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Scattering into Cones I: Potential Scattering

J O H N D A Y D O L L A R D *

Department of Mathematics, University of Rochester, Rochester, New York

Received August 16, 1968

Abstract. In the non-relativistic time-dependent theory of scattering, we com-
pute the probability that a particle with given initial state should scatter into
a cone with apex at the origin. A formula for this probability is found which holds
good for a large class of short-range potentials and also for Coulomb potentials.
The formula is obtained by showing that if the initial state of a particle is specified
by /, then its position probability density at large positive times can be taken to
be \(e-*iEt εiBo* f) (χ)\K

Introduction

In the time-independent theory of non-relativistic potential scat-
tering, the principal object of interest is the differential scattering cross-
section σ(θ, 0). This quantity has a very simple interpretation, as it is
the probability density that an incident particle will be deflected through
a certain angle during the scattering process. Typically, in the time-
dependent theory, one loses sight of the simple geometrical features of
the scattering process and concentrates attention on the computation of
transition probabilities from one state to another. In this paper, we will
emphasize geometrical features in the time-dependent theory by com-
puting the probability that a particle with given initial wave-function
will be scattered into a cone C with apex at the origin of coordinates.
This quantity has an easily visualizable meaning, and it seems a natural
thing to calculate in view of typical experimental setups. The formula
obtained for this probability can be put in a simple form which is appli-
cable both to scattering problems involving a large class of short-range
potentials and to scattering by Coulomb potentials. The formula also
admits of a generalization to problems involving n particles. In this paper
we discuss the case of potential scattering, n-body problems will be
dealt with in a forthcoming paper.

Potential Scattering into Cones

Orientation. We describe a nonrelativistic particle by a wave-func-
tion, i.e. a normalized element Ψ of ^f 2 (R 3 ) , the Hubert space of com-
plex valued square-integrable functions on three-dimensional Euclidean
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space. |!F(ίc)|2 is the position probability density (ppd) for the particle,
and if Ψ is the Fourier transform of ψ, then \ψ(k)\2 is the momentum
probability density (mpd) for the particle. If the particle has mass m,
then the Hamiltonian governing the motion of the particle has the form

(1)

where A is the (natural self-adjoint extension of the) Laplacean operator
and F is the operator consisting of multiplication by the real function
V{x). Under appropriate conditions on V (it suffices that V can be
written as the sum of a bounded function and a square-integrable func-
tion), H is self-adjoint with the same domain as Ho [1]. The wave-
function ψt of the particle develops in time according to

and we shall be interested in the asymptotic behavior of the ppd de-
termined by Ψt when t -> ± oo.

We begin with some simple remarks about the behavior of a free
particle. In particular we shall factor the free time-propagation operator

e-ιΞot j n ^ - o £ w o p a r t s m o r c [ e r to study easily the asymptotic behavior
of the ppd of a free particle.

Lemma 1. For t Φ 0, define the operators Gt and Qt by

( f ) ( f ) 0)
and

(Qtf)(oe) = eim^2tf(x). (4)

Then Gt and Qt are unitary, and for ί φ O w e have

e-iHJ = G t Q t . (5)

Proof. It is easy to check that Ct and Qt are unitary. Hence all
operators occurring in (5) are continuous, and we need only verify that
(5) holds on a set dense in j£f2, which we take to be Schwartz' space [2]
Sf of C°° functions which, along with all their derivatives, vanish rapidly
at large values of |ap|. But if / £ £f, one need only write down the integral
defining the Fourier transform in Ct and rearrange to find

dx . (6)

The right-hand side of (6) is the well-known integra] representation for
(e~ίHot f) (x), and this completes the proof of the lemma.

Lemma 2. Let f ζ £e2. Then

Urn l l e - ^ / - CM = 0 . (7)
t>±oo
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Proof. B y L e m m a 1, a n d u s i n g t h e u n i t a r i t y of Ct, w e h a v e f o r ί φ O ,

(8)
= /|e^^-l|2|/(a?)|2da?,

 }

and the last integral approaches zero as t -> ± °° by LEBESGUE'S domi-
nated convergence theorem, proving the lemma.

Lemma 3. Let gt and ht belong to J? 2 and let \gt\ = \\ht\\ = 1. Further
suppose that lim \\gt — ht\\ = 0. Let 3 be a measurable subset of ΪR3.

Then
lim / \gt(x)\2 dx = lim / \ht(x)\2 dx , (9)

t —> + oo c * £ —> j - o o o

in the sense that the limit on the left-hand^ side exists if and only if the limit
on the right-hand side exists, and when both exist they are equal.

Proof. As is easily seen, it suffices to show that the quantity

/ I \9tix)\2 ~ dx approaches zero as t~> ±00. But

<S / I |flrt(a:)|a -\ht(xψ\dx

= / (\gt(x)\ + \ht(x)\) I \gt(x)\ - \ht(x}\ I dx

< / (|fir4(ar)| + \ht(x)\) \gt(x) - ht{x)\ dx
(10)

proving the lemma. We have used in (10) some familiar inequalities
involving absolute values and the Schwartz and triangle inequalities for
functions in i? 2 . We shall express Eq. (9) saying that the ppd determined
by gt can asymptotically be replaced by the ppd determined by ht.

We can use the above results to obtain an intuitive picture of the
asymptotic behavior of a free quantum-mechanical particle as follows:
with a free quantum-mechanical particle of mass m described by the
wave-function e~ιHot f, fζJ?2, we associate a corresponding classical
particle, defined to be a free classical particle of mass m which starts
from the origin of coordinates at time t = 0 and has a mpd given by
\f(k)\2, i.e. the same mpd as the quantum mechanical particle under
consideration. The ppd at time t for the corresponding classical particle

is easy to calculate, and is found to be

at Eq. (3) shows that this is the same as \(Ctf) (x)\2. Taking gt and ht

as e~lBot f and Ctf respectively in Lemma 3, we then find (because of
Lemma 2)

lim f \(e~ίΞot f) (x)\2 dx = lim

\ 2
I (t 4= 0). A glance
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and this equation says that in any calculation of the position of the
quantum-mechanical particle, the ppd may asymptotically be replaced
by the ppd for the corresponding classical particle. This fact makes it
easy to picture the asymptotic motion of the quantum-mechanical
particle. We shall in the sequel refer to Gt of Eq. (3) as the classical
transformation, because \{Ctf) (x)\2 is the ppd for the corresponding
classical particle.

We now introduce a cone G with apex at the origin of coordinates.
G is defined as the set of all points x £ 1R satisfying

x - n ^ oc\x\ (12)

where n is a unit vector and 0 < α ^ 1. Along with G, we define the
cone — C which is the reflection of C through the origin, i.e.

-C=- {-x\x£C}. (13)

(In the sequel, we shall occasionally denote C by + G.) We shall compute
the asymptotic probability that a free quantum-mechanical particle will
be found in the cone G:

Lemma 4. // a quantum-mechanical particle is described by the wave-
junction e~ιHot /, / £ J£?2, then the asymptotic probability for finding this
particle in the cone G as t —> i oo is given by

lim / \{e-iΉotj) (x)\*dx=- [\j(kψdk. (14)
t-*±co c ± G

Proof. The required probability is the left-hand side of (14). By (11),
the integrand on the left-hand side of (14) can be replaced by

~Γ / ~Γ~ -But then the change of variable k = —r-, which carries C
t i \ t /1 t

into ± G according as t > 0 or t < 0, yields the result immediately.
Lemma 4 is, of course, hardly surprising. It says that the probability

for eventually finding the particle in G at large positive times is the same
as the probability that its momentum is in (7, and makes a similar
statement about large negative times.

We have now obtained all the formulas we need for our discussion
of scattering theory.

To refresh the reader's memory and to set the stage for the dis-
cussion to follow, we summarize some facts about the time-dependent
theory of scattering. To describe the scattering of a particle whose
Hamiltonian is given by Eq. (1), we specify a state of the particle by
requiring that at large negative times the wave -function should have the
form e~iHot f, with / ζ J£2. This, of course, is just a manner of speaking,
because actually we believe that at all times the wave-function has the
form given in Eq. (2), the time-dependence thus always being goverened
by the full Hamiltonian. What the requirement really means is this: we
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specify / ζ J£2 and require that ψ0 of Eq. (2) should be so chosen that

lim | |e- ί £ r * Ψo - e~iΠot /|| = 0 . (15)
£->— oo

The function / will be called the initial state of the particle. If for
every / £ j^?2 we are to be able to find a Ψo satisfying (15), we must
require the existence of the Moller wave-matrix

β-lim eiBte-iH^ = Ω-. (16)
t~> — oo

Then, if / is given, (15) is satisfied with Ψo = Ω~ /, and clearly this is
the only choice of Ψo which will satisfy (15). Thus, to say that / is the
initial state of the particle is the same as saying that the wave-function
of the particle at all times is e~ίHt Ω~f.

By similar arguments, we are led to require the existence of Ω+

} the
limit of eiΠt e~ιΞot as ί->-j-oo. A wave -function e~iEtΨ0 converges
strongly to e~ιHot g as t -> + °° if and only if Ψo = Ω+g. Ω^ are iso-
metries. We denote by R± the range of Ω±. I t is natural to believe that
R+ and R~ are identical, since R~~ is the set of states ψ0 at time t — 0
describing particles which "become free" as t-+ — oo, and R+ is the set
describing particles which ''become free" as t-> + oo. In the sequel, we
shall assume that the potential V occuring in (1) is such that Ω± exist
and R+ = R~. (For this to be true it suffices [3] that F ζ ^ 1 ^ 3 )
Γ\ J5?2(IR3).) We shall denote R± by R. Denoting by PR the projection
on R, we have

. (17)

If the wave-function of a particle is specified by the initial state /, then
the wave-function ψ0 at t = 0 is equal to Ω~f, which belongs to R, and
writing

Ψo = Ω-f = PRΩ-f - Ω+Ω+*Ω~f (18)

we see that at large positive times the wave-function e~iΠtΨ0 converges
strongly to e-ίHotΩ+*Ω-f, or e~ίHot Sf, where 8 is the ^-matrix:

8 = Ω+*Ω~ . (19)

S is unitary. Infact, this statement is equivalent to the statement
R+ = jR~. We now ask this question: given the initial state / for the
particle, what is the probability P(f, C) that at large positive times the
particle will be found in the cone G ? (We will call this the probability
that the particle scatters into C.) The answer is now quite simple.
According to the above, the probability is given by

P(/, G) - lim / \(e-iHt Ω~f) {x)\* dx . (20)
ί—>+ OO Q

We can establish the existence of the limit in (20) and at the same time
evaluate the limit as follows: since R+ = R~, we know by the above
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discussion that e~int Ω~f converges strongly to e~ιHot Sf as t -» -f oo, so
that, applying Lemma 3, we can asymptotically replace the ppd in the
integrand in (20) by the ppd determined by e~iHot Sf. Then by Eq. (14)
we immediately have

P(f,C) = f\8f(k)\*dk. (21)
C

This result is, of course, just what was to be expected. I t has been
derived before [4], under somewhat different hypotheses on V and by
a method which is unnatural in the present context. The proof given
above generalizes easily to n-hoάγ problems.

We now return to Eq. (20), which we shall generalize slightly in such
a way that the generalized equation applies also to scattering by the
Coulomb potential. The idea is very simple — in the ppd e~~~ίHt Ω~f we
merely replace Ω~ by the expression e~ίHt eίHot which converges to Ω~
as t -> -f oo (since eiHt e~^^oi converges to Ω~ as t -> — oo). We state the
result as

Theorem 1. Let a non-relativistic particle have the initial state f. Let the
Hamiltonian H describing this particle be such that the strong limits ΩL

exist and R+ = R~. Then the ppd determined by the wave-function

e-iiit Q-j oj tfa particle can for large t be replaced by the ppd determined
by e-2iHteiH(>tf, i.e.

Km f\{e-iHtΩ-f)(x)\*dx^ lim / \(e~2iHt eiH^ f) {x)\2dx ,
t—>+ OO iζi t—>+ CO g

where S is any measurable subset of R3. In particular, the probability
P(f, C) that the particle scatters into the cone C, already computed in Eqs.
(20) and (21), is also given by

P(f, C) - lim / \{e~2iHt eiΉ^ f) (x)\2 dx . (22)
ί—>+ OO Q

Proof. We have
\\p-2iHt JHot f __ p-iHt Q- f\\

By Lemma 3, this shows that the ppd determined by e~iHt Ω~f can be
replaced by that determined by e~2iHt eιHot f, and the theorem is proved.

With Eq. (22) we have arrived at a formula for P(f, C) which repre-
sents a departure from the usual time-dependent scattering theory,
because (22) no longer involves the Moller wave matrix Ω~. To be sure,
we have derived (22) on the assumption that the MMier wave-matrices
exist and R+ = R~. However, the MMler wave-matrices do not appear
in (22) and it is at least conceivable that (22) can be used as the definition
of the probability for scattering into C in a case when the Moller wave-
matrices do not exist, thus providing a simple generalization of non-
relativistic scattering theory. The reader can easily check that in the
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case of a constant potential F φ O (in this case the Moller wave-matrices
do not exist because eiH t e~ιHot = eiVt does not converge as t -> ± °°)
formula (22) gives the correct result — P(/, C) is the same as for a free
particle. In fact, in this case the ppd determined by e~%ίKt e%Hot f is
identical with that determined by the solution e~ιHot f of the free Schrό-
dinger equation. It might be objected, however, that the case of a con-
stant potential has never been a troublesome one, and that the constant
should be set equal to zero so that the Moller wave-matrices do exist.
We therefore proceed to consider a harder case, and one of great physical
interest: we take V to be a Coulomb potential.

For the convenience of the reader we recollect some facts about scat-
tering by a Coulomb potential. If the Hamiltonian for the particle to
be scattered is

Λ p p

JJ __ £ i β l β2

then it is no longer consistent to assume that at large positive and
negative times the wave-function e~iEtψ0 of the particle converges
strongly to functions of the form e~ίHot f, with / £ J^?2. Instead, the wave-
function describing a scattering process converges strongly at large
positive and negative times to functions of the form e~iHoc^ g, with
g ζ j£?2, where [5]

with
τjf r mz\Z<ι I — 2 |ί Δy

and

Although e~ιHoe^ g is not a solution of the free Schrδdinger equation, it
is still possible to prove [5] that for any measurable subset 8 of R 3 we
have

lim J \(e~iH*<® g) (x)\* dx

= lim
(26)

so that asymptotically the ppd determined by e~%Hoe® g can be replaced
by that for the solution e~iHot g of the free Schrόdinger equation. We
can thus think of the particle as travelling freely at large times. If the
wave-function e~iHtψ0oί& particle converges strongly at large negative
times to e~~iΉ-00^ f, we shall refer to / as the initial state of the particle.

The strong limits
lim etEt e-iΠ"® = Ω± (27)

£ > ± o o
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exist and are isometric. If / is the initial state of a particle, then its
wave-function at all times is e~iHt Ω^~ f. The ranges of the operators
Ω^ are the same, and just as before it follows that if the initial state of
the particle is /, then at large positive times the wave-function e~ίΉt Ω^ f
of the particle converges strongly to e~

ίπ°c^ 8cf, where 8C is the Coulomb
^-matrix:

8e = Ω+* Ω- . (28)

We can now ask for the probability P(f, C) that a particle with initial
state / is scattered into C. Using the above discussion, Lemma 3, and
(26), we have

P(/, G) ~- Km / \e~iΠt Ω~ j) {xψ dx
ί > + 0 O Q

== lim
ί-»4-oo

= lim
t~>+ oo /

~~ \ dx

= f\Scf(k)\*dk,
G

just as before.
We now want to show that P (/, C) of (29) can actually be obtained

by the prescription (22). In order to do this, we need to analyse the
asymptotic behavior as t -> + oo of the function

(30)

When H is given by (24).
We will see that

lim 11̂  (ί) - eriπ^ e-2iHΌeV> scf\\ = 0 . (31)
t—>-f- oo

This will show (Lemma 3) that the ppd determined by F(t) can asympto-

tically be replaced by the ppd determined by eiHot e~2iHoc^ SJ. This

latter ppd, however, can asymptotically be replaced by — 8cf \~η~)

[This fact is an immediate consequence of (26) if we merely replace there
the charge e, occurring in the definition of H'oc(t) by 2e, this replaces
H'octt) by ^Ήf

oc{t) and gives us the desired result.] This, of course,
implies that the prescription (22) gives the same result as the pre-
scription (29).

We state explicitly a fact that is implicit in the preceding discussion:
if the initial wave function is /, then at large positive times the ppd for
the particle can be replaced by \(e~2iHt eίHot f) (x)\2 when integrating
over any measurable set: this is because the ppd determined by the
Λvave-function e~iHt Ω~f can be replaced by the ppd of e~iΠoΛt) Scf,
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fit 13 J ^*~/ / •???. 3C \ 2

λvhich can be replaced by — \Scf\——\ > which can be replaced,

according to the last paragraph, by \(e-2iHt eιHot f) {x)\2.

In order to prove (31), we rewrite this equation as

lim leiHolF(t) - e - 2 ΐ J Ϊ " ( ί ) SJ\\ = 0 . (32)

t—>~\- oo

Now because of the intertwining relations [5]

oilli Π i — O ^ piHot CZΊλ

we have
pίllot o _ q pi£ίot (OΛ\

It follows that any bounded function of Ho commutes with Sc, and in
])articular. since H'oc{t) is a function of Ho,

e-iHΌo<nSc=-.8ee-iH'~®. (35)

Thus, Λve must show that

lim U^^Fit) - e-iUΌcV> Sc e-
ίHΌcM /|| = 0 , (36)

or, what is the same thing,

l i m \\(eιHΌc(V eίHotF(t) e < f Γ ^ ( ί ) - >SC) e-m'f»<ti /j| = 0 . (37)

Using (27), the fact that #όc.(ί) =-- - H'oc{- ί), and the fact that the
ranges of Ω^ are the same, it is not difficult to see that

l i m eiH'o*® eiΊi°ιF(t) eiH'«>® = 8C. (38)
ί ->+ CO

(38) does not, of course, imply (37) although it suggests why (37) is true.
In order to prove (37), one has to resort to the same type of detailed
estimates as were given in [5] to prove the relations (27). An indication
of the proof of (37) is given in Appendix I.

We summarize the preceding results in
Theorem 2. If H is the Coulomb Hamiltonίan (24), and f is the initial

state of a particle ivhose motion is governed by this Hamiltonian, then the
ppd determined by the lυave-functίon e~iHt Ω^~ f of the particle can for
large t be replaced by the ppd determined by e~2ίHt eίHot /, just as in
Theorem 1, and the probability for scattering into a cone G is correctly given
by (22).

Conclusion

We have dealt with scattering by:
a) Any potential for which Ω± exist, and R+ = R~. That is, any

potential for which Ω± exist and the ^-matrix is unitary. [Any potential
V £ JSP^R3) r\ J£?2(R3) satisfies these conditions.]

b) Coulomb potentials and constant potentials.
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In both, cases a) and b) we have seen that if the initial state of the
particle is /, then the ppd of the particle can be replaced by

\{e-2iHteiH^f)(x)\2 as t -> + oc .

This in turn allowed us to compute the probability P(f, C) for scattering
into a cone using the single formula

P ( / , O ) = lim J \(e~2iIIteiHotj){χ)ψdx . (39)
ί->-foo c

Eq. (39) provides a simple expression for dealing simultaneously with
cases which previously required different (and, in the case of the Coulomb
potential, far more complicated) formulas.

The formulas given here for the asymptotic ppd and the probability
for scattering into a cone provide a suggestion for a way to analyse
scattering problems in other cases in which the Moller wave-matrices do
not exist.

In a forthcoming paper, we will show how (39) can be generalized
to problems involving n-hoάy multichannel scattering.

Appendix I

In order to prove the result (37), we write

- Sc = (eiH'ocM e

iHotF(t) eiH«W - eiH'*>® eiHot e~iΠt Ω~) (A

and substitute into (37). Then, using the triangle inequality, we can
dominate the norm on the left-hand side of (37) by the sum of two terms,
one of which is

g(t) = \\(eiH'oc(t) eiffot e-iHt Q- _ Q+* Q-) e-iKc(t) fl . ( A 2 )

We shall prove that this term tends to zero as t -> oo? leaving the proof
for the other term to the reader.

We have

g(t) = \\{Ω~ - eiHte-iH'te-iHΌc®Ω+* Ω~) e-iH'«>® f\

= \\{Ωt - eiHt e~ίHot e-ίfli(0) Q+ * Q- e-iHi.(0 /|| (A 3)

= \\{Ωt - e^U-^o' e-ίHoc(t)) e~ίHoc(t) scf\\ β

We will now replace 8cf by a C-ίunction [5] h and prove convergence
to zero. The convergence to zero of the right-hand side of (A3) is an
easy consequence of the convergence to zero with Scf replaced by
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a C-function h, since the G-ίunctions are dense in j£?2, and the operators

involved are bounded. We have

\e-iH'o*Mh dS = r{t) . (A 4)

ί

Analysing the behavior of the function e~iHΌe® h as in [5], it is

possible to obtain the bound
oo

r(t)^G(log \t\f f V^^dS (A5)
t

for some constant G and integers m and n. (A 5) shows that

r(t) ^ β p > 0 , (A 6)

as desired.
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