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Abstract. Existence of a phase -transition is proved for an infinite linear chain
of spins μj = ± 1, with an interaction energy

H = - ΣJ(i -j)μtμj9

where J(n) is positive and monotone decreasing, and the sums ΣJ(n) and
Σ (log logn) [n* J(n)~]~l both converge. In particular, as conjectured by KAC and
THOMPSON, a transition exists for J(n) = n-* when 1 < α < 2. A possible exten-
sion of these results to Heisenberg ferromagnets is discussed.

I. Introduction

We consider the one-dimensional Ising f erromagnet with sites labeled
by an integer j taking all values from — σo to -f- oo. At each site is a ran-
dom variable μj taking the values ± 1 , the total energy being

with
J ( n ) ^ 0 , ra=l,2,3, . . . (1.2)

GALLAVOTTI and MIRACLE-SOLE [1] have proved that this system exists
as a well-defined limit of a finite system, allowing a consistent definition
of thermodynamic averages, provided that

Jf0 = Σ J(n) (1-3)
n = l

is finite. Since we are assuming (1.2), the case in which MQ is infinite is
mathematically uninteresting. When M0 is infinite there is an infinite
energy-gap between the ground states and all other states, so that the
system is completely ordered at all finite temperatures, and there can
be no question of a phase -transition.

On the other hand, the case in which only a finite number of J(n)
are nonzero has long been known [2] to be uninteresting for the opposite
reason the system can have no phase -transition because it is disordered
at all finite temperatures. An interesting one -dimensional model con-
sidered by BAUR and NOSANOW [3], giving rise to a phase-transition
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with only nearest-neighbour interactions, lies outside the scope of this
statement since it has some of the interaction constants equal to minus
infinity. Recently RTJELLE [4] has proved that for any system satisfying
(1.2) there is disorder at all finite temperatures, and therefore no phase-
transition, provided that

Λ f ι = ΣnJ(n) (1.4)
n = l

is finite. Intuitively, it seems reasonable that the first moment M± should
determine the existence or nonexistence of a phase-transition, because
2M L is the energy required to pass from a perfectly ordered state (all
μj = -f 1) to a state with a single break in the ordering (μ$ — -{- 1 for
j ^ 0, μ$ = — 1 for j < 0). If Ml is finite, breaks in the ordering must
appear with finite density along the chain at any finite temperature, and
so Ruelle's conclusion that no long-range order can exist is to be expected.
The converse sta'-ement, that for M1 infinite there will be long-range
order at sufficiently low temperatures, is plausible but has not been
proved. KAC and THOMPSON [5] have studied some particular examples
from which they were led to make the

Conjecture (KAC-THOMPSON). Any system (1.1) satisfying (1.2) with
M0 finite and Ml infinite has a phase-transition at some finite temperature.
If this conjecture is true, the occurrence of a phase-transition is com-
pletely determined by the two moments M0 and Mv In particular, the
conjecture has the

Corollary (KAC-THOMPSON). The system (1.1) with

J(n) = n~« (1.5)

has a phase-transition if and only if

1 < α ̂  2 . (1.6)

The present paper arose from an attempt to prove the Kac-Thompson
conjecture. We did not succeed in relating our results to the divergence
of MΓ Instead we were led to consider the inverse moment

κ»= Σ (los los(w + 4)) IW*)]-1. (1.7)
n = l

The 4 is of course only put in to keep all the terms positive. Our main
result is then

Theorem 1. In the system (1.1) with (1.2), there is a phase-transition at
finite temperature, provided that J(n) is monotonically decreasing and that
both M0 and K'B are finite.

With this follows the
Corollary 1. The system (1.1) with (1.5) has a phase-transition if

l < α < 2 . (1.8)
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The fact that the case J(n) = n~~2 is left undecided shows that our theo-
rem is weaker than the Kac-Thompson conjecture. We have no definite
opinion concerning the occurrence of a transition for J(n) = n~*, and we
recommend this case as an interesting object for further study [6].

In general, Cauchy's inequality implies

MiΣfW [»8 J(n)]-1 > LΣ>-1(/(«))1/Ϊ]'» , (1.9)

for any positive f(n). Thus we could replace K'% in Theorem 1 by either
oo

JΓ8= JEtn'Jfo)]-1 (1.10)
n=l

or ^

#8 = Σ [(logw)aw8J(w)]-ι, (1.11)
n — 2

and the resulting statements would still be weaker than the Kac-Thomp-
son conjecture. We consider it likely that the (log log (n -f 4)) in K'% could
be removed by a more careful analysis. Also the condition of monotonicity
of J (n) is certainly not essential but is introduced for reasons of technical
convenience. One possible alternative to the Kac-Thompson conjecture
is the following.

Conjecture (Antί-Kac-Thompson). The necessary and sufficient con-
dition for a phase-transition in the system (1.1) with (1.2) is that both M0

and K3 be finite.
Neither half of this conjecture is proved. The necessity half is stronger

than Ruelle's theorem [4], and the sufficiency half is stronger than our
Theorem 1. If the Anti-Kac-Thompson conjecture is true, there is no
transition for J(n) = n~2.

The proof of Theorem 1 is divided into two unequal parts. The first
part (Section 2) is a proof of

Theorem 2 (GRIFFITHS). In the system (1.1) with (1.2) and MQ finite,
there is zero spontaneous magnetization at all temperatures T such that

kT>2MQ. (1.12)

This is an immediate consequence of a theorem of GRIFFITHS [7], which
states that in any Ising ferromagnet the true spontaneous magnetization
does not exceed the value given by a molecular-field approximation.
For this half of our theorem, all the hard work has been done by
GRIFFITHS.

The second half of Theorem 1 may be stated as follows.
Theorem 3. In the system (1.1) with (1.2), if J (n) is monotone de-

creasing and K'3 is finite, there is nonzero spontaneous magnetization at all
temperatures T such that

β^(kT}-ι>AK'z, (1.13)

ivith A an absolute constant.
7*
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We shall in fact prove Theorem 3 with A = 210. The proof occupies
the mam part of this paper. It is based on another theorem of GRIFFITHS
[8], which states that in any Ising ferromagnet the spontaneous mag-
netization can only decrease when any interaction-constant is decreased.
Theorem 3 will follow if we can construct a simplified Ising ferromagnet
which has nonzero spontaneous magnetization and has interaction less
than J (i — j) between every pair of sites i and j. The simplified system
is called the ''Hierarchical Model" and is fully described in Section 3. The
main virtue of the hierarchical model is that it has a much higher degree
of symmetry than the system (1.1). A finite chain of the form (1.1)
with I sites arranged in a circle has a symmetry-group of order 21,
whereas the hierarchical model with I sites has a symmetry-group of
order 21"1. We are not able to compute the spontaneous magnetization
of the hierarchical model exactly (this is another unsolved problem which
we recommend to others to pαrsue), but in Section 4 we compute lower
bounds which remain nonzero in the limit as I -> oo provided (1.13) holds.

The final Section 5 is concerned with the possible extension of these
results to a Heisenberg ferromagnet, in which there is a quantum-
mechanical spin s3 at each site and the scalar product (^ ss) replaces
μ^j in the interaction (1.1). For this case neither of the two crucial
theorems of GRIFFITHS [7, 8] is proved. Nevertheless the definition and
analysis of the hierarchical model can be carried through, and the
existence of a spontaneous magnetization can be proved in the hier-
archical Heisenberg model under the same conditions as for the Ising
model. It seems extremely likely (and desirable) that the two Griffiths
theorems will one day be extended to Heisenberg systems, and it will
then follow immediately that our Theorems 1, 2 and 3 will also hold for
Heisenberg ferromagnets.

II. Proof of Theorem 2

The theorem of GRIFFITHS [7] states that for the system (1.1) with
(1.2), for any two distinct sites i and /,

W,> £ tanhO?J(i - j)) + Σ tanh(/?J(& - j)) < f̂c> , (2.1)
*ΦU

where the averages are taken for a statistical ensemble at temperature
T = (Jcβ)-1. Griffiths proves (2.1) for a finite system, but the passage to
the limit of an infinite chain is justified provided that the sum

U = Σ tanh(jS J(k - j)) < 2βMQ (2.2)
*=H

is absolutely convergent. The hypothesis of Theorem 2 ensures that MQ

is finite, and so (2.1) holds. Let (2.1) now be summed over any finite set
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8 of sites i. The result is

/Max Σ O*/f/>) (l-U)^U. (2.3)
\ ίeS,ί^j ]

If (1.12) holds, then U < 1, and therefore

Σ W>> (2 4)
tεS

is bounded uniformly in 8 and /. This means that the infinite sum

Σ /^ > > j fixed (2.5)

must converge absolutely, and in particular

</^>->0 as \i-j\-+oo. (2.6)

Therefore there is no spontaneous magnetization, and Theorem 2 is
proved.

HI. The Hierarchical Model

For each positive integer N a finite hierarchical model MN is defined
as follows. There are 2N spins μ^ = i 1, labeled by the index j = 1,2,..., 2^.
For each pair of integers p = 0, 1, 2, . . ., JV; r = 1, 2, . . ., 2N~P, we
consider the spin-sum

S*,r = ZX , (r - 1) 2' + 1 =S ? ^ rW . (3.1)

This is the sum of the r'th block of 2^ consecutive spins. The hierarchical
character of these sums is expressed by the relation

S*,r = S*-l,2r-l + S,-ι,2r , ? = 1, 2, . . . , AT . (3.2)

We assume the interaction energy in the model MN to be

Hs=- Σ ^vb,ZΣ(8,,^, (3.3)
2? = 1 r = l

where δl5 . . ., bN are non-negative coefficients. The statistical properties
of the model are completely defined, given (3.3) and a temperature
T = (kβ)~\

The high degree of symmetry of the model is shown by the fact that
every block of spins SVf r is equivalent to every other 8^ s with the same p.
The model has no linear order and no end-effects. In particular, all
sites j are equivalent. To each pair of sites (j, k) there corresponds
a unique integer p ( j , k) such that (μ3 , μk) belong to a common SVtr but
not to a common 8v_ltr. All pairs of sites (j, k) with the same p ( j , k) are
equivalent, and each pair contributes to HM an interaction

RN(P}= Σ^-^b,. (3.4)
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The expectation- value of (μ; //fc) in the model MN will also depend only

on p ( j , k), N and β, and so we write

the dependence on β being understood. When j = k we have p ( j , k) = 0,

and so it is consistent with (3.5) to write

MO) = 1 . (3.6)

It follows from the definitions of p ( j , k) and SVtr that

I) , p=l,...,N, (3.6)
where

f*(P) = *-*' <(Sp.r)*)y, / j r ( 0 ) = l , (3.7)

and fN(p) is independent of r by symmetry. It follows from GRIFFITHS'

theorems [8] that both fχ(p) and c$(p) are positive and increasing func-

tions of N for fixed p,

^ I , (3.8)

^ 1 - (3-9)

We shall prove that they are also decreasing functions of p for fixed N,

(3.10)

(3.11)

In fact, (3.11) is a trivial consequence of (3.2) and (3.7). To prove (3.10),

let (x, y, z, w) denote four consecutive spin-sums /S3)_2,r, so that (x -f y,

z -f w) are sums Sy)_ltr) and (α? + y + 2 + w) is a sum /^,p>r. Then (3.10)
is equivalent to the statement

{(X + y? + (Z + W)*)N *> y <(Z + 7/)2 + (» + WY +(X+ Z)*
(ό.lύ)

+ (y + w)a + (« + ^)2 + (y + «)a>Λr
But the statistical weighting factor exp(— βHN] is a symmetric function

of (x, y, z, w) multiplied by the factor

φ = exp(,5 2*-^ bf_^(x + yγ +(z + w)2)) . (3.13)

Thus (3.12) follows from a simple case of Chebychev's inequality [9], and

(3.10) is proved.

The sum of the interaction coefficients (3.4) linking a given spin μό

with all others is

RN - Σ 2*-1 BN(p) = Σ (2« - 1) 2i-^ bq . (3.14)
2> = 1 (7=1

If the sum

E= Σ (2«- ])2 1- a*δβ (3.15)
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converges, we can define an infinite hierarchical model by letting N -> oo
in (3.3) and applying the argument of GALLAVOTTI and MIRACLE-SOLE
[1]. The correlation-functions (3.5) and (3.7) will, by virtue of (3.8) and
(3.9), tend to limits

cN(p)-+c(p), f s ( p ) - + f ( p ) , N-+OO, (3.16)

which are the correlation-functions of the infinite model. In view of (3.6),
(3.10) and (3.11),

e(p) = 2 f ( p ) - f ( p - l ) , (3.17)

c(p-l)^c(p), / ( p - l ) ^ / ( 2 > ) . (3.18)

The spontaneous magnetization of the infinite model is the quantity m
defined by

m2 - lim f(p) = lim c(p) , 0 ̂  m ̂  1 . (3.19)
p—>oo p—>oo

The two limits in (3.19) must exist and be equal by virtue of (3.17) and
(3.18). Moreover

f(p) ^ o(p) ^ m2 (3.20)

for every finite p. Our main objective will be to find conditions on the
coefficients b^ and the temperature Ty to decide whether the spontaneous
magnetization of the infinite hierarchical model is or is not zero. In the
high-temperature domain we can prove, by a word-for-word repetition
of the proof of Theorem 2, again using Griffiths' theorem [8],

Theorem 4. The infinite hierarchical model has zero spontaneous mag-
netization at all temperatures satisfying

βE < 1 , (3.21)
when E given by (3.15) is finite.

In the low-temperature domain we shall prove
Theorem 5. // the sum

L= Σ Oogα + ί))^)-1 (3.22)
<z = ι

converges, the infinite hierarchical model has nonzero spontaneous mag-
netization for all temperatures satisfying

β>SL. (3.23)

The proof of Theorem 5 is postponed to Section 4 since it requires
some detailed analysis. Theorems 4 and 5 together show that the hier-
archical model exhibits a phase transition at a finite temperature if both
the sums R and L are finite. In particular, there is a transition if
b^ = 2(2~α)3? and 1 < α < 2. In the opposite direction we have an analog
of Ruelle's theorem [4], namely

Theorem 6. The infinite hierarchical model has zero spontaneous mag-
netization at all temperatures if the b^ are bounded.
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Theorems 4, 5 and 6 together imply the
Corollary 2. The infinite hierarchical model with

bp = 2(2-W (3.24)

has a phase-transition at a finite temperature if and only if

1 < α < 2 . (3.25)

Roughly speaking, we expect the linear model with J(ri) = n~aί to
behave like the hierarchical model with (3.24). The average strength of
the interaction between two spins at a large distance is the same in both
models. Corollaries 1 and 2 show that both models have phase-transitions
in the same range 1 < α < 2. However, the critical case α = 2, for which
the question of a transition is left open for the linear model by Theorem 1
and the Ruelle theorem, is settled for the hierarchical model by Theo-
rem 6. The fact that the hierarchical model has no transition for α = 2
provides support, but no proof, for the opinion [6] that the same is true
for the linear model.

We conclude this section with a proof of Theorem 6. The proof is
short, unlike the proof of Ruelle's theorem [4], and makes essential use
of the symmetry of the hierarchical model. The only tool required for
the proof is Griffiths' theorem [8], which is used three times.

First use of Griffiths. If bv ^ b'p and if the hierarchical model with
coefficients b'p has zero spontaneous magnetization, then the same is true
for the bp. Therefore Theorem 6 holds in general if we can prove it for
by independent of p. The theorem holds for bv = M at temperature T if
it holds for b^ = 1 at temperature (T/M). Therefore it is sufficient to
prove Theorem 6 for

&„ = 1 , (3.26)

which is just the critical case α = 2 of (3.24).
Second use of Griffiths. Let (μ, μ} be any pair of neighbouring spins

forming a sum $1>r according to (3.1) in a finite hierarchical model MN.
Let pN = f y ( l ) be the probability that (μ, μ') are parallel in MN. By
Griffiths' theorem [8] the value of pN does not decrease if all the spins
except μ are locked in a parallel orientation by infinite attractive inter-
actions. Thus by (3.14)

py^[l + exp (- ZβR*)]-1 < [1 + exp (- 2βR)]->
= [l + βxp(-8j8/3)]-1 = flί<l.

Third use of Griffiths. For any integer q with 1 ̂  q ̂  N, we have
by (3.7)

fy(9) = 2-1-4 <(/» + μ') 8Q,ryN , (3.28)

where Sq<r is the particular block of 2V spins in which μ and μ' lie. By
the definition of pN, (3.28) implies

(3.29)
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where the average is taken over the model MN with the two spins (μ, μ')
locked parallel. Now the Griffiths theorem [8] states that the average in
(3.29) will not decrease if every pair of neighbour spins in MN is locked
parallel. But the model MN with every pair of neighbour spins locked,
and with the particular set of coefficients (3.26), is identical to the model
MN_l with the same coefficients. At this point the symmetry of the
hierarchical model plays an essential role. Thus Griffiths' theorem
applied to (3.29) gives

fN(q) g 21-«^</^_1,rXv-ι = pNfN^(q - 1) , (3.30)

and so by (3.27) and (3.7)

flr/.v-ι(3 ~ 1) < 0β/Λ--β(0) - g* (3.31)

Going to the limit N -> oo by (3.16), we have for the infinite hierarchical
model with (3.26),

f(q)^9Q, 0 < 1 , (3.32)
and so (3.19) gives

m2 - 0 , (3.33)

which is the conclusion of Theorem 6.

IV. Existence of Long-Range Order

We now come to the most difficult part of this investigation, the
proof of existence of long-range order for the linear model (Theorem 3)
and for the hierarchical model (Theorem 5). We first deduce Theorem 3
from Theorem 5 and then prove Theorem 5.

Suppose then that Theorem 5 is true and that the hypotheses of
Theorem 3 are satisfied. We have a linear Ising ferromagnet with energy
(1.1) satisfying (1.2), the coefficients J(n) decreasing monotonically and
the temperature satisfying (1.13). We shall relate this linear model to
the hierarchical model (3.3) with coefficients defined by

= Min 2*> + *-2 J(2*- 1) . (4.1)

Any block of 2^ sites in the linear model can be identified with the sites
of a finite hierarchical model MN. The interaction between a pair of
sites (/, k) in MN is then given by (3.4) with

P = P(J>k), \j-k\^2»-I9 (4.2)
and is

N

= Σ 21~2(Z Min 2S+7*-2 J(2r~ 1)
l*'** (4.3)

- 1) < J(\j ~ k\) ,
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the last inequality by virtue of the monotonicity of J(ri). The meaning
of (4.3) is that our choice of coefficients (4.1) gives a model M# with all
interactions weaker than those of the linear model. The Griffiths theorem
[8] then states that

where L denotes an average in the linear model, for every pair of sites
(/, k) and every integer N ϊ> p. Going to the limit N -> σo by (3.16) and
using (3.20), we deduce

<μ*μ*yL^c(p)*z m 2 , (4.5)

where m is the spontaneous magnetization of the infinite hierarchical
model. The linear model therefore has nonzero spontaneous magnetiza-
tion and Theorem 3 holds, if it can be shown that (1.13) implies m 4= 0.

Some crude estimating applied to (1.13), using the monotonicity of
J(n), gives

β > A Σ Σ (™~3 log log(rc + 4)) [J(2' - I)]-1

r = l 2r—l^n^2r+1 — 2

>AΣ (log log(2^ + 3)) 2-2-2> [Jβ' - I)]-1 (4.6)
r = l

> A Σ (log(l + r)) 2-3-2' [J(2> - I)]-1 .
r = l

On the other hand, Theorem 5 with (4.1) states that m 4= 0 provided that

β > 8 j; log(l + 0) Max 2a-«-' [J(2r - I)]-1 . (4.7)
ff=l l^r^ί

This inequality is strengthened if we replace the Max by a summation
over r. After this change and a little more algebra, (4.7) gives as a suf-
ficient condition for m Φ 0

β>V Σ log(! + r) 2-2? [J(2' - I)]-1 . (4.8)
r=l

Therefore Theorem 3 follows from Theorem 5 provided that

A fe 210 . (4.9)

We have not made any attempt to reduce the size of A by more careful
numerical estimates.

At this point we begin the proof of Theorem 5. We assume a set of
positive coefficients bp, no longer defined by (4.1), but satisfying only
(3.22) and (3.23). The hierarchical model MN is constructed with these
coefficients. The partition function of MN is a sum of terms
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where s denotes the sum of all the μs and takes values from —2N to
+ 2-^ in steps of 2. Each ZN(s) is a sum over the configurations of MN

with given s. All our analysis is done at a fixed temperature, and so the
dependence of these quantities on β is not written explicitly.

It is convenient to introduce a new real parameter u and to define

fff(«) = £exp(«β»)Z f f(β), (4.11)
S

Cjy(0) = Z f f . (4.12)

The degree of order of the model is then measured by the quantity

1S(N) = 2-»r <5% = 2-»* L's(0) , (4.13)

according to (3.7), where

u). (4.14)

We shall make essential use of the fact that, by (4.11), LN(u) is a convex
function of u.

The hierarchical character of the energy (3.3) leads to a recurrence
relation between the ZN(s)9 namely

with
v = 2~*NβbN. (4.16)

Here both variables x and t/ take values from — 2N~l to -j-2^"1 in steps
of 2. In particular, taking u = — v in (4.15)

^(-f)=[f f f-ι(0)]«. (4.17)

When ^ = 0 we estimate the right side of (4.15) by means of
Lemma 1. Let xj be a discrete variable taking values in the range

0 ^ xf ^ a , (4.18)

let f (x) be a positive real junction and b a real number. Then

Σ Σ exp [- (x, ~ %)2/δ2] /(*V) /(»*) ^ β-1^/^ + δ)) Z1 / to) (4.19)
* L i J

The proof of Lemma 1 is elementary and is given at the end of this
section. We apply the lemma to (4.15) with

x, = x + 2N~ι , xk = y + 2N~ι , a = 2N ,

-W ,
(4.20)

vxN_l(x).

The conclusion (4.19) then becomes

ζy(0) ^ e-1 [1 + (βbN)1'2]-1 for-ι(2«)]' (4.21)
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Taking logarithms of (4.21) and (4.17) and subtracting, we find

- LN(-v) ̂

^
-log [1

Now the convexity of LN(u) and LN_-L(u) implies

- LN(-v) < vL'N(0) , (4.23)

- 4v-ι(0) ^ ZvL'y^Q) . (4.24)

Therefore (4.13), (4.16) and (4.22) together give

fN(N) > 2~™ [2^ fy^N - 1) - »-ι(l + log (1 + (βb

= fx^N - 1) - (βby)-* (1 + log(l + ( W2)) .

Since /0(0) = 1, the repeated use of (4.25) gives

fN(N) ^ 1 - Σ W~l (1 + log(l + (βbj/*j) . (4.26)
ί» = l

To simplify (4.26), we divide the sum into two parts according as
βby is greater than or less than 9p2. The terms with βbv > 9p* cannot
exceed

Σ ί9^2)"1 ί1 •+ logί1 + 3^)) < 9/16 . (4.27)
ί) = l

The remaining terms cannot exceed

I? (jS&p)-1 (1 + log(l + 3^)) < (7/2) β-*L , (4.28)
n = ι

where L is defined by (3.22) and is assumed to be finite. Thus (4.26)
implies

1S(N) ^ (7/16) [1 - 8β-*L] . (4.29)

Passing now to the infinite hierarchical model, we have by (3.9) and (3.16)

f(p) = Km fN(P) ^ f,(p) , (4.30)
N-+OO

and finally (3.19) and (4.29) give

m2 ^ (7/16) [1 - 8β~lL] . (4.31)

When (3.23) holds, the spontaneous magnetization is nonzero, and so
Theorem 5 is proved.

It remains only to prove Lemma 1. Let q be the integer defined by

(alb) < q rg 1 -f (alb) , (4.32)

and divide the interval (4.18) into q equal parts Iv, p = 1, 2, . . . , q. Let
Fv be the sum of the f(x$) with xj in Iv. If we drop from the left side of
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(4.19) all terms with (x3 , xk) in different Ip; we obtain

Σ Σ exp [- (x, - %)2/δ2] /(*,) f ( x k )
j k

(4-33)

from which (4.19) follows by virtue of (4.32). The proofs of Theorems
5, 3 and 1 are thereby completed.

Y. Heisenberg Ferromagnets

Consider a finite hierarchical model KN of a Heisenberg ferromagnet,
defined by the interaction energy (3.3), where now S^y is a vector

and each Sj is a vector representing a quantum-mechanical spin at the
site j. The individual s0 represent the angular momentum of a particle
with spin 1/2, so that

Q2 OM „• i ()N (K 9\
oy — O/ί± , J — 1, . . . , Δ . \^ ^)

The states of the model KN form a finite vector-space of dimension 22N,
in which the operators SVί r are defined.

It is easy to verify by induction on N the following statements.
(1) The operators ($,p,r)

2 all commute with one another and with the
total spin SNtl. (2) A complete set of commuting operators consists of

(8 \2 /n 1 9 /V v 1 9 f)N — p (K q\iΛ>2>,r; 9 P — 1J Δ> •>IV ' r — i , z, . . . , ^ Λ , ^o.^j

and one component SN)ltZ of /S^ .̂ (3) There is one and only one state
of KR having the eigenvalues

m for t S t f , ι , z , (5.5)

where jVt r and m are integers satisfying the inequalities

fl-l^r-l »-l,2r - p,r — »-l,2r-l p ~ l , 2 f i

^ = 2,3, . . . , Λ Γ ; r = 1,2, . . .,2^-»;

— ̂ ,! ̂  m ^ -f ̂ a . (5.8)

(4) The Hamiltonian HN is diagonal in the representation with the basic
states labeled by the quantum-numbers j^ r and m, and its eigenvalues
are

N %N-2>

HN(j r) = — Σ 2~*p b Σ 1 (i ~ί~ i) (5-9)
p = l r = =ι
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In consequence of these statements, the partition-function ZN of the
Heisenberg hierarchical model can be handled as if it were a classical
system, by-passing all the quantum-mechanical difficulties that make
the linear Heisenberg model intractable. We write ZN as a sum of terms
(4.10), where now s denotes jNtl and takes all integer values from 0 to
2N-1. Instead of (4.11) we write

ζN(u) = Σ *xp(us(β + 1)) ZN(s) , (5.10)
s

and the recurrence relation (4.15) is replaced by

y (2*+i)
•̂  . /9^ _ι_ ι V9,ι/_ι_ ~M (511^

+ v) s(s -j- 1)) .
As before, (5.10) and (5.11) grve

ζN(0) = ZN, (5.12)

£*(-«) =[ίff-ι(0)?, (5.13)

with v defined by (4.16).
We define the coefficients

<?j skyN, p = p ( j , k ) , (5.14)
as in (3.5), and

/*(?) = 2- •*<OSf1(,r)'%, (5.15)
as in (3.7), only now

<*(0) = fo(0) = 3/4. (5.16)

The monotonicity relations (3.10) and (3.11) still hold, but (3.8) and (3.9)
depend on the Griffiths' theorem [8] and cannot be taken as proved for
Heisenberg models. The order-parameter fχ(N) is again given by (4.13)
and (4.14), and LN(u) is still a convex function of u.

We can carry through the estimation of the right side of (5.11) in
complete analogy with (4.15). Using the elementary bounds

b > α-1 (1 - exp(-αδ)) > 6(1 + ab)~l , (5.17)
we find

l (exp(v(s -f I)2) — exp(v<92)) exp(— v(x + y -f- 1))

x+y)(x + y + l ) ~ ) (5.18)

v(x + y)(x+y+ 1)) (2
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Now

x ^ 2^v-2 , y g 2N~* , (5.19)
and so by (4.16)

v(2x+l)(2y+l)<βbN, (5.20)

v(χ + y)(χ + y+l)
(5.21)

- v(x-y)*-2-ι~N βbN.
Thus (5.11) and (5.18) give

x y (5.22)
• exp [2v(x* + x + y* + y)-v(x-y)*- 2^~N βbN] ,

and Lemma 1 can again be used. The result of using Lemma 1 is

ζs(Q) ^ e-i [l + i ( W]"1 [1 +
(5 2

Putting together (5.23) with (5.13), we find instead of (4.22)

iff (0) - £jy (- «) S 2 [iff _! (2 B) - iff_! (0)]

i - 3 log [i + (/?M1/l] - a-1-* βbN.
Using the convexity of LN(u) as before, this inequality implies

ts(N)^is^(N-\)

- (βbN)-1 (1 + 3 log(l + (/3M1/2)) - 2-1-* .

Repeated use of (5.25) together with (5.16) gives

ΪN(N) ^ T ~ Σ (β**)-1 (1 + 3 log(l + (βb,)^)) . (5.26)
p = l

The same argument which led to (4.29) now gives

fw(N) ^ (1/16) - IβjS-^ . (5.27)

We are not able to define the spontaneous magnetization of the in-
finite Heisenberg hierarchical model by (3.19), since we have not proved
the monotonicity property (3.9) upon which the existence of the limit
in (3.16) depends. Until the existence of limits is proved, it is reasonable
to define the spontaneous magnetization by

m 2 = Um fN(N) . (5.28)
AΓ->OO

The statement that m2 φ 0 then implies that spins are correlated at
arbitrarily large distances, and m2 is a quantitative measure of the
degree of long-range order. We may then conclude from (5.27) the
following.



106 P.J.DYSON:

Theorem 7. Nonzero long-range order as defined by (5.28) exists in the
infinite Heisenberg hierarchical model with energy (3.3), provided that the
sum L defined by (3.22) converges and the temperature satisfies

β > 28L . (5.29)

It is satisfactory that this analog of Theorem 5 can be pushed through
for the Heisenberg ferromagnet. It is unsatisfactory that the easier
Theorems 2, 4, 6, and the derivation of Theorems 1 and 3 from 5, all
depend on the theorems of GRIFFITHS [7, 8] and cannot yet be extended
to Heisenberg systems. Nevertheless there is every reason to believe that
Griffiths' theorems are true for Heisenberg ferromagnets. Thus Theo-
rem 7 makes it extremely probable that all the Theorems 1 — 6 in fact
hold for Heisenberg systems with only some numerical coefficients
changed. Since we expect a Heisenberg ferromagnet to have less long-
range order than an Ising ferromagnet with the same structure, it would
be natural to expect Theorem 5 to fail in the Heisenberg case. Sur-
prisingly, the theorem which seemed most likely to fail turned out to be
the only one we could prove.

In view of Theorem 7, we make the definite conjecture that an infinite
linear Heisenberg ferromagnet with the energy

H=- ΣfJ(*-i)(*i *i) (5 3°)
i >j

will have a phase-transition at a finite temperature, provided that J (n)
is positive and monotonically decreasing and that the sums (1.3) and
(1.7) converge.
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Addendum

A theorem as good for our purposes as Theorem 2 was proved earlier
by GALLAVOTTI, MIRACLE-SOLE and ROBINSON [10]. They proved Theo-
rem 2 with 5 replacing 2 on the right side of (1.12). They proved in fact
the much stronger statement that the thermodynamic averages are
analytic functions of T and of the J (n) in the range

. 5 M0 . (2.7)

For this reference I am indebted to Dr. ROBINSON.
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