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Abstract. The existence and analyticity of the correlation functionals of a quan-
tum lattice in the infinite volume limit is proved. The result is valid at sufficiently
high temperatures and for a large class of interactions. Our method estimates the
kernel & for a set of Kirkwood-Salzburg equations. While a naive estimate would
indicate that \\KΦ\\ = oo, we take into account cancellations between different con-
tributions to K? in order to show that for sufficiently high temperatures ||-K |̂| < 1,
and this estimate is independent of the volume of the system.

I. Introduction

The algebraic theory of statistical mechanics applied to quantum spin
systems has recently been studied by D. ROBINSON [1, 2, 3]. In this note,
it is proved that the correlation functional of an infinite volume quantum
lattice satisfies a Kirkwood-Salzburg equation and is analytic in the
fugacities, for sufficiently high temperatures and a large class of multi-
particle potentials. This generalizes results of DOBRTJSHIN [4] and GAL-

LAVOTTI [5] for classical lattices.
In order to describe a r-dimensional quantum lattice, assign to every

point x of Z v a Hubert space $)x of dimension N, and to every finite set
Λ C ~%-v the tensor product §,i = 0 § κ The algebra of bounded operators

xζΛ

on ί)Λi denoted Si (/I), is called the algebra of strictly local observables,
and the closure of the union U SIM) is called the algebra of quasi-

ACΈ.V κ ' ° u

local observables Si.
We will assume N — 2 to simplify notation, although the results are

true for arbitrary N. Let the vectors \X}, X CΛ, be an orthonormal basis
for §A% Then the algebra Si {A) is generated by creation and annihilation
operators a+(X), a(X), XcΛ, defined with Fermi-Dirac commutation
relations at each lattice site and commutation between different lattice

(X) ΞΞ a+ (xx) a+ {x2) . . . α+ (xn) , X = xx \j x2 \j \J xn

]+= δXuXt.
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We will assume that the interaction of particles on the lattice is given
by a Hermitian, translation-invariant, many-body potential {φk} such

oo

that φ7c{xv . . ., Xjc) ζ Qi(x1 w u #fc). With the norm \\φ\\ = Σ IMU>

where | | ^ | | f c = Σ \\φk(0 \j X)\\, \\φk(X)\\ is the operator norm of

φk(X), and N(X) is the number of elements in X, the potentials {φk}
of finite norm form a Banach space B. Since the potential is translation-

3

invariant, φ1 can be uniquely specified by βφ1^) — — Σ m ziσi> where
ΐ = 0

the σ{ are generators of the algebra 2ί(x). This serves to define the
fugacities z{. For the choice σ0 = a+(x) a(x), zQ agrees with the usual
notion of fugacity in the classical limit. The energy operator Uφ(Λ)
= Σ φ(X) satisfies \ϋφ(Λ)\ £ N(Λ) \\φ\\.

XCΛ

The space B is too large to carry out the intended proofs. I t is
necessary rather to consider the subsets Bx, α £ 1R, of those multi-
particle potentials {φk} which satisfy

n

Σ ••• Σ \\

for some number r depending on φ.

II. Kirkwood-Salzburg Equation

The partition function ZΛ and the correlation functional ρΛ of a finite
lattice are defined by:

ρΛ(X, Y) = Z j i T r ^ ( e - β U ^ Λ ) α+ (X) a

Theorem. The correlation functional ρΛ{X, Y) satisfies the following
generalization of the Kirkwood Salzburg equation:

ρΛ(X, Y) - Σ Q{P, T \j B) KA(X, 7 ; P, T KJ B) + α(X, Y).
R,PCΛ

RY' 0
where
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and the kernel is given by

KΛ(X,Y;

P,Y'\jR) =

Σ
VcRΓΛP

^ (-ψ(V) < P - V\ eWWaVι e-βϋ^ \X w (R -

if 7 Φ 0, (X\jyj) r\RcP

\ \
VcRΓ\(P-X')

XXΓΛPCV if Y = 0>Xlr\ PcR, X'
zero otherwise

If φ ζ Bx, α = 2J/2 + 1, and if β is sufficiently small, then in the limit

A -> oo this equation is well defined, has a unique solution, and the solution

is an analytic function of the fugacities in a region of zi— β space.

Proof. Viewed as an operator equation on j£?°°, the Kirkwood-Salz-
burg equation can be written (I — K^) ρΛ = oc. We will prove that if
φ £ Bκ and β is sufficiently small, then the operator KΨ

Λ approaches
a limit JK> of norm \Kv\ < 1 as A -> oo, uniformly in (complex) fugacities
Zi Therefore, the equation is well defined in the infinite volume limit,
Kφ

Λ -> JK>, and (/ — K?) is invertible.
The solutions of the equation (I — Kv) ρ = α are the infinite volume

correlation functionals ρ. Since ||iϋ>|| < 1, (I — K^)-1 -> (I — K*)-1 as
A -> oo, and thus ρΛ = (I — K^)*1 α -> ρ. Moreover, the functions

z.-+KjZi>rt-> {I-KΛ^Y1-+ρΛ{X, Y) of C-> Horn(^°°)-> Horn(g>°°)
-> C are analytic, and so the composite functions z{ -> ρΛ are analytic.
By the uniform convergence of Kφ

Λ, the functions zt -> ρ (X, Y) restricted
to the real lines are analytic functions.

To derive the equation for the case Y Φ 0, use cyclicity of the trace
and a sum over intermediate states:

ρΛ(X, Y) = ZΛ1 Tr§yl(α(Γ) t~fV^

Σ
ScΛ

Σ
SCΛ

Σ {S\jY'\e~~βϋ<p{Λ)\T)
S,TCΛ
YX 0

From the identity,

\B) = ZΛ Σ (~ 1)* ( F ) QΛ(B \J V, A w F)
VCΛ

VΛ 0
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obtain

QΛ(X,Y)= Σ
V,S, TCΛ
(Yx)

Making the change of summation indices, P = T \j V and R — S \j F,
completes the derivation. The case Y = 0 is similar [6].

We shall calculate ||JΓ* || = sup Σ \\KΛ{X, Y; P, Y' \J R)\\ by
X,YCΛ R,PCΛ

Y'0

expanding in multicommutators:

0 n—0

Then

KΛ(X, Γ; P,Y'

where

K«Ϊ(X, Y; P,YfκjR)=
VCRΓ\P

<P - V\ βn[U(Λ), ayiψ) \XKJ{R- F)> .

If in estimating ||UL^|| the factor (— l)xV(F) is omitted, then we obtain
||UL^|| = oo. Hence this factor must be used to take into account can-
cellations between different contributions to the sum for Kφ

Λ.
A bound on ||UL^|| is given by the Lemma.

Lemma. Σ
R,PCΛ

0

\\Kn

Λ(X, Γ; P, Y1 \j R)\\

for oc= 2 j/^+ 1.

Proof. The proof is based on the commutativity [φ(Y^, 92(^2)] = ^
whenever Yxr\ Y2 = 0, and the identity Σ (— 1)^ ( Γ ) = 0 for any set

F c l
X φ 0. From the first we have

Σ Σ
Y*QΛ 2/n € •S'n

Σ
YnCΛ

Yn),
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where Sp = YP w Yp^λ \J w Yλ\j y. By setting PF = i2 n P — F,
write i£5 in. the form

K\{X, Y\P, Y'\jR) = (-

• <P - (22 n P) + W \[βU(Λ), ay]W \X w (R - R r\ P 4- W)) .

In evaluating 27 ||-Ώ(^"> ^ -P, F' w JR)||, we may interchange the
R,PCΛ

R
order of summation at finite A and sum last over the arguments of the
potentials Yv y2, Y2, . . ., yn, Yn, as it will become clear from the proof
of the Lemma and the definition of Bx that the resulting series is abso-
lutely convergent uniformly in Λ. Therefore, let τ = R r\ P, R = R — τ,
P — P — τ, and consider the sum

P,RCΛ τCΛ-(P\jR\jY')
ly) = 0

• [φ(yn W Fn), [. . ,[φ{y yj ΓJ, αy] . . . ]] |Z w A u

The sum 27 (- 1)^ W c a n be written
WCr-{X\Jy)Γ\r

Tflc ( r - (X \J y) Πr) Λ ^n ^ Γ c ( r - (X W 2/) Γ\τ)Γ\ (Λ-Sn)

which vanishes unless (τ — (X \J y) r\ τ) r\ {Λ — 8n) — 0, since, from the
observation [U(Λ), ^ ] ( w ) ζ^(^ n ) , the matrix element is clearly inde-
pendent of W2> Note that this implies τ cSn\j X. With these restrictions,
the matrix element becomes

= ((P n 8n) \j W,\ [φ, I . . [φ, ay] . . .]] \(X u R VJ WJ n Sn)

'(PfΛ(Λ-Sn)\(XvjR)rΛ(Λ-Sn))

which vanishes unless P r\ {Λ — 8n) = X r\ (Λ — Sn), R r\ (Λ — Sn) = 0.
Now suppose τ r\ (Λ - 8n) Φ 0, i.e., T A ( Ϊ Λ ( 4 ~ JSΛ)) φ 0. Then

τ r\ (P r\ (Λ —• 8n)) φ 0, which is impossible, since τcΛ — -P. Hence
τ C #n Combining these results, we may write

2; | |i^(X, F P, F w 22)||

27 *φ 27 27

β" \(P - (R ΓΛ P) + WI [φ, [

(R-Rr\P+ W))\ .

y
YnCΛ P,

yΔJ

RCSn

Σ
WCRΓ\P
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Let[<p,[ -[φ,ay]- -]] = B9 V = B r\ P - W, and T= P- V,
and employ the Schwarz inequality in summing over T.

Σ Σ \(P-(BnP)+W\B\(XrΛSn)xj(B-(Br\P)+W))\
P,RCSn

= Σ Σ Σ \(T\B\(XrΛSn)yj(R-V)}\
RCSΛ VCR TcSn~Y

^ Σ Σ (j/2yγ^ (
RCSn VCR RCSn

where we have used the fact that for any set 8 and number z,

y ίz\N(Λ) _ y j { n ιzγ __ ιz _j_ \\N(S) #

Finally, since flty, αy]<n>|| g 2 ||^|| ]][<£>, α j ^ - 1 ) ] ! , and

v
N(8P) ^ 27 (&/ — 1) + 1

i = l

for ^ = N(Yi) + 1?

21 ||Jf«(Z, Γ P, Γ'wΛ)||

CX3 O O

•(2J/2+ l)^(^) 77 i\Γ(^)

which proves the Lemma.
The case n = 0 can be explicitly evaluated, writing ό (-4 = 5)

ίl if J. - B

\0 otherwise .

= δ{y r\ X φ $) [ρΛ(X — y, Yr) — QΛ{X> ^

Thus the Ejrkwood-Salzburg equation takes the form

n X Φ

' 7'wΛ)ρ^(P, Γ'wΛ) + α(Z, Y)

and it is evident that if φ £ J5α, then β can be made sufficiently small
so that |HΓ |̂ < 1. The convergence of Kφ

Λ as A -> oo and the uniformity
in fugacities can easily be checked, completing the proof of the Theorem.

P,RCΛ
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Corollary 1. // Uφ(Λ) conserves particle number, there exists a strictly
positive monotonically decreasing function of fugacity βe(z) such that the
infinite volume correlation functional is analytic in fugacity for β < βc(z).

Proof. If Uφ(Λ) conserves particle number, z can be factored from iΓJ.

Corollary 2. Suppose φ ζ B, φi = 0 if i > 2, and suppose Uφ(Λ) con-

serves particle number. Then ρ(X, Y) is analytic in fugacity z if β(l + zoή

< (2oc\\φ\\2)-\ where oc = 2γ~2 + 1.
We are investigating if the Theorem provides, in the case that U(Λ)

commutes with particle number, a better value for an upper bound of the
critical temperature than that found by G. GALLAVOTTI [7].

Applications of the integral equation and other properties of the
correlation functionals for classical systems have been described by
D. RUELLE [8] and G. GALLAVOTTI [9].

I would like to thank ΐ>. ROBINSON for suggesting this problem and A. JAΓFE
for his assistance and encouragement.
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