Attempt of an Axiomatic Foundation of Quantum Mechanics and More General Theories V*

Peter Stolz

Institut für theoretische Physik (I) der Universität Marburg

Received October 7, 1968

Abstract. We continue here the series of papers treated by LUDWIG in [1-5]. Using some results of DÄHN in [6], we point out that each irreducible solution of the axiomatic scheme set up in [5] is represented by a system of positive-semidefinite operator pairs of a finite-dimensional Hilbert-space over the real, complex or quaternionic numbers.

I. Introduction

Following MACKEY'S [7] general outline of axiomatic quantum theory, MACLAREN [11] and ZIERLER [8] or PIRON [12] and JAUCH [13] introduce two final axioms concerning the topological structure of the lattice G of questions (also called propositions or decision effects). This means strictly speaking that G and each sublattice of G is a compact set and that the set A(G) of all atoms of G is connected. These axioms characterize the division ring appearing in the representation theorem for G.

In his axiomatic scheme (cited in [5]), LUDWIG starts from a pair of sets (K, \hat{L}) imbedded in a dual pair (B, B') of finite-dimensional real Banach-spaces. Hence the lattice G of decision effects, being the set of all extreme points of \hat{L} , carries a topological structure inherited from B'.

In [5] it was already shown that the first of the axioms mentioned above is a theorem in this exposition.

The purpose of this paper is to show that also the second axiom can be deduced. Furthermore, the following representation theorem for the system (K, \hat{L}) will be shown.

Theorems 20, 21. If the dimension of the finite-dimensional Banachspaces B, B' is large enough, then there holds:

1. Every irreducible solution of the axiomatic system (K, \hat{L}) is isomorphic to a system $(\mathcal{K}, \hat{\mathcal{L}})$ of linear operators of a finite-dimensional Hilbert-space H.

2. The division ring of H is isomorphic to either the real, the complex or the quaternionic number ring.

3. The set \mathscr{K} consists of all positive-semidefinite operators V with $\operatorname{Tr} V = 1$.

^{*} This paper is an abridged version of the author's thesis presented to the Marburg University and written under the direction of Prof. G. LUDWIG.

P. Stolz:

4. $\hat{\mathscr{L}}$ is the set of all positive-semidefinite operators $F \leq 1$.

5. The operators $V \in \mathscr{K}$ and $F \in \hat{\mathscr{L}}$ are put in duality by the operator trace TrVF.

II. Preliminaries

Let us sketch the axioms and some of the most important propositions cited in the papers [1-5] by G. LUDWIG.

We will start from a dual pair (B, B') of finite-dimensional topological vector-spaces over the field \mathbf{R} of the real numbers, where B is spanned by the closed convex hull K of the set \underline{K} of all physical ensembles v and whereas B' is spanned by the closed convex hull \hat{L} of the set \underline{L} of all physical effects f. (K, \hat{L}) is a dual pair according to the following.

Axiom 1. There exists a mapping μ of $K \times \hat{L}$ into \mathbf{R}_+ satisfying.

 $\alpha) \ 0 \leq \mu(v, f) \leq 1 \ for \ all \ (v, f) \in K \times \hat{L}.$

 $\beta) \ \mu(v_1, f) = \mu(v_2, f) \text{ for all } f \in \hat{L} \text{ and } v_1, v_2 \in K \text{ implies } v_1 = v_2.$

 $\gamma) \ \mu(v, f_1) = \mu(v, f_2) \text{ for all } v \in K \text{ and } f_1, f_2 \in \hat{L} \text{ implies } f_1 = f_2.$

- δ) There exists $f \in \hat{L}$ (denoted by 0) such that $\mu(v, 0) = 0$ for all $v \in K$.
- ε) For each $v \in K$ there exists $f \in \hat{L}$ such that $\mu(v, f) = 1$. \Box

 μ can be extended to the canonical bilinear functional over $B \times B'$. Then in B a norm $\|\cdot\|$ is defined by $\|x\| := \sup(|\mu(x, f)| : f \in \hat{L})$ for $x \in B$. Hence the finite-dimensional **R**-vector space B is a Banach-space. With respect to the norm $\|y\| := \sup(|\mu(x, y)| : x \in B, \|x\| = 1)$ and to the partial ordering defined by $y_1 \leq y_2$ for $y_1, y_2 \in B'$ iff $\mu(v, y_1) \leq \mu(v, y_2)$ for all $v \in K$, B' becomes a partially ordered real Banach-space. For the further axioms we need the following sets. Let $i = 0, 1; l \leq \hat{L}, k \leq K$.

 $K_i(l) := \{ v \in K : \mu(v, f) = i \text{ for all } f \in l \}.$

 $\hat{L}_i(k)$:= { $f \in \hat{L}$: $\mu(v, f) = i$ for all $v \in k$ }.

 \widehat{L} is defined to be the closure of the set $\{y \in B' : y = \lambda f, \lambda \ge 0, f \in \widehat{L} \text{ and } \lambda \mu(v, f) \le 1 \text{ for all } v \in K\}.$

Axiom 2a. For each pair $f_1, f_2 \in \hat{L}$ there exists $f_3 \in \hat{L}$ so that $f_3 \geq f_1, f_2$ and $K_0(f_3) \geq K_0(f_1) \cap K_0(f_2)$.

Let lg be the greatest subset of \hat{L} such that $K_0(l) = K_0(lg)$. According to axiom 2a, lg is an ascending directed set possessing a greatest element e_{lg} called *decision effect*. It is defined by

$$\mu(v, e_{lg}) := \sup \{\mu(v, f) : f \in lg\}$$

for $v \in K$ and satisfies $||e_{lg}|| = 1$. Let G be the set of all decision effects e of \hat{L} .

In [1] and [5] it was shown that G and the set $\hat{W} := \{K_1(l) : l \subseteq \hat{L}\}$ are complete, orthocomplemented and orthoisomorphic lattices. The zero elements in G, \hat{W} are 0, \emptyset , respectively; the unit element in G is 1 given by $\mu(v, 1) = 1$ for all $v \in K$, whereas the unit element in \hat{W} is K. The orthocomplementation in G, \hat{W} is given by $e \to 1 - e$ and $K_1(l) \to K_0(l)$,

respectively. Because of $\dim B = \dim B' < \infty$, G and \hat{W} are atomic lattices.

Axiom 2b. For $f \in \widehat{L}$ and $e \in G$, $K_0(f) \supseteq K_0(e)$ implies $f \leq e$. \square

 $A (\neq \emptyset) \subseteq K$ is called an *extremal set* iff;

 α) A is convex and closed;

 $\begin{array}{l} \beta) \ \, \text{Every open line segment } S \subseteq K \ \text{with } S \cap A \neq \emptyset \ \text{is contained in } A. \\ \text{Let } C(v) \ \text{denote the smallest extremal set of } K \ \text{containing } v. \ v \in A \subseteq K \end{array}$

is an extreme point iff there is no open line segment in A containing v.

Axiom 3. $\hat{L}_0(v_1) = \hat{L}_0(v_2)$ implies $C(v_1) = C(v_2)$. \square The following theorems are proved in [5].

Theorem 1. $\hat{L} = \hat{L} = (y \in B' : 0 \leq \mu(v, y) \leq 1 \text{ for all } v \in K).$ **Theorem 2.** $K = (x \in B : 0 \leq \mu(x, f) \text{ for all } f \in \hat{L} \text{ and } ||x|| = \mu(x, 1) = 1).$ **Theorem 3.** G is the set of all extreme points of \hat{L} .

Theorem 4. $\sum_{i=1}^{m} e_i \leq 1, e_i \in G \text{ implies } \sum e_i = \forall e_i \text{ and } e_i \perp e_k \text{ for } i \neq k.$

Theorem 5. Every $f \in \hat{L}$ allows an unique decomposition $f = \sum_{i=1}^{m} \lambda_i e_i$, with $e_i \in G$ pairwise orthogonal and $1 \ge \lambda_1 > \cdots > \lambda_m > 0$.

According to the Theorems 1 and 2, K and \hat{L} are bounded sets. Since B and B' are topologically isomorphic to \mathbb{R}^n , K and \hat{L} are compact sets.

Let $A \subseteq K$ be convex and M(A) denote the linear manifold generated by A. $x \in A$ is called an *internal point of A relative to* M(A) iff for every line $g \subseteq M(A)$ through x there exists an open segment $S \subseteq g \subseteq A$ with $x \in S$. The set of all internal points of A is denoted by A^i . A point of an extremal set $A \subseteq K$ not being an internal point is called a *bounding point*. Let **Bd**A denote the set of all bounding points of A.

G. DÄHN proves then the following theorems:

Theorem 6. $v_1 \in C(v)$, iff there is $\lambda \in [0, 1[\subseteq \mathbf{R} \text{ and } v_2 \in K \text{ with } v = \lambda v_1 + (1 - \lambda) v_2$.

Theorem 7. $C(v) = C(\overline{v})$ iff $\overline{v} \in C(v)^i$.

Corollar. $C(v_1) \subset C(v_2), v_1, v_2 \in K \text{ implies } C(v_1) \subseteq \operatorname{Bd} C(v_2).$

Theorem 8. There exists $e \in G$ with $C(v) = K_1(e)$, hence:

$$\widehat{W} = (C(v) : v \in K) .$$

Theorem 9. The extreme points of K are the atoms of the lattice \hat{W} . **Theorem 10.** Each extreme point of $C(v) \subseteq K$ is also an extreme point of K.

Theorem 11. Each extremal set of K contains at least one extreme point.

Together with the isomorphism between G and \hat{W} the Theorems 9 and 11 imply:

Theorem 12. The set E(K) of all extreme points of K is bijectively mapped onto the set A(G) of all atoms of G. 21 Commun.math. Phys., Vol. 11

305

Axiom 4. For $v_1, v_2, v_3 \in K$:

 $C(v_1) \cap C(v_2) = \emptyset, \ \emptyset + C(v_3) \subseteq C(\frac{1}{2}v_1 + \frac{1}{2}v_2) \ and \ C(v_1) \perp C(v_3)$ implies $C(\frac{1}{2}v_1 + \frac{1}{2}v_3) \cap C(v_2) \neq \emptyset$. \Box

This axiom is equivalent to

Axiom 4'. The orthoisomorphic lattices \hat{W} and G are modular.

In [5] the implication is proved: Axiom $4 \Rightarrow$ Axiom 4'. The converse implication may be seen as follows.

Let $C(v_1) = a$, $C(v_2) = b$, $C(v_3) = c$. In [6] there is shown

 $C\left(\frac{1}{2}v_1 + \frac{1}{2}v_2\right) = C(v_1) \lor C(v_2)$.

Hence with $a \wedge b = 0$, $0 \neq c \leq a \vee b$, $a \perp c$ and the assumption $(a \vee c) \wedge b = 0$, we find by using the modularity:

$$c = c \land (a \lor b) = c \land (c \lor a) \land (a \lor b)$$

= $c \land (a \lor (b \land (a \lor c))) = c \land a$, i.e. $\emptyset \neq c \leq a$

contrary to $c \perp a$. \neg

Let dim G (dim (e) for $e \in G$) denote the greatest number of pairwise orthogonal atoms $p_i \in A(G)$ with $\sum p_i = 1$ ($p_i \leq e$ with $\sum p_i = e$) respectively. Then in [5] there is shown.

Theorem 13. G is closed and $e_i \rightarrow e$ implies $\dim(e_i) \rightarrow \dim(e)$. Hence also A(G) is closed.

The lattice G is a direct sum of irreducible sublattices $G(0, e_i)$, $\sum_{i=1}^{k} e_i = 1$ of the same structure as G.

Hence each $f \in \hat{L}$ has the form $f = \sum_{i=1}^{k} f_i$ with $0 \leq f_i \leq e_i (i = 1 \dots k)$.

Each $v \in K$ may be written $v = \sum_{i=1}^{k} \omega_i v_i$ defined by $\mu(v, f) = \sum_{i=1}^{k} \omega_i \mu(v_i, f_i)$ for all $f \in \hat{L}$, $\omega_i \in \mathbf{R}_+$, $\sum \omega_i = 1$ and $\mu(v_i, e_i) = 1$.

Thus, without restriction of generality, we may postulate.

P: The lattices \hat{W} and G are irreducible.

III. Some Further Consequences of the Axiomatic Scheme

Theorem 14. Let C be an extremal set. The set BdC of all bounding points of C equals the boundary ∂C of C relative to M(C).

Proof. Since $\operatorname{Bd} C \subseteq \partial C$, let us take $v \in \partial C \subseteq C^- = C$ with $v \notin \operatorname{Bd} C$. Obviously $v \in C^i$.

The *n*-dimensional Banach-space *B* is homeomorphic to \mathbb{R}^n under its euclidean norm $|x| := \sqrt{\sum \alpha_i^2}$ with $x = \sum \alpha_i x_i, x_i (i = 1 \dots n)$ being a cartesian base. Let us assume dim $M(C) = m \leq n$. By $\mathfrak{U}_{\delta}(x)$ we denote the spherical open neighbourhood $\{y \in B : |y - x| < \delta\}$ of *x*. Since *v* is an internal point of *C*, we find m + 1 independent points $v_i \in C$ with

306

 $v = \sum \lambda_i v_i$, $\sum \lambda_i = 1$ and $0 < \lambda_i < 1$ $(i = 1 \dots m + 1)$. Since all λ_i are positive, there exist open neighbourhoods $\mathfrak{V}_i(\lambda_i)$ in \mathbf{R}_+ .

Now every $x \in M(C)$ may be written in the general form $x = \sum_{i=1}^{m+1} \alpha_i v_i$,

 $\alpha_i \in \mathbf{R}$ and $\sum_{i=1}^{m+1} \alpha_i = 1$. Because all λ_i depend continuously on the cartesian coordinates of $v \in \mathbf{R}^n$, we find $\delta > 0$ such that for all $x = \sum \alpha_i v_i$, $\sum \alpha_i = 1$, contained in $\mathfrak{U}_{\delta}(v) \cap M(C)$, $\alpha_i \in \mathfrak{V}_i(\lambda_i) \subseteq \mathbf{R}_+$ consequently holds, i.e., $\alpha_i > 0$ $(i = 1 \dots m + 1)$. Therefore, every $x \in \mathfrak{U}_{\delta}(v) \cap M(C)$ is a convex combination of $v_1 \dots v_{m+1}$; i.e. $\mathfrak{U}_{\delta}(v) \cap M(C)$ is an open neighbourhood of v relative to M(C) and totally contained in C. Thus, we have $v \notin \partial C$ contrary to our assumption. \neg

Because of Theorem 14 we need not distinguish between boundary points and bounding points of an extremal set C. C is said to be *strictly convex* iff one of the of the following equivalent conditions is satisfied:

1. The boundary of C includes no line segment.

2. Each boundary point of C is an extreme point.

Theorem 15. If p, q are orthogonal atoms of the irreducible lattice G, then the extremal set $C(v) := K_1(p \stackrel{\downarrow}{\vee} q)$ is strictly convex.

Proof. MAEDA [14] shows that in an irreducible atomic and modular lattice an atom $r \neq p, q$ exists which is covered by $p \checkmark q$. Since \hat{W} is isomorphic to $G, K_1(r) = : v_r \in C(v)$ is an atom contained in the boundary of C(v) by Theorem 7 and corollary. Supposing the boundary of C(v)contains a line segment $[v_1, v_2]$ with distinct end-points, it also contains $\overline{v} := \frac{1}{2}v_1 + \frac{1}{2}v_2$. If C(v) is not included in $\operatorname{Bd} C(v)$, then $\overline{v} \in C(v)^i$, would follow from Theorem 7 contrary to the choice of \overline{v} . Thus, observing $v \in C(v)^i$ we have the inclusion $C(\overline{v}) \subseteq \operatorname{Bd} C(v) \subset C(v)$. On account of $C(\overline{v}) \neq \emptyset, \emptyset \subset C(\overline{v}) \subset C(v)$ is a chain of length two. Yet all chains between \emptyset and $C(v) := K_1\left(p \checkmark q\right)$ of length two are covering chains in the modular lattice \hat{W} . Thus, contrary to containing the segment $[v_1, v_2], C(\overline{v})$ is an atom, i.e., an extreme point. This completes the proof. \neg

Theorem 16. The bijective mapping $E(k) \leftrightarrow A(G)$ is a homeomorphism.

Proof. Since \hat{L} is compact, the closed set A(G) is also compact. Let (p_{α}) be a convergent sequence in A(G) with $\lim_{\alpha} p_{\alpha} = p$. On account of the compactness of K, we can find a convergent subsequence $(p_{\alpha})'$ so that $(v_{\alpha} := K_1(p_{\alpha}))'$ is a convergent sequence in E(K) with $v_{\alpha} \to v \in K$. If we choose $\varepsilon > 0$, almost all v_{α} satisfy the inequality $||v_{\alpha} - v|| = \sup_{\substack{j \in \hat{L} \\ < \varepsilon : i.e., |1 - \mu(v, p_{\alpha})| < \varepsilon}$ for almost all p_{α} converging to p. Thus $\mu(v, p)$

 $< \varepsilon$; i.e., $|1 - \mu(v, p_{\alpha})| < \varepsilon$ for almost all p_{α} converging to p. Thus $\mu(v, p) = \lim_{p_{\alpha} \to p} \mu(v, p_{\alpha}) = 1$; i.e., $v \in K_1(p) = : v_p \in E(K)$. Hence the mapping 21*

 $A(G) \rightarrow E(K)$ is continuous. Since A(G) is compact, the continuous bijection $A(G) \rightarrow E(K)$ is by a topological theorem even bicontinuous. \square This implies immediately

Corollary. The set E(K) of all extreme points of K is compact.

Theorem 17. The set of all atoms of every lattice segment $G(0, e) = \{x \in G : 0 \le x \le e\}, e \in G \text{ is connected.}$

Proof. Let $p, q(\neq p)$ be atoms of G. We must find a continuous mapping f of a closed segment $[\alpha, \beta] \subseteq \mathbf{R}, \ \alpha \neq \beta$, into the set $A(p \lor q) := \{r \in A(G) : r with <math>f(\alpha) = p, f(\beta) = q$. This will be shown in several steps.

1. G is irreducible; hence there is a third atom r . Therefore, $the corresponding three distinct extreme points <math>v_p, v_q, v_r \in K_1(p \lor q)$ are independent; i.e., they span a plane $\mathscr{E} = \mathscr{E}(v_p, v_q, v_r)$ in B. Since \mathscr{E} is closed, $\mathscr{C} := K_1(p \lor q) \cap \mathscr{E}$ is an extremal set and strictly convex. Now let us construct the above function f in four steps.

2. For each $x \in \mathscr{E} \setminus \mathscr{C}^{i}$, there exists one and only one euclidean nearest point on the boundary of \mathscr{C} .

To show this, let $|\cdot|$ be the euclidean norm and assume $x \in \mathscr{C}$ but $x \notin \mathscr{C}^{i}$. Being a closed subset of $K, \mathscr{C} - x$ is compact. Since $|\cdot|$ is a continuous function on $\mathscr{C} - x$, inf $|\mathscr{C} - x| := \inf(|y - x|; y \in \mathscr{C})$ exists; i.e., there is $\overline{v} \in \mathscr{C}$ so that $|\overline{v} - x| = \inf|\mathscr{C} - x|$. \overline{v} is said to be an euclidean nearest point of \mathscr{C} relative to x.

 $\overline{v} \in \mathscr{C}$ is a boundary point of \mathscr{C} , for otherwise, the line through \overline{v} and x would intersect the boundary of \mathscr{C} in a point $v'(\pm \overline{v}) \in \mathscr{C}$ between \overline{v} and x. This would imply $|v' - x| < |\overline{v} - x|$ contrary to $|\overline{v} - x| = \inf |\mathscr{C} - x|$.

Now let us show that there is only one euclidean nearest point. On account of the Minkowski-inequality: |x + y| < |x| + |y| iff $x \neq \lambda y$, $\lambda \neq 0$, we find for $x, y(\neq \lambda x) \in \mathscr{S} := (z \in \mathbb{R}^n : |z| = 1)$ the inequality $|\frac{1}{2}(x + y)| < 1$; i.e. the boundary of \mathscr{S} containing no line segment is strictly convex.

Suppose v_1 and $v_2(\neq v_1)$ are two nearest points of \mathscr{C} relative to x. Being convex, \mathscr{C} contains $v_0 := \frac{1}{2}(v_1 + v_2)$. Then $|v_1 - x| = |v_2 - x| = : d$ yields the contradiction $|v_0 - x| = |\frac{1}{2}[(v_1 - x) + (v_2 - x)]| < d := \inf |\mathscr{C} - x|$. Hence $v_1 = v_2$.

3. The mapping $\varphi: x \to v$ attaching to every $x \in \mathscr{E} \setminus \mathscr{C}^{\mathfrak{l}}$, its nearest point $v \in \operatorname{Bd} \mathscr{C}$ is continuous.

Let $(x_n) \subseteq \mathscr{E} \setminus \mathscr{C}^i$ be a convergent sequence $x_n \to x_0$. The compactness of **Bd** \mathscr{C} implies the existence of a convergent subsequence $v_m \to \overline{v}$, of nearest points $v_m = \varphi(x_m) \in \text{Bd} \mathscr{C}$. We need only show $\overline{v} = v_0 := \varphi(x_0)$. Now let $\varepsilon > 0$ and $|x_n - x_0| < \varepsilon$. Then $|v_n - x_0| \leq |v_n - x_n| + |x_n - v_0|$ $\leq \inf |\mathscr{C} - x_n| + \varepsilon \leq \inf |\mathscr{C} - x_0| + 2\varepsilon = |v_0 - x_0| + 2\varepsilon$, but $|v_0 - x_0|$ $= \inf |\mathscr{C} - x_0| \leq |v_n - x_0|$. Hence $\begin{array}{l} \alpha)\colon x_n \to x_0 \text{ implies } |v_n - x_0| \to |v_0 - x_0|. \text{ On the other hand, noticing} \\ 0 \leq ||v_m - x_0| - |\overline{v} - x_0|| \leq |v_m - \overline{v}| \text{ we find}; \end{array}$

 β): $|v_m - \overline{v}| \to 0$ implies $|v_m - x_0| \to |\overline{v} - x_0|$. α) and β) together yield $|v_0 - x_0| = |\overline{v} - x_0|$. Hence $v_0 = \overline{v}$, because v_0 is the unique nearest point of \mathscr{C} relative to x_0 .

4. Let us consider the intersections of the supporting hyperplanes Hp, Hq with the plane \mathscr{E} . These are lines l_p , l_q . Assume l_p , l_q not to be parallel and let \mathscr{M} be the set union of l_p , l_q ; i.e., $\mathscr{M} := (x \in \mathscr{E} : \mu(x, p) = 1) \cup (y \in \mathscr{E} : \mu(y, q) = 1)$ obviously $\mathscr{M} \cap \mathscr{C} = \{v_p, v_q\} \subseteq \mathscr{C}^i$. Let \overline{v} be the nearest point of \mathscr{C} relative to $\overline{x} = l_p \cap l_q$.

Then

$$x_{pq}(t) := \begin{cases} v_p + t(\overline{x} - v_p) \text{ for } t \in [0, 1] \subseteq \mathbf{R} \\ \overline{x} + (t - 1) (v_q - \overline{x}) \text{ for } t \in [1, 2] \subseteq \mathbf{R} \end{cases}$$

is a continuous mapping of $[0, 2] \subseteq \mathbf{R}$ onto the union $\mathscr{U} \subseteq \mathscr{M}$ of the line segments $[v_p, \overline{x}]$, $[\overline{x}, v_q]$. Let $v(t) = \varphi(x(t))$. Hence v(t) is a continuous mapping of the connected intervall [0, 2] onto the arc \mathscr{A} joining v_p with \overline{v} and \overline{v} with v_q on the boundary of \mathscr{C} . Since \mathscr{C} is strictly convex, \mathscr{A} consists only of extreme points and is a connected set. Using the homeomorphism $E(K) \leftrightarrow A(G)$ we find, in $A(p \lor q)$, an arc joining pand q. \neg

5. If l_p and l_q are parallel, we take $l_r := (x \in \mathscr{E} : \mu(x, r) = 1)$ as auxiliary line being parallel neither with l_p nor with l_q . Then the foregoing scheme applied twice yields also an connected arc in $A(p \lor q)$. \neg

Using Theorem 13 and Theorem 17 and the notion of states instead of ensembles ZIERLER shows in [8]:

Theorem 18. G is a topological lattice; i.e. orthocomplementation, lattice union and intersection are continuous operations.

Collecting the results of ZIERLER [8, 9] and former results [10], MACLAREN has in [11] given the following representation theorem for G.

Theorem 19. If G contains at least four orthogonal atoms, then G is isomorphic to the lattice of all subspaces of a finite-dimensional Hilbert-space H over the real, complex or quaternionic numbers.

IV. The Representation Theorem for the Dual Pair (K, L)

Theorem 20. Let \mathscr{P} be the cone of all positive semidefinite operators of the finite-dimensional Hilbert-space H. By \mathscr{K} and $\hat{\mathscr{L}}$ we denote the subsets $(V \in \mathscr{P} : \mathbf{Tr} V = 1)$ and $(F \in \mathscr{P} : F \leq 1)$, respectively.

Then there exists a pair of topological isomorphisms $(\psi, \chi) : (K, \hat{L}) \rightarrow (\mathcal{K}, \hat{\mathcal{L}})$ such that:

1. ψ preserves extremality in both directions.

2. χ preserves partial ordering in both directions.

P. STOLZ:

3. The mapping μ and the trace of operators are related by $\mu(v, f) = \mathbf{Tr}(\psi(v) \cdot \chi(f)).$

Proof. The proof is divided into five steps.

1. The lattice \mathfrak{P} of projections of the finite-dimensional *Hilbert*-space H is orthoisomorphic to the subspace-lattice L(H) of H which is orthoisomorphic to G by Theorem 19.

Let \mathscr{H} be the real linear space spanned by the cone \mathscr{P} of all positive semidefinite linear operators of H and let $\overline{\chi}$ be the orthoisomorphic mapping $G \to \mathfrak{P}$. By $\chi(\sum \lambda_i e_i) = \sum \lambda_i \overline{\chi}(e_i), \lambda_i \in \mathbf{R}, e_i \in G$, we have extended $\overline{\chi}$ to a linear mapping χ of B' into \mathscr{H} . Since each real operator of H has an unique decomposition $\sum \lambda_i E_i$, with $E_i \in \mathfrak{P}$ pairwise orthogonal and $\lambda_i \in \mathbf{R}$, the mapping χ is also an isomorphism of B' onto \mathscr{H} .

2. By a fundamental theorem of GLEASON [15], to each orthomeasure m of \mathfrak{P} with $\dim \mathfrak{P} \geq 3$, there exists a positive-semidefinite operator V of H defined by $m_v(E) = \mathbf{Tr}(VE)$ for all $E \in \mathfrak{P}$. Hence to each $v \in K$ there corresponds an operator $V = \overline{\psi}(v) \in \mathscr{P}$ and only one. For if there is another $V' \in \mathscr{P}$ satisfying $m_v(E) = \mathbf{Tr} V'E$, we should have $\mathbf{Tr}(V' - V)E = 0$ for all $E \in \mathfrak{P}$ and particularly for all atoms $P_x \in \mathfrak{P}$. That would mean $\mathbf{Tr}(V' - V) P_x = \langle x, (V - V') x \rangle = 0$ for all $x \in H$, contrary to $V \neq V'$. For all $v \in K$, we have $\mathbf{Tr} \ \overline{\psi}(v) = m_v(1) = \mu(v, 1) = 1$; i.e., $\overline{\psi}$ is a mapping of K into \mathscr{K} . By $\psi(\sum \lambda_i v_i) := \sum \lambda_i \ \overline{\psi}(v_i)$, with $v_i \in K$, $\lambda_i \in \mathbf{R}$, we have extended $\overline{\psi}$ to a linear mapping ψ of B into the real linear space \mathscr{H} .

3. The linear mapping ψ is injective and bicontinuous. To prove the first property it suffices to show that $\bar{\psi}$ is an injective mapping. Let $v_1, v_2 \in K$ with $\bar{\psi}(v_1) = \bar{\psi}(v_2)$. Hence $\mu(v_1, f) = Tr(\bar{\psi}(v_1) \cdot \chi(f)) = Tr(\bar{\psi}(v_2) \cdot \chi(f)) = \mu(v_2, f)$ for all $f \in \hat{L}$; by axiom 1 β , we find then $v_1 = v_2$.

According to $||v|| = 1 = \mu(v, 1) = \mathbf{Tr} \psi(v) \ge |\psi(v)|$, with the operatornorm $|\cdot|$, the injective mapping ψ is continuous. Yet with the compactness of K this implies the bicontinuity of ψ .

4. The mapping $\psi: K \to \mathscr{K}$ being linear, injective and bicontinuous obviously preserves extremality in both directions.

Because of the inequality $1 = Tr V \ge \sup (Tr V P_x : P_x \in A(\mathfrak{P}))$ = $\sup (\langle x, Vx \rangle : x \in H \text{ and } ||x|| = 1) = : |V|$, the set $\mathscr{H} \supseteq \psi(K)$ is a subset of the unit ball \mathscr{B} of the linear space \mathscr{H} .

Now, according to a theorem of KADISON [16] the set of all extreme points of $\mathscr{P} \cap \mathscr{B}$ equals the set \mathfrak{P} .

Since $\psi(K) \subseteq \mathscr{H} \subseteq \mathscr{P} \cap \mathscr{B}$ and Tr V = 1 for all $V \in \psi(K)$, the set $E(\psi(K))$ of all extreme points of $\psi(K)$ must be even a subset of $A(\mathfrak{P})$. So, to every $v_p = K_1(p) \subseteq K$ there corresponds only one atom $P \in A(\mathfrak{P}) \cap \psi(K)$. But being isomorphic to A(G), E(K) is also isomorphic to $A(\mathfrak{P})$. Hence we have the equation $A(\mathfrak{P}) = E(\mathscr{H}) = E(\psi(K))$. Now $\psi: K \to \mathscr{H}$ is a surjection. This may be seen as follows: since Tr V = 1, each $V \in \mathscr{K} \subseteq \mathscr{H}$ has a convex decomposition $V = \sum \lambda_i P_i$, with $\lambda_i \in \mathbf{R}_+$ and $\sum \lambda_i = 1$. Because of $E(\psi(K)) = A(\mathfrak{P})$, each $\psi^{-1}(P_i)$ is defined and is an extreme point $v_{pi} \in K$. Being a convex set, K contains the convex decomposition $v = \psi^{-1}(V) = \sum \lambda_i v_{pi}$.

5. Now we will prove that the mapping $\chi: \hat{L} \to \hat{\mathscr{L}}$ is an isomorphism and preserves order in both directions.

First we show that $\mathbf{Tr} \ VF_1 \leq \mathbf{Tr} \ VF_2$ holds for all $V \in \mathscr{K}$ iff $F_1 \leq F_2$, \leq being the ordering in \mathscr{P} . This may be seen as follows: $\mathbf{Tr} \ VF_1 \leq \mathbf{Tr} \ VF_2$ for all $V \in \mathscr{K}$ implies $\mathbf{Tr} \ P_x F_1 \leq \mathbf{Tr} \ P_x F_2$ for all $P_x \in A(\mathfrak{P}) = E(\mathscr{K})$; i.e., $\langle x, F_1 x \rangle \leq \langle x, F_2 x \rangle$ for all $x \in H$. Thus $F_1 \leq F_2$. Therefore, because of the convex decomposition $V = \sum \lambda_i P_i$ for each $V \in \mathscr{K}$ and the linearity of the trace, $F_1 \leq F_2$ being equivalent to $\mathbf{Tr} \ P_i F_1 \leq \mathbf{Tr} \ P_i F_2$ for all $P_i \in A(\mathfrak{P})$ implies $\mathbf{Tr} \ VF_1 \leq \mathbf{Tr} \ VF_2$ for all $V \in \mathscr{K}$.

Since for $f_1, f_2 \in \hat{L}, f_1 \leq f_2$ means $\mu(v, f_1) \leq \mu(v, f_2)$ for all $v \in K$ and because $\psi: K \to \mathcal{K}$ is an isomorphism, χ is obviously order preserving in both directions and hence maps \hat{L} onto $\hat{\mathscr{L}} := (F \in \mathcal{P} : F \leq 1)$.

The inequality $||f|| = \sup(|\mu(x, f)| : x \in B, ||x|| = 1) \ge \sup(TrPF : P \in A(\mathfrak{P})) = |F|$ and the compactness of \hat{L} imply the bicontinuity of χ . \neg

Now it remains to show that the system $(\mathcal{K}, \hat{\mathcal{L}})$ is a solution of the axiomatic scheme (K, \hat{L}) . For that we must know the annihilator sets in \mathcal{K} and $\hat{\mathcal{L}}$ as well as the C(V)-sets in \mathcal{K} .

The set $\mathfrak{M} := (x \in H : Fx = 0, F \in \hat{\mathscr{L}})$ is a subspace of H. Let E be the projection onto the subspace complementary to \mathfrak{M} . Then we have F(1-E) = 0 for all $x \in H$; i.e., F = FE = EFE.

Since $0 \leq F \leq 1$ and $\langle x, Fx \rangle = \langle x, EFEx \rangle = \langle Ex, FEx \rangle \leq \langle Ex, Ex \rangle$ = $\langle x, Ex \rangle$ for all $x \in H$, we find $F \leq E$.

Now this being the case, we find $E_i \leq E$ for the pairwise orthogonal projections E_i in the unique decomposition $F = \sum \lambda_i E_i$; hence $\sum E_i \leq E$ and finally $FE = \sum \lambda_i E_i E = \sum \lambda_i E_i = F$. However, being the smallest projection with FE = F, E must be equal to $\sum E_i$ and is said to be the *carrier of* F. Hence, denoting by E_A the carrier of $A \in \mathcal{P}$ and noticing Tr VF = 0 iff VF = 0 for all $V, F \in \mathcal{P}$ we find.

Lemma 1. $\mathscr{H}_0(F) = (V \in \mathscr{H} : VE_F = 0)$ and $\hat{\mathscr{L}}_0(V) = (F \in \hat{\mathscr{L}} : FE_V = 0)$.

Next, we show.

Lemma 2. $C(V) = \mathscr{K}_0(1 - E_V)$.

Proof. Obviously $\mathscr{H}_0(1-E_V)$ is closed and convex. Let $]V_1, V_2[$ be an open line segment in \mathscr{H} containing $\widetilde{V} \in \mathscr{H}_0(1-E_V)$. Then there holds $\widetilde{V} = \lambda V_1 + (1-\lambda) V_2, \lambda \in]0, 1[$; This implies $0 = \widetilde{V}(1-E_V)$ $= \lambda V_1(1-E_V) + (1-\lambda) V_2(1-E_V)$. Since λ and $1-\lambda$ are positive

P. Stolz:

numbers, we find $V_1(1 - E_V) = V_2(1 - E_V) = 0$. On account of the convexity of $\mathscr{K}_0(1 - E_V)$, this implies $[V_1, V_2] \subseteq \mathscr{K}_0(1 - E_V)$. Hence, $\mathscr{K}_0(1 - E_V)$ is an extremal set. Obviously $V \in \mathscr{K}_0(1 - E_V)$; hence $C(V) \subseteq \mathscr{K}_0(1 - E_V)$. To show the converse inclusion, let $\overline{V}(\pm V)$ be another point of $\mathscr{K}_0(1 - E_V)$. We decompose E_V into a sum of m pairwise orthogonal atoms P_i . Being internal point of the simplex $(P_1 \dots P_m)$ which spans $\mathcal{M}(\mathscr{K}_0(1 - E_V))$, V is also internal point of $\mathscr{K}_0(1 - E_V)$. Hence a $V' \in \mathscr{K}$ exists such that $V \in]\overline{V}$, V'[. Then, by Theorem 6, there follows $\overline{V} \in C(V)$. Thus we have shown $C(V) \supseteq \mathscr{K}_0(1 - E_V)$, too. Now we are able to verify the axioms. By the remark that $\mathbf{Tr} A P = 0$ for all $P \in A(\mathfrak{P})$ iff A = 0, we see that Axiom 1 holds.

Axiom 2a: Let E_1 , E_2 be the carrier of F_1 , F_2 , respectively. For all $V \in \tilde{\mathscr{K}}_0 := (\overline{V} \in \mathscr{K} : \overline{V}E_1 = \overline{V}E_2 = 0)$ we find $V(1 - E_1) = V(1 - E_2) = V$. Hence for $F := (1 - E_1)(1 - E_2)$ there holds $0 \leq F = F(1 - E_i)$, i.e., $0 \leq F \leq 1 - E_i \leq 1$ or $1 \geq 1 - F \geq E_i$ (i = 1, 2). On the other hand, V(1 - F) = 0. Thus $F_3 := 1 - F \in \mathscr{L}$ satisfies the conditions $F_3 \geq E_i \geq F_i$ and $\mathscr{K}_0(F_3) = \widetilde{\mathscr{K}_0} = \mathscr{K}_0(F_1) \cap \mathscr{K}_0(F_2)$ of Axiom 2a.

Axiom 2 b: Obviously we have $\hat{\mathscr{L}} = \hat{\mathscr{T}}$. Since $E_F \geq F$ is the smallest projection E satisfying $\mathscr{K}_0(F) \geq \mathscr{K}_0(E)$ Axiom 2 b holds.

Axiom 3: $\hat{\mathscr{L}}_0(V_1) = \hat{\mathscr{L}}_0(V_2)$ means $(F \in \hat{\mathscr{L}} : FE_1 = 0) = (F \in \hat{\mathscr{L}} : FE_2 = 0)$, with E_1 , E_2 the carriers of V_1 , V_2 , respectively; hence $F \leq 1 - E_1$ iff $F \leq 1 - E_2$ for all $F \in \hat{\mathscr{L}}$. This implies $1 - E_1 = 1 - E_2$ and $C(V_1) = \mathscr{K}_0(1 - E_1) = \mathscr{K}_0(1 - E_2) = C(V_2)$.

Axiom 4: The lattice \mathfrak{P} of projections is modular. Thus Axiom 4' holds equivalently.

Summarizing Theorem 20 with the above results, we have shown. Theorem 21. The system $(\mathscr{K}, \mathscr{L}) := ((V \in \mathscr{P} : \mathbf{Tr} V = 1), (F \in \mathscr{P} : F \leq 1))$ of positive-semidefinite linear operators of the finite-dimensional Hilbert-space H, given by Theorem 19, is a categorical solution of the axiomatic scheme (K, \widehat{L}) .

I am indebted to Prof. G. LUDWIG for his stimulating guidance. I also thank Dr. G. DÄHN and Mr. W. PREDIGER for critical remarks.

References

- 1. LUDWIG, G.: Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien Z. Physik 181, 233-260 (1964).
- Attempt of an axiomatic foundation of quantum mechanics and more general theories II. Commun. Math. Phys. 4, 331-348 (1967).
- Hauptsätze über das Messen als Grundlage der Hilbert-Raumstruktur der Quantenmechanik. Z. Naturforsch. 22 a, 1303–1323 (1967).
- Ein weiterer Hauptsatz über das Messen als Grundlage der Hilbert-Raumstruktur der Quantenmechanik. Z. Naturforsch. 22 a, 1324—1327 (1967).

- 5. LUDWIG, G.: Attempt of an axiomatic foundation of quantum mechanics and more general theories III. Commun. Math. Phys. 9, 1-12 (1968).
- DÄHN, G.: Attempt of an axiomatic foundation of quantum mechanics and more general theories IV. Commun. Math. Phys. 9, 192-211 (1968).
- MACKEY, G. W.: Mathematical foundations of quantum mechanics. New York: W. A. Benjamin 1963.
- ZIERLER, N.: Axioms for non-relativistic quantum mechanics. Pacific J. Math. 11. 2, 1151-1169 (1961).
- 9. On the lattice of closed subspaces of Hilbert-space. Pacific J. Math. 19. 3, 583—586 (1966).
- MACLAREN, M. D.: Atomic orthocomplemented lattices. Pacific J. Math. 14, 597-612 (1964).
- 11. Notes on axioms for quantum mechanics, Argonne National Laboratory ANL-7065, 1—21 (1965).
- 12. PIRON, C.: Axiomatique quantique. Helv. Phys. Acta 37, 439-468 (1964).
- JAUCH, J. M.: Foundations of quantum mechanics. London: Addison-Wesley Publ. Comp. 1968.
- 14. MAEDA, F.: Kontinuierliche Geometrien. Berlin-Göttingen-Heidelberg: Springer 1958.
- GLEASON, A. M.: Measures on the closed subspaces of a Hilbert-space. J. Math. Mech. 6, 885-893 (1957).
- KADISON, R. V.: Isometries of operator algebras. Ann. Math. 54, 325-338 (1951).

P. STOLZ Institut f. Theoretische Physik (I) der Universität 3550 Marburg a. d. Lahn, Renthof 7