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Abstract. We continue here the series of papers treated by LUDWIG in [1—5].
Using some results of DAHN in [6], we point out that each irreducible solution of
the axiomatic scheme set up in [5] is represented by a system of positive-semi-
definite operator pairs of a finite-dimensional Hilbert-space over the real, complex
or quaternionic numbers.

I. Introduction

Following MACKEY'S [7] general outline of axiomatic quantum theory,
MACLAKEN [11] and ZIEKLER, [8] or PIRON [12] and JAUCH [13] introduce
two final axioms concerning the topological structure of the lattice G of
questions (also called propositions or decision effects). This means strictly
speaking that G and each sublattice of G is a compact set and that the
set A (G) of all atoms of G is connected. These axioms characterize the
division ring appearing in the representation theorem for G.

In his axiomatic scheme (cited in [5]), LUDWIG starts from a pair of
sets (K, L) imbedded in a dual pair (B, Bf) of finite-dimensional real
Banaeh-spaees. Hence the lattice G of decision effects, being the set of
all extreme points of L, carries a topological structure inherited from B''.

In [5] it was already shown that the first of the axioms mentioned
above is a theorem in this exposition.

The purpose of this paper is to show that also the second axiom can
be deduced. Furthermore, the following representation theorem for the
system (K, L) will be shown.

Theorems 20, 21 // the dimension of the finite-dimensional Banach-
spaces B, B' is large enough, then there holds:

1. Every irreducible solution of the axiomatic system (K, L) is iso-
Λ

morphic to a system (Jf, 3?) of linear operators of a finite-dimensional
Hilbert-space H.

2. The division ring of H is isomorphic to either the real, the complex
or the quaternionic number ring.

3. The set C/F consists of all positive-semidefinite operators V with
TrV= 1.

* This paper is an abridged version of the author's thesis presented to the
Marburg University and written under the direction of Prof. G. LTJDWIG.
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4. 3? is the set of all positive-semidefinite operators F ^ 1.
A

5. The operators V ζJf and F ζ J£ are put in duality by the operator
trace Tr VF.

II. Preliminaries

Let us sketch the axioms and some of the most important proposi-
tions cited in the papers [1 — 5] by G. LTJDWIG.

We will start from a dual pair (B, Bf) of finite-dimensional topological
vector-spaces over the field R of the real numbers, where B is spanned
by the closed convex hull K of the set K of all physical ensembles v and
whereas B' is spanned by the closed convex hull L of the set L of all
physical effects /. (K, L) is a dual pair according to the following.

Axiom 1. There exists a mapping μ of K x L into R+ satisfying.
α) 0 ^ μ{v, /) ^ 1 for all (v, f) ζK x I.

β) f1 (vv f) = μ (V2> /) for att f ζL and vx, v2 ζ K implies v1 = v2.
γ) μ{v, /x) = μ(v, f2) for all v ζK and fv f2^L implies fx = /2.
δ) There exists f ζL (denoted by 0) such that μ (v, 0) = 0 for all v ζ K.
ε) For each v £ K there exists f ζ_L such that μ (v, /) = 1. _ι
μ can be extended to the canonical bilinear functional over B x Br.

Then in B a norm || || is defined by ||#|| := sup(|μ(#, f)\ - f ζ L) for x ζ B.
Hence the finite-dimensional jR-vector space B is a Banach-space. With
respect to the norm \y\ : = sup(|μ(α?, y)\ : x ζ B, \\x\\ •= 1) and to the par-
tial ordering defined by yx < y2 for ylyy2ζ Bf iff μ{v, yx) ^ μ(v, y2) for
all v ζ K, B' becomes a partially ordered real Banach-space. For the
further axioms we need the following sets. Let i = 0, 1 I Q L, h Q K.

: μ(υ, f) - i for all / ζI}.
''μ(v,f) =i for all v ζ k}.
L is defined to be the closure of the set {y ζ Br: y = λf, λ ^ 0, / ζ L
and λμ {v, /) ^ 1 for all v ζK}.

Axiom 2 a. For each pair fv /2 ζ L there exists f3 ζL so that /3 ^ fv f2

o ( f 2 ) o ( f 1 ) o ( f 2 )
Let ϊg be the greatest subset of L such that Ko (I) = Ko (Ig). According

to axiom 2 a, Ig is an ascending directed set possessing a greatest
element elg called decision effect. I t is defined by

μ(υ,elg): = sup{μ(υ 9 f): / ζ Ig}

for v ζK and satisfies ||e^|[ = 1. Let G be the set of all decision effects
e of L.

In [1] and [5] it was shown that G and the set W : = {^i(^) :l Q L}
are complete, orthocomplemented and orthoisomorphic lattices. The zero
elements in G, ffi are 0, 0, respectively; the unit element in G is 1 given
by μ(υ, 1) = 1 for all v ζK, whereas the unit element in W is K. The
orthocomplementation in G, W is given by e -> 1 — e and Kt(l) -> K0(l),
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respectively. Because of dim J5 = dim J5' < oo, Q and TF are atomic
lattices.

Axiom 2 b. For f ζL and e ζ G, K0(f) 2 K0(e) implies f g e. —ι

A (4= 0) S K. is called an extremal set iff;
α) .4 is convex and closed;
/?) Every open line segment S Q K with 8 r\ A φ 0 is contained in A.
Let C(v) denote the smallest extremal set of K containing v. v ζ A Q K

is an extreme point iff there is no open line segment in A containing v.
Axiom 3. £ 0 ( v i) = L0(v2) implies C(v1) = C(v2). —ι
The following theorems are proved in [5].
Theorem 1. L = L = (y ζ Bf: 0 ^ ^(v, y) g I for all υ ζ K).
Theorem 2. i Γ = φ ζ . B : 0 ^ μ{x, f) for all f ζL and\\x\\ =μ(χ,l) = 1).
Theorem 3. 6r is ί/ιe set of all extreme points of L.

Theorem 4. Σ eί = 1» e t ί ^ implies Σ ei= V e€ αn^ e, _L efc /or i =# A;.

Theorem 5. Every f ζ X allows an unique decomposition f = Σ ^iei*
with ei ζ (̂  pairwise orthogonal and I ^ λ1> ' - ' > λm> 0. i = = 1

According to the Theorems 1 and 2, iΓ and X are bounded sets.
Since B and B' are topologically isomorphic to Rn, K and £ are compact
sets.

Let A Q K be convex and M {A) denote the linear manifold generated
by A. x £ A is called an internal point of A relative to M(A) iff for every
line g Q M(A) through x there exists an open segment S Q g Q A with
x ξ 8. The set of all internal points of A is denoted by Ai. A point of
an extremal set A Q K not being an internal point is called a bounding
point. Let BάA denote the set of all bounding points of A.

G. DAHN proves then the following theorems:
T h e o r e m 6. v1 ζC{v), iff there is λ ζ ] 0 , 1 [ C R and v2ζK with

v = λ v 1 + (1 — λ) v2.
Theorem 7. C(v) = C(v) iff v ζ C(vγ.
Corollar. C{v^)CC{v2), vv v2ζK implies C^) Q BάC(v2).
Theorem 8. There exists e ξ 0 with C(υ) = ^ ( e ) , hence:

W=(C(v):vζK).

Theorem 9. The extreme points of K are the atoms of the lattice Tf.
Theorem 10, Each extreme point of C(v) Q K is also an extreme point

of K.
Theorem 11. Each extremal set of K contains at least one extreme point.
Together with the isomorphism between G and W the Theorems 9

and 11 imply:
Theorem 12. The set E (K) of all extreme points of K is bijectively

mapped onto the set A(G) of all atoms of G.
21 Commun. math. Phys .Vol. 11
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Axiom 4. For v1} v2, v%£K:
C(vx) n C{v%) = 0, 0 φ C(vs) Q C( l ^ + 1 υ2) and O(^) J_ C(v3)

implies C{\ v1 -f -| v3) n O(v2) 4= 0. —i
This axiom is equivalent to
Axiom 4\ The orthoisomorphic lattices W and G are modular.
In [5] the implication is proved: Axiom 4 =φ Axiom 4'. The converse

implication may be seen as follows.
Let C(v^) = a, G(v2) = &, C(v3) = c. In [6] there is shown

Hence with α Λ 6 = 0, 0 φ c ^ α v δ, α _[_ c and the assumption
(α v c) Λ δ = 0, we find by using the modularity:

c = c A (a v b) = c Λ (c v a) Λ (a v b)

= c Λ (a v (6 Λ (a v c))) = c Λ α , i.e. β φ c ^ α

contrary to c ± a. —ι
Let dim(τ (dim(e) for e ζ G) denote the greatest number of pairwise

orthogonal atoms p{ ζ A (G) with JJ Vi = 1 (^i ^ e with Σ Vί^ e) respec-
tively. Then in [5] there is shown.

Theorem 13. G is closed and ei -> e implies dimίe^) -> dim(e). Hence
also Λ(G) is closed.

The lattice $ is a direct sum of irreducible sublattices G(0, ê ),

Σ ê  = 1 of the same structure as G.
i = l

k
Hence each/ ζ £ has the form / = Σ / withO ^ fi ^ e{(i = I . . . k).

i = l

Each i; ζ ^ may be written υ — Σ ωivi defined by μ (v, f) = Σ ωiίι (vι> ft)
i = » l i = l

for all / ζ L, ω{ £ β + , Σ ωi=' 1 a n ( ^ A* (vt» ei) = ^
Thus, without restriction of generality, we may postulate.
P : The lattices W and G are irreducible.

III. Some Further Consequences of the Axiomatic Scheme

Theorem 14. Let C be an extremal set. The set BdO of all bounding
points of C equals the boundary dC of C relative to M(C).

Proof. Since BdC Q dC, let us take v ζdC ς C~ = C with v $ BdC.
Obviously v ζ CK

The w-dimensional Banach-space B is homeomorphic to Rn under its

euclidean norm \x\ : = ΫΣ^i with x = Σ&i χi> xi{i = 1 n) being a
cartesian base. Let us assume dimM(C) = m ^ n. By 11Q{X) we denote
the spherical open neighbourhood {y ζ B: \y — x\ < δ} of x. Since v is
an internal point of (7, we find m + 1 independent points v{ ζC with
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v = Σ λivi, Σλi = 1 and 0 < λ{ < 1 (i — 1 . . . m -j- 1). Since all A* are
positive, there exist open neighbourhoods 33* (A$) in #+.

w + 1
Now every x ζM(C) may be written in the general form x = JΓ α ^ ,

i = l
m + 1

α* ζ β and Jζ1 α* = 1. Because all λ* depend continuously on the cartesian
ΐ = l

coordinates of v ζRn, we find δ > 0 such that for all x = Σ αΛ">
27 α* = 1, contained in U^(v) n M(C), oci ζ 33* (λ$) S #+ consequently
holds, i.e., α* > 0 (i = 1 . . . m + 1). Therefore, every x ζ Wδ(v) n i f (C)
is a convex combination of v1 . . . tfw+1; i.e. lt<j(fl) n i f (0) is an open
neighbourhood of v relative to M(C) and totally contained in G. Thus,
we have v $ dC contrary to our assumption. —J

Because of Theorem 14 we need not distinguish between boundary
points and bounding points of an extremal set C. C is said to be strictly
convex iff one of the of the following equivalent conditions is satisfied:

1. The boundary of 0 includes no line segment.
2. Each boundary point of C is an extreme point.

Theorem 15. // p, q are orthogonal atoms of the irreducible lattice G,

then the extremal set G(v) : = Kx yp v qj is strictly convex.

Proof. MAEDA [14] shows that in an irreducible atomic and modular

lattice an atom r 4= p, q exists which is covered by pv q. Since W is
isomorphic to G, Kλ (r) — : vr £ C (v) is an atom contained in the boundary
of C(v) by Theorem 7 and corollary. Supposing the boundary of C(v)
contains a line segment [vlt v2] with distinct end-points, it also contains
v: = ^v1 + \v<ι- If C(v) is not included in ΈάC(v), then vζCty)*,
would follow from Theorem 7 contrary to the choice of v. Thus, observing
vζCty)* we have the inclusion C(v) C BάC(v) C G(v). On account of
C(v) 4= 0J 0 C G(ϋ) C G(v) is a chain of length two. Yet all chains between

0 and C(υ) : = Kx \pvq) of length two are covering chains in the modular
lattice W. Thus, contrary to containing the segment [vv v2], C(v) is an
atom, i.e., an extreme point. This completes the proof. —ι

Theorem 16. The bijective mapping E (k) <-> A (G) is a homeomorphism.

Proof. Since L is compact, the closed set A (G) is also compact. Let
(pκ) be a convergent sequence in A (G) with lim pa = p. On account of

α

the compactness of K, we can find a convergent subsequence (pay so
that (vx : = Kx (pj)' is a convergent sequence in E (K) with vκ -> υ ζ K.
If we choose ε > 0, almost all vx satisfy the inequality \\vΛ — v\\
= sup \μ{vΛt f) - μ{υ, f)\ < ε; in particular we have \μ{va, pΛ) - μ{v} px)\

< ε i.e., |1 — μ (v, px)\ < ε for almost all p^ converging to p. Thus μ (v, p)
= lim μ(v, pΛ) = 1 i.e., v ζK^p) = : vp ^E{K). Hence the mapping

Pχ->P
21*
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A (G) -> E (K) is continuous. Since A (G) is compact, the continuous bijec-
tion A{G)->E(K) is by a topological theorem even bicontinuous. —ι

This implies immediately

Corollary. The set E(K) of all extreme points of K is compact.

Theorem 17. The set of all atoms of every lattice segment (2(0, e)
= {x ζ G : 0 g x < e}, e ζ G is connected.

Proof. Let p, q(ή= p) be atoms of G. We must find a continuous
mapping / of a closed segment [α, β] C R, α φ β, into the set
A ίP V q) : = {r ζ A (G): r < p v q} with /(α) = p, f(β) = q. This will be
shown in several steps.

1. G is irreducible; hence there is a third atom r < p v q. Therefore,
the corresponding three distinct extreme points vv, vQ, vr ζK^py q) are
independent; i.e., they span a plane $ = <?{vp, vq, vr) in B. Since $ is
closed, ^ : = Kx (p v q) r\ <o is an extremal set and strictly convex. Now
let us construct the above function / in four steps.

2. For each x ζ <f Y&7*, there exists one and only one euclidean nearest
point on the boundary of *$.

To show this, let | | be the euclidean norm and assume x ζ $ but
x $ c€i. Being a closed subset of K, Ή — x is compact. Since | | is a con-
tinuous function on ̂  — x, inf | ^ — x\ : = inf (|ί/ — α;| y ζ%?) exists; i.e.,
there is v £ ̂  so that \v — x\ = inf |<^ — #|. v is said to be an euclidean
nearest point of Ή relative to x.

v ζ ^ is a boundary point of ^ , for otherwise, the line through v and
x would intersect the boundary of ^ in a point t/(φ v) ζ^ 7 between v
and α:. This would imply \v' — x\ <\v — x\ contrary to \v — x\= inf \%> — x\.

Now let us show that there is only one euclidean nearest point. On
account of the Minkowski-inequality: \x + y\ < \x\ + \y\ iff x Φ A ,̂
2 φ O , we find for x, y(^= λx) ζ ̂  : = (z ζ β n : |z| = 1) the inequality
|-| (x + ?/) I < 1; i.e. the boundary of ^ containing no line segment is
strictly convex.

Suppose v1 and v2(Φ vτ) are two nearest points of ^ relative to x.
Being convex, ^ contains v0 : = ^ (^ + v2). Then j ^ — #| = |v2 — x
= : d yields the contradiction \v0 — x\ = |-| [(vx — a:) + (̂ 2 ~ ^)] |
< ίZ: = inf ^€ — x\. Hence v1 = v2.

3. The mapping φ : x -> v attaching to every x ζ S\^€{, its nearest
point v ζ Bd Ή is continuous.

Let (^n) C ̂ \^* be a convergent sequence xn -> α;0. The compactness
of Bd ̂  implies the existence of a convergent subsequence vm -> v, of
nearest points vm = 99(0:̂ ) £ Bd ̂ . We need only show v = v0 : = 99 (#0).
Now let ε > 0 and |#w - xo\ < ε. Then \vn - α;0| ̂  |vΛ - xn\ + \xn - vo\
^ inf \<g - xn\ + ε g inf | # - a;0| -f 2ε = \v0 - xo\ + 2ε, but |v0 - a;0|
= inf l̂ 7 — ajo| ^ |vΛ — a;0|. Hence
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α): xn-> x0 implies \vn — xo\ -> \v0 — xo\. On the other hand, noticing

0 < \\vm- xo\ - \v - xo\\ <* \vm - ϋ\ we find;

β)'- \vm ~ ^| ~> Q implies \vm — xo\ -> \v — xo\. oc) and β) together yield

\v0 _ #0 | = \v — χo\. Hence v0 = v, because v0 is the unique nearest point
of ^ relative to x0.

4. Let us consider the intersections of the supporting hyperplanes
Hp, Hq with the plane $. These are lines lv, lq. Assume lp, lq not to be
parallel and let Jί be the set union of lp, lq\ i.e., Jί : = (x ζ <o : μ(x, p)
— 1) \j (y ζ $ : μ (y, q) = 1) obviously Jί r\ <€ — {vv, vq} Q c€i. Let v be
the nearest point of ^ relative to x — lp r\ lq.

Then

(vp + t(x - vv) for t ζ [0, 1] C R
Xpq® :==\x+ (t-1) {vq - x) for t i [1, 2] ς R

is a continuous mapping of [0, 2] Q R onto the union °ll C Jί of the line
segments [vv, x], [x, vq]. Let v(t) = φ(x(t)). Hence v(t) is a continuous
mapping of the connected inter vail [0, 2] onto the arc j / joining vv with
v and v with vq on the boundary of *$. Since ^ is strictly convex, stf
consists only of extreme points and is a connected set. Using the
homeomorphism E(K)<-*A(G) we find, in A{pvq), an arc joining p
andg. —ι

5. If lv and lq are parallel, we take lr : = (x ζ $: μ(x, r) = 1) as
auxiliary line being parallel neither with lp nor with lq. Then the foregoing
scheme applied twice yields also an connected arc in A (p v q). —i

Using Theorem 13 and Theorem 17 and the notion of states instead
of ensembles ZIEKLER shows in [8]:

Theorem 18. G is a topological lattice i.e. orthocomplementation, lattice
union and intersection are continuous operations.

Collecting the results of ZIERLER [8, 9] and former results [10],
MACLAREN has in [11] given the following representation theorem for G.

Theorem 19. // G contains at least four orthogonal atoms, then G is
isomorphic to the lattice of all subspaces of a finite-dimensional Hilbert-
space H over the real, complex or quaternionic numbers.

IV. The Representation Theorem for the Dual Pair (K, L)

Theorem 20. Let £P be the cone of all positive semidefinite operators of the

finite-dimensional Hilbert-space H. By $f and 3? we denote the subsets
(V ζ 9 : Tr V = 1) and (F £ 9 : F g 1), respectively.

Then there exists a pair of topological isomorphisms (ψ, χ): (K, L)

-> (Jf\ ££) such that:
1. ψ preserves extremality in both directions.
2. χ preserves partial ordering in both directions.
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3. The mapping μ and the trace of operators are related by μ{v,f)

Proof. The proof is divided into five steps.
1. The lattice 9β of projections of the finite-dimensionalHilbert-space

H is orthoisomorphic to the subspace-lattice L(H) of H which is ortho-
isomorphic to G by Theorem 19.

Let 3tf be the real linear space spanned by the cone & of all positive
semidefinite linear operators of H and let χ be the orthoisomorphic

mapping G-><$. By χ{Σhei) = Σ^iX(ei)> h £R> eί ζ@> w e n a v e e χ -
tended χ to a linear mapping χ of B' into ffi. Since each real operator
of H has an unique decomposition Σ ' ^ ^ with E{ ζ φ pairwise ortho-
gonal and λi ζ JR, the mapping χ is also an isomorphism of B' onto ffl.

2. By a fundamental theorem of GLEASON [15], to each orthomeasure
m of φ with dimφ > 3, there exists a positive-semidefinite operator V
of H defined by mv (E) = Tr (YE) for all E £ φ . Hence to each v f l there
corresponds an operator V = ψ(v) ζέ? and only one. For if there is
another V ζ & satisfying mv(E) = Tr VΈ, we should have Tr{V - V)E
= 0 for all i? £ φ and particularly for all atoms Px ζφ. That would
mean Tr{V - V) Px = <ίc, (F - F ;) ^> = 0 for all x ζH, contrary to
V φ F'. For all v ζK, we have T r ^f(v) = m v(l) = ^(v, 1) = 1 i.e.,^ is
a mapping of K into JΓ. By γ> (27 λ ^ J : = Σ h ψ (Vi), with ^ ζ ^Γ, λ4 ζ R,
we have extended ψ to a linear mapping ψ oί B into the real linear
space «5f.

3. The linear mapping ψ is injective and bicontinuous. To prove the
first property it suffices to show that ψ is an injective mapping. Let
vv v2 ζ K with γj(%) = ψ(v2). Hence μ(vl9 f) — Tr(xp{v^) %{f))
= Tr (xp(vz) χ(/)) — μ(v2, f) for all / ζL; by axiom 1 β, we find then
v1 = v2.

According to \\v\\ = 1 = μ(v, 1) = Trψ(v) ^ | ψ (v) \, with the operator-
norm | |, the injective mapping ψ is continuous. Yet with the compactness
of K this implies the bicontinuity of ψ.

4. The mapping ψ : K -> Jf being linear, injective and bicontinuous
obviously preserves extremality in both directions.

Because of the inequality 1 = TrV ^ sup (Tr V Px : Px ζA (<£))
= sup((.τ, Vxy : x ζ H and ||^|| = 1) = : | F | , the set JΓ 2 ^(-^) is a subset
of the unit ball 38 of the linear space Jf7.

Now, according to a theorem of KADISON [16] the set of all extreme
points of 0* r\ £% equals the set 9β.

Since ψ(K) Q Jf Q & r\ 08 and Tr V = 1 for all F £ (̂J5Γ), the set
E (ψ(K)) of all extreme points of ψ(K) must be even a subset of
So, to every vv = ϋΓjίp) C X there corresponds only one atom P
n y (̂ Γ). But being isomorphic to A (G), E (K) is also isomorphic to A
Hence we have the equation A (φ) = J0 (JΓ) = 7̂ (y (jfiΓ)). Now ψ : K->
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is a surjection. This may be seen as follows: since TrV = 1, each
V ζ C/f Q J^ has a convex decomposition F = Σ bPi, with λt ζ R+ and
Σ λi — 1. Because of E(ψ(Kj) — A (φ), each <ψ~1{Pί) is defined and is an
extreme point vpί ζK. Being a convex set, K contains the convex de-
composition v = ip~l{V) = Σ hvvi

5. Now we will prove that the mapping χ : L -> 3? is an isomorphism
and preserves order in both directions.

First we show that Tr VF1 g Tr VF2 holds for all F ζ Jf iff^ ^ P 2 , ^
being the ordering in 0*. This may be seen as follows: Tr VFλ ^ Tr VF2

for all V ^C/C implies TrPxFx^ TrPxF2torallPx ζΛ{φ) = E(Jf);i.e.,
(x, Fxx) -£ (x, F2x) for all x ζ H. Thus Fx ^ i^2. Therefore, because of
the convex decomposition V = Σ ^% P% for each F ζ Jf and the linearity
of the trace, Fx ^ F2 being equivalent to TrP{Fx £ TrP{F2 for all
P^ ζ 4 (φ) implies T r VF1 ^ T r F J P 2 for all V ζJf.

Since for /1? /2 ζ L, /x ^ /2 means ^ (ι;, /x) < μ {υ, f2) for all v ζ K and

because ψ : iΓ -> J f is an isomorphism, ^ is obviously order preserving

in both directions and hence maps L onto ££: = (F ζ ^ : JP" ?g 1).
The inequality ||/|| = s u p d ^ ^ , /)| : x £ 5, ||z|| = 1) ^ sup(TrPF :

P ζ^4 (φ)) = \F\ and the compactness of L imply the bicontinuity
of χ. -J

NOΛV it remains to show that the system (jjΓ, J£) is a solution of the

axiomatic scheme (K, L). For that we must know the annihilator sets in

JΓ and Se as well as the C(F)-sets in JΓ.

The set lίX : = (x ζ Jϊ : Fx = 0, JF ζ i?) is a subspace of i ϊ . Let JE7 be
the projection onto the subspace complementary to 92ΐ. Then we have
F(l-E)x = 0 for all x £ JET; i.e., F = FE = EFE.

Since 0 ^ i" ^ 1 and <a?, Pα:> = <a?, EFEXs) = (Ex, FEx) g <^x, J^x>
= <», j&a;> for all x £H,we find F ^ E.

Now this being the case, we find E{ < E for the pairwise orthogonal
projections E{ in the unique decomposition F =ΣλiEi; hence Σ$i = E
and finally FE = Σ W®i® = 2J ^t^t = ^ However, being the smallest
projection with FE = F, E must be equal to Σ^i a n c ^ ^s s a ^ °̂ ^ e ^ n Θ

carrier of F. Hence, denoting by EA the carrier of A ζ 0* and noticing
T r VF = 0 iff F P = 0 for all F, F ζ ^ we find.

Lemma 1. JΓ0(P) - (F £ JΓ : F ^ - 0) <mί ^ ( ^ = (F i&: FEV

= 0).
Next, we show.
Lemma 2 O(F) = JTO(1 - ^ F ) .
Proo/. Obviously 3fo(l — Ev) is closed and convex. Let ]VV F2[ be

an open line segment in J f containing F £ ̂ 0{\ — Ev). Then there holds
f = AFX + (1 - λ) F a , λ ζ ]0, 1[; This implies 0 = f (1 ~ Ev)
= λ F ^ l - J07) + (1 - λ) F 2 ( l - J^F). Since A and 1 - A are positive
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numbers, we find F x ( l — Ev) = F 2 ( l — Ev) = 0. On account of the con-

vexity of JΓO(1 - Ev), this implies [Vl9 F 2] Q J f o ( l - Ev). Hence,

JΓO(1 — Ev) is an extremal set. Obviously V £ J f o ( l — Ev)\ hence

C{V) ς J f 0 ( l - JEV). TO show the converse inclusion, let F ( φ F) be an-

other point of J f 0 ( l — Ev). We decompose J57F into a sum of m pairwise

orthogonal atoms P{. Being internal point of the simplex (Pα . . . Pm)

which spans M(jfo(l — Ev)), V is also internal point of J f o ( l — Ev).

Hence a F ' ζ j f exists such that F £ ]F, 7'[. Then, by Theorem 6, there

follows V 6 C(F). Thus we have shown C(7) 2 JΓO(1 - $ F ) , too. Now

we are able to verify the axioms. By the remark that TrA P — 0 for all

P ζ A (φ) iff A = 0, we see that Axiom 1 holds.

Axiom 2a: Let Ev E2 be the carrier of Fv F2, respectively. For all

V £Jfo:= (V ζJf: VEλ - VE2 = 0) we find F(l - Eλ) = 7(1 - ^ 2 )

= F. Hence for JF : = (1 - ^Ί) (1 - E%) there holds 0 ^ î 7 - ^ ( 1 - E{),

i.e., 0 ^ ^ ^ 1 - JE1^̂  ^ 1 or 1 ^ 1 - F ^ ^ (i = 1, 2). On the other

hand, F ( l - F) = 0. Thus Fz : = 1 - F £ J2? satisfies the conditions

FZ^L Et^i F{ and JΓ 0 (^ 3 ) = JT"O = ^ 0 ( ^ i ) ^ ^0(^2) o f Axiom 2 a.

Axiom 2 b : Obviously we have S£ =££. Since EF ^ JP is the smallest

projection E satisfying J f 0 (JP) 2$Γ$(E) Axiom 2b holds.

Axiom 3: &Q(VX) = J^ 0 (F 2 ) means (F ζ£: FEλ = 0) = {F ζ£>: FE2

— 0), with JE?!, ^ 2 the carriers of Vv F 2, respectively; hence F :g \ — E1

iftF^l-Ez for all JP ζ Jδf. This implies 1 - ^ = 1 - $ 2 and 0 ( 7 ^

= J f o ( l - Et) = J f o ( l - ^ 2 ) = C(7 2).

Axiom 4: The lattice φ of projections is modular. Thus Axiom 4'

holds equivalently.

Summarizing Theorem 20 with the above results, we have shown.

Theorem 21. The system (X, i f ) : = ((F (- ̂  : TrV = 1), (JP ζ ^ :

-^ ^ 1)) 0/ positive-semidefinite linear operators of the finite-dimensional

Hilbert-space H, given by Theorem 19, is a categorical solution of the

axiomatic scheme (K, L).

I am indebted to Prof. G. LUDWIG for his stimulating guidance.
I also thank Dr. G. DAHN and Mr. W. PREDIGEB for critical remarks.

References

1. LUDWIG, G.: Versuch einer axiomatischen Grundlegung der Quantenmechanik
und allgemeinerer physikalischer Theorien Z. Physik 181, 233—260 (1964).

2. — Attempt of an axiomatic foundation of quantum mechanics and more
general theories II . Commun. Math. Phys. 4, 331—348 (1967).

3. — Hauptsatze iiber das Messen als Grundlage der Hilbert-Raumstruktur der
Quantenmechanik. Z. Naturforsch. 22 a, 1303—1323 (1967).

4. — Ein weiterer Hauptsatz iiber das Messen als Grundlage der Hilbert-Raum-
struktur der Quantenmechanik. Z. Naturforsch. 22 a, 1324—1327 (1967).



Axiomatic Foundation of Quantum Mechanics 313

5. LUDWIG, G.: Attempt of an axiomatic foundation of quantum mechanics and
more general theories III. Commun. Math. Phys. 9, 1—12 (1968).

6. DAHN, G.: Attempt of an axiomatic foundation of quantum mechanics and
more general theories IV. Commun. Math. Phys. 9, 192—211 (1968).

7. MACKEY, G. W.: Mathematical foundations of quantum mechanics. New York:
W. A. Benjamin 1963.

8. ZIERLER, N.: Axioms for non-relativistic quantum mechanics. Pacific J. Math.
11.2, 1151—1169(1961).

9. — On the lattice of closed subspaces of Hilbert-space. Pacific J. Math. 19. 3,
583—586 (1966).

10. MACLAREN, M. D.: Atomic orthocomplemented lattices. Pacific J. Math. 14,
597—612 (1964).

11. — Notes on axioms for quantum mechanics, Argonne National Laboratory
ANL-7065, 1—21 (1965).

12. PIRON, C : Axiomatique quantique. Helv. Phys. Acta 37, 439—468 (1964).
13. JATICH, J. M.: Foundations of quantum mechanics. London: Addison-Wesley

Publ. Comp. 1968.
14. MAEDA, F.: Kontinuierliche Geometrien. Berlm-Gϋttingen-Heidelberg: Sprin-

ger 1958.
15. GLEASON, A. M.: Measures on the closed subspaces of a Hilbert-space. J. Math.

Mech. 6, 885—893 (1957).
16. KADISON", R. V.: Isometries of operator algebras. Ann. Math. 54, 325—338

(1951).

P. STOLZ

Institut f. Theoretische Physik (I)
der Universitat
3550 Marburg a. d. Lahn, Renthof 7




