥~ ¢ 7.

Summarizing the reasons for the great distinction between the CCR
for a finite and an infinite number of degrees of freedom one can say
that the richness for the infinite case is due to the existence of many

inequivalent quasi-invariant measures and to the nonequality of ¥~
and 7.
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