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Abstract. This paper is devoted to the study of the classical, single and free
particle. . .

1. Introduction

Invariancθ principles nowadays have become one of the most useful
concepts of theoretical physics, mainly because of their importance in
quantum theories. Indeed, when the dynamical laws obeyed by physical
systems are not known or poorly understood, invariance principles act
as "super-laws" to restrict the possible forms of these laws, as guides
to find them [1]. Conversely, it may be argued that the use of invariance
principles becomes obviated once the laws of nature are known, as is
the case at the classical level. However, it seems to me that even then,
invariance principles keep a prominent role in that they enable us to
reach a deeper understanding of these (known) laws, reduce some of their
apparent arbitrariness, relate previously unconnected concepts. The
tighter structure and greater unity thus obtained have both an episte-
mological and pedagogical significance.

From that point of view, it is a striking fact that some very basic
problems concerning the use of invariance principles in Classical Me-
chanics have not yet been studied, in direct contrast with the analogous
problems in Quantum Mechanics. This paper is devoted to the solution
of one of these problems which I will now state.

In Lagrangian Classical Mechanics, as is well-known, the Lagrangian
of a given system is not uniquely determined. One can add to it the total
time derivative of any function of the system variables, without modi-
fying the equations of motion. Let us call "gauge transformations" such
transformations, since the standard gauge transformation of electro-
magnetism is a special one. The point now is the following: the Lagran-
gian for a free relativistic particle is invariant under the Poincare group
and may be derived from the assumption of invariance [2]. But why
should a transformation of the Poincare group leave invariant the
Lagrangian, and not amount more generally to a gauge transformation ?
Indeed, the Lagrangian for a free non-relativistic particle is not invariant
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under the Galilei group: pure Galilei transformations induce a gauge
transformation [3]. If one wants to derive rigorously the dynamics of
a free particle from the invariance group (Poincare or Galilei for
instance), it must be known precisely whether or not one can get rid
of the possible gauge transformations by a suitable redefinition of the
Lagrangian. Of course, one may derive directly the possible motions of
a free particle without using the Lagrangian method, since they belong
to the appropriate invariance group considered as a group of active
transformations. However, the knowledge of the free Lagrangian is
necessary when one needs introducing interaction with an external field1.
Furthermore, one of our results precisely will be that some Lagrangians
may describe more general motions than the ones belonging to the kine-
matical group under which they gauge-transform. A hint towards the
solution of this problem is given by the answer to the analogous question
in Quantum Mechanics to a quantum system, there corresponds a uni-
tary representation of the invariance group which need not be a vector
representation, but may be a projective, i.e. up-to-a-factor, representa-
tion [4]. In such a case, the phase of the wave-function will be changed
under a group transformation. Since in the classical limit, the phase of
the wave-function goes into the classical action, we are led to foresee
some relation between the classical and the quantum problems. This
analogy becomes even more suggestive when we notice that for the non-
relativistic free particle, the classical action [3] and the phase of the
Schrόdinger wave-function [4, 5, 7] transform identically under a galilean
transformation. Indeed, our general conclusion will be that the possible
transformation laws of the classical action under the invariance group,
are closely connected to the projective representations of the group.

It should be mentioned that in the Hamiltonian form of Classical
Mechanics, it may be shown that the Poisson brackets of the infinitesimal
generators of symmetry transformations must realize a projective repre-
sentation of the Lie algebra of the invariance group [8]. However, the
canonical formalism seems to be a derived construction, and the im-
mediate approach to Classical Mechanics, closer to one's intuition, is to
consider configuration space and velocities rather than phase space and
momenta, that is the Lagrangian method, which is the subject of the
present investigation. Let us also mention, as related to our study, the
interesting papers by TASSIE and BTJCHDAHL [9], in which they show
how to generalize the usual derivation of conservation laws to a theory
where the Lagrangian is gauge-transformed under the invariance group,

1 A very similar situation exists in the quantum theory, where the unitary
representations of the invariance group are quite sufficient to study non-interacting
systems, which one nevertheless tries to describe by means of wave-equations, in
order to be able to introduce the effect of interactions with external fields [6].
5 Commun. math. Phys.,Vol. 12
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with emphasis on the case of a single particle in special electromagnetic
fields. Naturally, they start from a given Lagrangian, while we want to
show how to derive it while allowing for gauge-variance.

Section 2 contains some definitions and propositions concerning ex-
ponents of groups2, which are used in Section 3 to obtain a group-
theoretical characterization of gauge-transforming Lagrangians. Sec-
tion 4 contains a number of illustrative examples, which motivate the
concluding remarks of Section 5.

2. Group Exponents and Superequivalence2

The notion of exponents of a group G has been introduced and exten-
sively studied by BARGMANN in his work on ray representations of con-
tinuous groups [4]. We will reproduce here the definition of exponents
and explore some further properties which will be used in the following
section. For motivations, fundamental results and proofs in the theory
of exponents, the reader is referred to BARGMANN'S paper.

2a

Definitions [4]. An exponent of a topological group G is a real valued
continuous function ξ defined on G X G and satisfying:

i) (9v 9* £3 ζ G) >

ξ (e, e) = 0 (e = neutral element of G) '

I t follows from (1) that ξ (e, g) = ξ(g, e) = 0, V g ζ G .
Two exponents ξ and ξ' of G are called equivalent if there exists a real

valued continuous function ζ on G such that the following equivalence
relation holds:

£' (ft» ft) = ί (ft. ft) + C (ft) + ζ (ft) - ζ (92 ft) (2)
Due to the linearity of the defining relation, the exponents of a group

G form a real vector space. The equivalence class of a linear combination
of exponents depends only on the equivalence classes of the exponents.
I t follows that the equivalence classes of exponents of a group G form
a real vector space.

2b

Proposition 1. The equivalence classes of exponents of G are invariant
under the inner automorphisms of G.

Proof. Given an exponent ξ of G and the inner automorphism
characterized by g £ G, call

ξσ(92> 9i) = H9929'1,9919"1) (3)
2 This section might also be used as an Appendix by readers who would

not realize its interest — under the condition, of course, that they find this interest
in the following section.
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Then a repeated use of the defining relations (1) yields:

ξg (02> 9l) = ξ (92> 9l) + Co (&) + ζg (ΰl) - Cg (SWl) > W

where ζg{g') = ξ{g-\ gg'g~λ) ~ ξ(g'9 g*1), so that ξ and f, belong to the
same equivalence class.

Corollary. An exponent ξ of G ivhose restriction to the subgroup Γ is
equivalent to zero, has restrictions equivalent to zero for all subgroups
Γg = g Γ g~x conjugated, to Γ. This follows at once from (4).

Proposition 2. An exponent of G whose restriction to the subgroup Γ is
equivalent to zero, is equivalent to zero on G X Γ. That is to say, if

«> n) = f (y«) + £(*) - Ciwi) (vi> y2 6 Γ) (5)

then, there exists a function η on G such that

ξte,γ)*=ηti) + ηiγ)-η(gγ) (gζG,γίΓ)- (6)

The converse is obvious.
Proof. Consider the left cosets GjΓ and choose a representative h

in each one, so that each group element g can be written: g = h(g) δ(g),
where A (fir) ζ G\Γ, δ(g) ζ Γ. Obviously, h(gγ) = h(g) and ό(gy) = δ(g) γ,
Vy ζ JΓ. According to (5) now:

), γ) + f (A(βf), δ(g) γ) - ξ(h(g), δ(g))

) - ζ(δ(9γ)) + ξ(h(gγ), δ(gγ)) - ξ(h(g), δ(g))

which proves (6), with

= ζ(δ(g))-ξ(h(g),δ(g)). (7)

Accordingly, if ξ is an exponent of G whose restriction to Γ is equiv-
alent to zero, one may choose another equivalent exponent ξ which is
equal to zero on G X JP.2 '

Proposition 3. Two equivalent exponents of G, ξ and ξ', whose restric-
tions to the subgroup Γ are both equal to zero, define a one-dimensional
representation of Γ (not necessarily unique).

Proof. Since ξ'(g2,gx) = ξ(9v9i) + ζ(gz) + C(9ι) - ζ(g29i)> a n d

ξ(Yz,Yi) = ξ'(Yz, Yι) = 0, Vy2, Yl ζ Γ, then ζ(γiYl) = ζ(γ2) + ζ(Yl).
v This proof is incomplete in that it implicitly assumes the existence of a

continuous representative h(g), which is not necessarily true. Our results thus
only apply in cases where this condition is fulfilled. Happily, this is the case for
all physical examples to be studied (it is trivially true when G is a semi-direct
product X ζ7) Γy for instance). I will come back to this question in a forthcoming
paper. I t is a pleasure to thank Prof. J. A. DIEUDONNE for drawing my attention
to this point.
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2c

Definition. Two exponents of G, ξ and ξ', whose restrictions to P a r e
equivalent to zero, are said to be Γ-swperequivalent if they are equivalent
(on G) and if the equivalence of the two exponents f and ξ\ respectively
equivalent to ξ and ξ' and equal to zero on Γ, may be realized by a func-
tion equal to zero on Γ (the trivial representation of Γ):

#' (ft, SΊ) = f (ft, 9x) + 6 (g2) + θ (9l) - θ (frft) (8)

with θ(γ) = 0, Vy ζ Γ. This is obviously an equivalence relation.
Proposition 4. Two exponents of G, ξ and ξ', whose restrictions to Γ

are equivalent to zero, are Γ-super equivalent if and only if the one-dimen-
sional representation of Γ, defined by their respective equivalent exponents
ϊ and ξ' equal to zero on Γ, may be extended to a one-dimensional represen-
tation of the group G.

Proof. According to Proposition 3, the two equivalent exponents ξ
and ψ, zero on Γ, define a function ζ on G whose restriction to Γ is
a representation of Γ:

f'(02> 9i) = !tea> ft) + ί(£2) + ζ(9i) - ζ(929i) (9)

If ξ and ξf are JH-superequivalent, Eq. (8) holds, which, combined with
(9) gives

In other words, ω(g) = ζ(g) — θ(g) is a one-dimensional representation
of (T, whose restriction to Γ is identical to ζ (since θ = 0 on Γ).

Conversely, if there exists a one-dimensional representation ω of G,
whose restriction to Γ is equal to ζ, the function θ = ζ — ω is such that
(10) holds and is zero on Γ. From (9) one then infers (8), and ξ and ξf

are .Γ-superequivalent.
I t results from Proposition 4 that each equivalence class of exponents

of G equivalent to zero on Γ may be split into classes of P-superequiv-
valence characterized by the one-dimensional representations of Γ which
cannot be extended to a one-dimensional representation of G.

Example. When G is a semi-direct product X Q Γ, or more generally
when G is homomorphic to Γ9 any representation of Γ is a representation
of G, so that there is only one class of P-superequivalence for each equiv-
alence class of exponents equivalent to zero on JΓ.

3. Gauge Functions

3a. Definitions and Notations

Let X be the space-time continuum and G its group of kinematical
automorphisms, acting transitively on X. We denote by x -> gx the
action of a group element g on the space-time points x. For the sequel >
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it is sufficient to think of X as a homogeneous space of G, to be identified
with a space of left cosets, that is the quotient GjΓ of G by one of its
subgroups Γ. The stabilizer Γx of a point x ζX, i.e. the subgroup of G
leaving x invariant (the *'little group" of X), is isomorphic to Γ. The
stabilizers Γx and Γy of any two points x, y ζ X are conjugate subgroups,
such that Γy = k~x Γxk where k is any element of G such that ky = x.

The action of a material point (we shall say a "particle") is a real-
valued continuous function A (xv x2) on X x X of the form:

$2

= J L(x{s),^)ds, (11)

where x(s) is the trajectory of the particle3, i.e. an application R-> X,
Λvith end-points xx = #(<%), #2 = #(s2).

L is the corresponding Lagrangian:

The real trajectory followed by a particle from x1 to #2 corresponds to
an extremal value of the action functional.

Two actions A and A' are equivalent, that is lead to the same equa-
tions of motion, if there exists a function λ on X such that:

A'(zv x2) = A(xv x2) + λ(x2) - λ{xx) , (13)

for the variational problem (with fixed end-points) then is unchanged.
Correspondingly, the two Lagrangians L and L' are equivalent if they
differ by a perfect differential:

Accordingly, for the equations of motion of a particle to be invariant
under the group G, the action must transform as follows:

= A (xv x2) + oc(g; x2) - ocig xj (15)

where α is a real function on G X X. Note that α(e; x) is a constant on X
which may always be chosen equal to zero. I t follows from (12) that the
Lagrangian transform as:

— gxj^L^^+^-ccig xis)). (16)

A function o n ϊ x l transforming as in (15) will be called a gauge-
variant function, and α will be called a gauge function, or simply a gauge,
of the group G for its homogeneous space X.

3 Note that x(s) is a trajectory in the whole space-time, a world-line, para-
metrized by an arbitrary "evolution parameter" s.
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A gauge function α is said to be equivalent to zero if it is of the form:

αfo; x) = φ(x) - φ(gx) + χ(g) , (17)

where φ is some function on X and χ a function on G. Indeed, for such
a gauge, the action transforms as:

A(gxl9gx2) = A(xl9x2) + φ{x2) - Φ(g%2) ~ Φ(xi) + <f>{9*i)> (18)

so that one can choose another equivalent action [see (13)],

A0{xl9x2) = A(xl9x2) + φ{x2)- φ(xλ) (19)

which is invariant under G:

Λ0(gxv gx2) = A0(xv x2) . (20)

Finally, two gauge functions will be called equivalent if they differ by
a gauge function equivalent to zero.

The gauge functions of the group G for its homogeneous space X
form a real vector space. One is interested in fact in the quotient space
of this vector space by the above equivalence relation, that is the vector
space of equivalence classes of gauge functions.

Choosing a conventional origin ,τ0 in Z , it will be convenient to work
with x0-centered gauge functions as representatives of their equivalence
class, that is gauges obeying

κ(g;zo) = O. (21)

This choice may be achieved by the equivalence transformation
cc(g; x) -> oc(g; x) + χ(g), where χ(g) = - oc(g; x0).

We now investigate the group-theoretical properties of gauge
functions.

3b. Properties of Gauge Functions

Lemma. A gauge junction oc of G for X obeys the following identity

oc(g'; gx) + oc{g; x) - oc(g'g; x) = ξ(gf

9 g), (22)

where ξ9 a function on G X G, independent of x, is an exponent of G equi-
valent to zero on Γ.

Proof, i) As a consequence of associativity for the group law, the
action A must transform in the same way under the sequence of opera-
tions g and gf as under the single operation g'g. This requires the com-
patibility of:

A{gfgχλ, g' gχ2) = A(xl9 χ2) + a(g'g; χ2) - <*(g'g, χx) (23)

and

A{gf gχv g' gx2) = A(gxτ, gχ2) + <x{g'; gxo) - cc{g']gxx)

= A (x19 x2) + α(g x2) + <κ(g'; gx2) (24)

- ccig xj - cc(g';gχι)
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That is to say:

oc(gf;gχ2) + αfa; ^2) - oc{gfg; x2)

= ocig' gxj) + oc{g; xj - oc(g'g; xj
or:

oc(gf;gx) + α(gr; α) - α(gr'gr; a?) = £(#', g) , (26)

independently of x, since ^ and #2 in (25) are arbitrary points in X,
ϋ) This property implies that:

Hg",9'9) + W>9)-H9"9'>9)

= κ(g"',9' gx) + oc(g' g x) - cc(g" gf g x)

+ oc(g'; gx) + oc(g; x) - ot{g' g; x)
(27)

- <x(g" g'',gx) - oc{g;x) + oc(g" gf g x)

= <χ(g"'>g'y) + *{g'\y) - <*(g"g''>y)

= W,9')
where y — gx. Also: ξ{e, e) = α(e; .τ) = 0. The function f thus satisfies
the defining identities (1) of an exponent of G.

iii) Let γ ξ Γy. By definition then, γ y — y, so that

2(9, ϊ) = α ^ ; y) + α(y; y) - α ( ^ ; y), (28)

and the exponent £ is equivalent to zero on G X Γy (take £(gr) = oc(g; y)).
This is true for any point y ζ X, so that, in conformity with the Corollary
to Proposition 1, ξ is equivalent to zero for the whole family of conjugate
subgroups Γy, isomorphic to the subgroup Γ such that X = GjΓ.

Main Theorem. There is a one-to-one correspondence between the equiv-
alence classes of gauge functions of a group G for its homogeneous space
X = GjΓ, and the classes of Γ-superequivalence of exponents of G equivalent
to zero on Γ.

A canonical realization of the correspondence is contained in the
following proof.

Proof, i) We choose a conventional origin x0 in X, and work, from
now on, with x0-centered gauges as representatives of their equivalence
class [see (21)]. Further, let x -> hx be an application X -> G such that

hxx0 = x . (29)

The hx are a set of representatives of the cosets GjΓXa.
ϋ) From (22), one now has:

(30)

Let α and ad be two equivalent gauges, that is obeying:

a'(g; x) = α(gr; x) - φ(gx) + φ(x) + χ(g) . (31)
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If both α and α' are x0-centered:

( 3 2)
so that one may also write:

α'(<7; x) = oc(g; x) + φ(x) - φ(xQ) - ίφ(gx) - φ(gx0)] (33)

The exponents ξ and ξ' defined by α and α' according to (30) are equal
to zero on G X ΓXo and related by

ξ'(g', g) = ξ{g\ g) + Φ(g%o) - ΦM - Φi Φigo)

= ξ(g',g) + ζ(g) + ζ(g')-ζ(g'g), ( 3 )

where

When restricted to ΓXo, obviously ζ = 0, so that ξf and | are Z1^-super-
equivalent.

iii) Conversely, let ξ be an exponent of G equal to zero on ΓXQ. The
formula

a(g χ) = ξ(g,hx) (36)

defines an x0-centered gauge function, obeying (22) with the same ξ. Let
ξ and ξ' be two equivalent exponents equal to zero on G X Γ, i.e.
satisfying

ξ' (92, 9i) = I (ife, ft) + C (ft) + ί (9Ί) - ζ (9*9i) (37)

with £ a one-dimensional representation of JΓ, obeying also

ζ(9)+ζ(γ) = ζ(gγ) VyζG.yζΓ. (38)

The gauge functions α and α' they define are related by:

α' (g- x) = α fer s) + ί (?) + ζ (hx) - f (yAx) . (39)
We may write

gK = hgχγ (g> *) where γ (g, x) = ̂  ghx ζ ΓXo . (40)

Then, according to (38)

ζ(gK) = ζ(Kχ γ(g, x)) = £(*,») + ί(yto, *))» (*i)

so that

α'to; a?) = α(fir; a:) - C(y(^ a?)) + φ(x) - φ(gx) + χ(g) , (42)

where (̂gr) = f (gr) and ̂ ί(α ) = ζ(hx). In other words, oc'(g; x) is equi-

valent to aL(g; x):
a (g *) = f to K) - ί ( ^ x gh) • (43)

If I and ξ' are jΓ^-superequivalent, a ζ may be found such that ζ(γ) = 0
for y ζ JΓ^, SO that 5ί = α, and α' and α are equivalent.

If ξ and I ' are not jΓ^-superequivalent, then formula (43) grive5 an
explicit construction of all the gauge functions of G for X starting from
any exponent ξ equal to zero on G X ΓXo and any one-dimensional repre-
sentation ζ of ΓXo which cannot be extended to G
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4. Examples

In the following, we will frequently use the notation x = dx/ds .

4a. Relativistic Classical Mechanics

G is the Poincare group 0* with elements noted g = (a, A), Γ is the
homogeneous Lorentz group j£? with elements γ = (0, A), and X is the
Minkowski space ~£ with elements x = (ί, r). G acts on X according to
(a, A) x = Ax-h a. Since the Poincare group has no non-trivial ex-
ponents [4, 10] and the Lorentz group has no non-trivial one-dimensional
representations, there are only trivial, equivalent to zero, gauges of @P
for Jί and the action, as well as the Lagrangian, may always be chosen
to be strictly invariant under 0>. According to (16):

( ) ( £ ) (44)
or

L(Ax + a,Aώ) = L(z,ώ) . (45)

Invariance under translations requires L not to depend on x (choose
a = —Ax), and invariance under Lorentz transformations requires L to
depend only on the Minkowskian length τ of the four-vector velocity
x = (β, r). Finally, since Lds must be a first order infinitesimal, L is
homogeneous of degree (+ 1) in the derivatives (i, r) so that

L= - mτ= - m γ¥~ΞΠr* , (46)

where m is an arbitrary real number. Obviously, the possible choice
s = t gives back the standard formulation [2]. The progress here is to
have rigorously justified the use of an invariant action.

Nonrelativistic Classical Mechanics

G here is the Galilei group & with elements g = (b, a, v, R), Γ the
homogeneous Galilei group with elements γ = (0f0,v,R) and X the New-
tonian space-time with elements x — (t, r), on which ^ acts according to:

t' =t + b )

The Galilei group now has non-trivial exponents, which may be chosen
in the form [4, 7, 11]:

where m is an arbitrary real number. These exponents are seen to be
equal to zero on G X Γ (that is for a — 0, b = 0), and so are admissible
for our purposes. Since the homogeneous Galilei group does not have
non-trivial one-dimensional representations, the equivalence classes of
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gauge functions are uniquely specified by the equivalence classes of
exponents that is by the number m. With the natural choice

A ( ( . r ) =(i , r ,0 ,I) (49)

we obtain the gauge functions:

oc{g; x) = m(γV2t+V' Rrj . (50)

The transformation properties of the Lagrangian are then, using (16):

L[(Rr+ vt + a,t + b)} (Rr + vij)]
( 5 1 ), ί), (f, /)] + rn (~vH + v Rr) .

Choosing first (6, α, t?, 2?) = ( — £ , — r, 0,I), j> is seen to depend only on
the velocities (i, r) because of translation in variance. Putting now
(fe, α, v, R) = (0, 0, — Rrjί, R), galilean invariance is seen to imply:

i ( ί , f ) = l i ( ί , 0 ) + y w ^ . (52)

But, since the Lagrangian must be a homogeneous function of first
degree in the derivatives:

£(f,0) = **=-£-(**), (53)

where k is an arbitrary number. This perfect differential can be elimi-
nated, so that we obtain a Lagrangian

L^ψ (54)
which is the standard result, at least when one chooses $ = t (i = 1).
Here again, the progress consists only in proving that it is perfectly safe
to remember the possibility of gauge variance of the Lagrangian only
when it can no longer be forgotten, that is for pure Galilean transforma-
tions [3]. No restriction is implied by choosing a Lagrangian strictly
invariant under space-time translations and rotations. Finally, it is
instructive to compare the transformation properties of the classical
action, given by the gauge function (50), and of the phase of the quantal
wave function [4, 5, 7]: they are identical, in conformity with the known
relationship between these two concepts.

4b. One-Dimensional Kinematics*

We now survey the various one-dimensional classical mechanics
corresponding to different kinematical groups of interest [12]. These

4 The two-dimensional kinematics offer nothing new compared to the three-
dimensional cases studied above, although some care must be exercised in the
Galilean case: the two-dimensional Galilei group has a covering group with a three-
dimensional vector space of equivalence classes of exponents. Nevertheless, the
only exponents of the group itself which are equivalent to zero on Γ, are of the
same form (48) as in the three-dimensional case.
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related but distinct cases will enable us to exhibit the full richness of the
structures studied in the preceding section and their comparison will be
most instructive.

The same notation will be used in the various cases. The elements
of the group G will be noted g = (b, a,v), b being the parameter for the
time translations, a for the space translations and v for the pure inertia!
transformations, the relation of which to the space-time translations
characterizes the group structure. Γ is the homogeneous group {(0, 0, v)}
and X the space-time continuum with points x — (t9 r), such that one
may choose hx = (t, r, 0) as representatives of the left cosets GjΓ.
Finally, the Lie algebra of G has a base consisting of (H, P, K), respec-
tively the generators for time translations, space translations and pure
inertial transformations.

One-Dimensional Poincare Group. The group law reads

(&', a', vf) (b, a, v) = (bf + chv'b + shv'a, a' + chυ'a + shv'b, v' -f v) (55)

corresponding to the Lie brackets

[£Γ,P] = 0, [Z, # ] = i P , [K,P] = iH. (56)

There exists a one-dimensional family of non-trivial exponents, equiv-
alent to zero on Γ however, corresponding to the infinitesimal extension
of the Lie algebra5

[H, P] = if I, (57)

Λvhere I belongs to the center of the extended algebra and the real number
/ characterizes the extension. Integrating this relation, the exponent
may be put in the form:

£(9f, 9) = f \sh2v'ab + y shv'chv' (δ2 + a2) + a'{chv'b + shv'a)] . (58)

The one-dimensional representations of Γ obviously extends to O, since
it is a semi-direct product X (J) Γ. Hence the _F-superequivalence classes
of exponents are characterized by /, and we may write the most general
gauge function as

oc(g; x) = f \sh2v tr + Y shv chv(i2 -\- r2) + a{chvt + shv r) 1 . (59)

To obtain the Lagrangian which must transform according to (16), we
note that:

-7— α(<7; %{s)) = f[sh2v(ir + tr) -j- shv chv(ti + rr) + a(chv i + shv r)]

= f(chv r -f shv t -f a) {chv i + shv r) — fri (60)

δ For details concerning the infinitesimal characterization of exponents of Lie
groups, see Ref. [4].
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where

iri. (61)

It results from (60) and (16), that L(x, ώ) — β(x, ώ) is invariant under G.
The same arguments as in the three-dimensional Poineare case now apply.
Finally, we obtain the Lagrangian

L= -m }/FIΓ72 + fri (62)

which is not the Lagrangian for a "free" particle, but describes a particle
moving in a constant force field /6! This proves that in the customary
Lagrangian formalism, "free" motion is not necessarily specified in a
unique way by the requirements of invariance under the appropriate
kinematical group (see Section 5).

One-Dimensional Galilei Group. One has here:

(b\ α', v') (6, a, v) = ( δ ' t M ' + H v'b, v' -f v) (63)
and

[ff,P] = 0, [K,H] = iP, [K, P] = 0 . (64)

The vector space of equivalence classes of exponents is two-dimensional.
Corresponding to the extended Lie algebra characterized by the two real
numbers (m, /):

[H9 P] = if I, [K9 P] = iml, (65)

one may write the exponent in the form

ξ(9', 9) = m(γv'*b + v'a) + f (jυ'b* + a'b) . (66)

These are equal to zero on G X Γ, and since G, as above, is a semi-direct
product X Q) Γ, one obtains the most general gauge function:

oc(g; x) = m(~vH + vή + f (~vt* + at) . (67)

The same procedure as above yields the Lagrangian

L = ~m~+frt (68)

describing the non-relativistic motion of a particle with mass m in a con-
stant force field /.

One-Dimensional Newton (or Oscillator) Group7.

(b',a',v')(b,a,v)

= (b' -f- b, a' cosfr + v' sinfr -f α, v' cos6 + a' sin6 -f v)
6 Of course, this constant field may be eliminated by requiring invariance under

space reflexions for instance.
7 This less known kinematical group, its structure, physical meaning and

relations to more usual groups, are studied in Ref. [12] for the three-dimensional
case. We limit ourselves here to the "elliptic" case, the "hyperbolic" one being
completely similar.
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and
[H, P] = -iK, [K,H] = iP> [JΓ, P] = 0. (70)

The group has a one-dimensional family of exponents corresponding to
the extension

[K, P] = iral (71)

of the Lie algebra8. They may be written as:

ξ(g', g) =m\γ (α'2 + v'2) shb chb + a'V'sh2b -f (v'chb + a'shb) a\ .

(72)

A new feature however is that the homogeneous group Γ = {(0, 0, v)}
has one-dimensional representations:

ζ(v) = fv (73)

(/ a real number), which cannot be extended to the whole group G, and
formula (43) must be used to obtain the most general gauge function.
An easy computation shows that

γ(g;x) = h-χ

1ghx= {0,0,v cht + asht) . (74)

Our gauge functions then read:
r i I

L 2 -I (75)

+ f(v cht -f asht) .

The Lagrangian is obtained by the methods already used:

Once more, it describes a particle subjected to the constant force field /,
although in an oscillating universe (or, more trivially, attached to
a spring).

One-Dimensional de Sitter Group. We will not give full details here,
since the explicit formulas are more complicated than in the preceding
cases. The general situation however is easily grasped. The Lie algebra is:

[H,P] = -%K, [K,H] = iP, [K,P] = iH. (77)

The group being simple, it has no nontrivial exponents [4]. The one-
dimensional representations of the homogeneous group, characterized by
a real number / [as in (73)], cannot be extended to the whole group and
yield a one-dimensional family of .Γ-superequivalent exponents, hence of
gauge functions. The Lagrangian has an invariant part characterized by
a real number m and a gauge-variant one characterized by /.

8 It may be noted that the group is isomorphie to the one-dimensional Poincare
group (substitute K -> — H, H -> K), so that one may use the previous results on
the exponents of the one-dimensional Poincare group.
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Summary of the One-Dimensional Cases. In the four cases studied, the
most general Lagrangian yielding invariant equations of motion describes
a particle with mass m in a constant force field /. These identical physical
situations however have very different mathematical descriptions since
the parameters (m, /) may characterize group invariants, group ex-
ponents or group representations:

de Sitter: m, G-in variant /, Γ- one -dimensional representation ,
Poincare: m, 6r-invariant /, 6r-exponent,
Newton: m, G-exponent /, /"-one-dimensional representation ,
Galilei: m, 6r-exponent /, 6r-exponent .

A more detailed study of the contraction processes relating these various
groups might be interesting in connection with the different charac-
terizations of their associated invariant motions. Anyway, we have shown
with these examples that all the aspects of the general theory developed
in Section 3 might find concrete illustrations.

5. Conclusions

We have been able to give a complete group-theoretical study of the
transformation properties of one-particle Lagrangians in classical me-
chanics. It should be said, however, that these results may still be recast
in a more concise mathematical formalism borrowing some notions from
cohomology theory for instance.

But a more interesting problem seems to be posed by one result of
the present investigation. It is very strange indeed that requiring the
equations of motion to be invariant under some kinematical group does
not lead uniquely to inertial motions according to the basic group law.
Let us elaborate a bit upon this point taking the one-dimensional Galilei
group as an example. It is pretty clear that motion in a constant force
field, leading to a quadratic equation of motion, r = F(t), is invariant
under the group in the sense that the substitution (rf = r + υt + a, t'
= £ + δ) yields a new equation of motion r' = Ff (£'), equally quadratic

and corresponding to the same constant acceleration, -jrf = ~TTΓΪ , that

is to the same force field. But, after all, a similar situation would prevail
for any polynomial equation of motion. And, finally, it is obvious that
any rigid motion may be consistently described by various galilean
observers. The privileged role of motion in a constant field then appears
somewhat arbitrary. Obviously, it is due to the differential equation of
motion being of second-order, so that a constant as well as a zero
acceleration give an invariant equation. This is not a very satisfying
"explanation" however. In fact, it is perhaps possible to give a formula-
tion of classical mechanics, slightly more general but not less natural
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than the customary one, in which the only invariant motions, in a
Lagrangian formalism, are given by the inertial motions of the kine-
rnaticai group. This question is under current investigation.

It is a pleasure to thank H. EKSTEIN, R. HAXIM, M. LE BELLAC and J. P.
PROVOST for stimulating conversations.
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