Attempt of an Axiomatic Foundation of Quantum Mechanics and More General Theories V*

Peter Stolz
Institut für theoretische Physik (I) der Universität Marburg
Received October 7, 1968

Abstract

We continue here the series of papers treated by Ludwig in [1-5]. Using some results of DäHs in [6], we point out that each irreducible solution of the axiomatic scheme set up in [5] is represented by a system of positive-semidefinite operator pairs of a finite-dimensional Hilbert-space over the real, complex or quaternionic numbers.

I. Introduction

Following Mackey's [7] general outline of axiomatic quantum theory, MacLaren [11] and Zierler [8] or Piron [12] and Jauch [13] introduce two final axioms concerning the topological structure of the lattice G of questions (also called propositions or decision effects). This means strictly speaking that G and each sublattice of G is a compact set and that the set $A(G)$ of all atoms of G is connected. These axioms characterize the division ring appearing in the representation theorem for G.

In his axiomatic scheme (cited in [5]), Ludwig starts from a pair of sets (K, \hat{L}) imbedded in a dual pair (B, B^{\prime}) of finite-dimensional real Banach-spaces. Hence the lattice G of decision effects, being the set of all extreme points of \hat{L}, carries a topological structure inherited from B^{\prime}.

In [5] it was already shown that the first of the axioms mentioned above is a theorem in this exposition.

The purpose of this paper is to show that also the second axiom can be deduced. Furthermore, the following representation theorem for the system (K, \hat{L}) will be shown.

Theorems 20, 21. If the dimension of the finite-dimensional Banachspaces B, B^{\prime} is large enough, then there holds:

1. Every irreducible solution of the axiomatic system (K, \hat{L}) is isomorphic to a system ($\mathscr{K}, \hat{\mathscr{L}})$ of linear operators of a finite-dimensional Hilbert-space H.
2. The division ring of H is isomorphic to either the real, the complex or the quaternionic number ring.
3. The set \mathscr{K} consists of all positive-semidefinite operators V with $\boldsymbol{T r} V=1$.

[^0]4. $\hat{\mathscr{L}}$ is the set of all positive-semidefinite operators $F \leqq 1$.
5. The operators $V \in \mathscr{K}$ and $F \in \hat{\mathscr{L}}$ are put in duality by the operator trace $\operatorname{Tr} V F$.

II. Preliminaries

Let us sketch the axioms and some of the most important propositions cited in the papers [$1-5$] by G. Ludwig.

We will start from a dual pair (B, B^{\prime}) of finite-dimensional topological vector-spaces over the field \boldsymbol{R} of the real numbers, where B is spanned by the closed convex hull K of the set \underline{K} of all physical ensembles v and whereas B^{\prime} is spanned by the closed convex hull \hat{L} of the set \underline{L} of all physical effects $f .(K, \hat{L})$ is a dual pair according to the following.

Axiom 1. There exists a mapping μ of $K \times \hat{L}$ into \boldsymbol{R}_{+}satisfying.
a) $0 \leqq \mu(v, f) \leqq 1$ for all $(v, f) \in K \times \hat{L}$.

乃) $\mu\left(v_{1}, f\right)=\mu\left(v_{2}, f\right)$ for all $f \in \hat{L}$ and $v_{1}, v_{2} \in K$ implies $v_{1}=v_{2}$.
$\gamma) \mu\left(v, f_{1}\right)=\mu\left(v, f_{2}\right)$ for all $v \in K$ and $f_{1}, f_{2} \in \hat{L}$ implies $f_{1}=f_{2}$.
ס) There exists $f \in \hat{L}$ (denoted by 0) such that $\mu(v, 0)=0$ for all $v \in K$.
ع) For each $v \in K$ there exists $f \in \hat{L}$ such that $\mu(v, f)=1$.
μ can be extended to the canonical bilinear functional over $B \times B^{\prime}$. Then in B a norm $\|\cdot\|$ is defined by $\|x\|:=\sup (|\mu(x, f)|: f \in \hat{L})$ for $x \in B$. Hence the finite-dimensional \boldsymbol{R}-vector space B is a Banach-space. With respect to the norm $\|y\|:=\sup (|\mu(x, y)|: x \in B,\|x\|=1)$ and to the partial ordering defined by $y_{1} \leqq y_{2}$ for $y_{1}, y_{2} \in B^{\prime}$ iff $\mu\left(v, y_{1}\right) \leqq \mu\left(v, y_{2}\right)$ for all $v \in K, B^{\prime}$ becomes a partially ordered real Banach-space. For the further axioms we need the following sets. Let $i=0,1 ; l \subseteq \hat{L}, k \subseteq K$.
$K_{i}(l):=\{v \in K: \mu(v, f)=i$ for all $f \in l\}$.
$\hat{L}_{i}(k):=\{f \in \hat{L}: \mu(v, f)=i$ for all $v \in k\}$.
$\widehat{\hat{L}}$ is defined to be the closure of the set $\left\{y \in B^{\prime}: y=\lambda f, \lambda \geqq 0, f \in \hat{L}\right.$ and $\lambda \mu(v, f) \leqq 1$ for all $v \in K\}$.

Axiom 2a. For each pair $f_{1}, f_{2} \in \hat{L}$ there exists $f_{3} \in \hat{L}$ so that $f_{3} \geqq f_{1}, f_{2}$ and $K_{0}\left(f_{3}\right) \supseteqq K_{0}\left(f_{1}\right) \cap K_{0}\left(f_{2}\right)$.

Let $l g$ be the greatest subset of \hat{L} such that $K_{0}(l)=K_{0}(l g)$. According to axiom $2 \mathrm{a}, l g$ is an ascending directed set possessing a greatest element $e_{l g}$ called decision effect. It is defined by

$$
\mu\left(v, e_{l g}\right):=\sup \{\mu(v, f): f \in l g\}
$$

for $v \in K$ and satisfies $\left\|e_{l g}\right\|=1$. Let G be the set of all decision effects e of \hat{L}.

In [1] and [5] it was shown that G and the set $\hat{W}:=\left\{K_{1}(l): l \leqq \hat{L}\right\}$ are complete, orthocomplemented and orthoisomorphic lattices. The zero elements in G, \hat{W} are $0, \emptyset$, respectively; the unit element in G is 1 given by $\mu(v, 1)=1$ for all $v \in K$, whereas the unit element in \hat{W} is K. The orthocomplementation in G, \hat{W} is given by $e \rightarrow 1-e$ and $K_{1}(l) \rightarrow K_{0}(l)$,
respectively. Because of $\operatorname{dim} B=\operatorname{dim} B^{\prime}<\infty, G$ and \hat{W} are atomic lattices.

Axiom 2b. For $f \in \hat{\hat{L}}$ and $e \in G, K_{0}(f) \geqq K_{0}(e)$ implies $\left.f \leqq e.\right\lrcorner$
$A(\neq \emptyset) \subseteq K$ is called an extremal set iff;
ג) A is convex and closed;
β) Every open line segment $S \subseteq K$ with $S \cap A \neq \emptyset$ is contained in A. Let $C(v)$ denote the smallest extremal set of K containing $v . v \in A \leqq K$ is an extreme point iff there is no open line segment in A containing v.

Axiom 3. $\hat{L}_{0}\left(v_{1}\right)=\hat{L}_{0}\left(v_{2}\right)$ implies $C\left(v_{1}\right)=C\left(v_{2}\right)$. \lrcorner
The following theorems are proved in [5].
Theorem 1. $\hat{L}=\hat{\bar{L}}=\left(y \in B^{\prime}: 0 \leqq \mu(v, y) \leqq 1\right.$ for all $\left.v \in K\right)$.
Theorem 2. $K=(x \in B: 0 \leqq \mu(x, f)$ for all $f \in \hat{L}$ and $\|x\|=\mu(x, 1)=1)$.
Theorem 3. G is the set of all extreme points of \hat{L}.
Theorem 4. $\sum_{i=1}^{m} e_{i} \leqq 1, e_{i} \in G$ implies $\sum e_{i}=\vee e_{i}$ and $e_{i} \perp e_{k}$ for $i \neq k$.
Theorem 5. Every $f \in \hat{L}$ allows an unique decomposition $f=\sum_{i=1}^{m} \lambda_{i} e_{i}$, with $e_{i} \in G$ pairwise orthogonal and $1 \geqq \lambda_{1}>\cdots>\lambda_{m}>0$.

According to the Theorems 1 and 2, K and \hat{L} are bounded sets. Since B and B^{\prime} are topologically isomorphic to \boldsymbol{R}^{n}, K and \hat{L} are compact sets.

Let $A \subseteq K$ be convex and $M(A)$ denote the linear manifold generated by $A . x \in A$ is called an internal point of A relative to $M(A)$ iff for every line $g \subseteq M(A)$ through x there exists an open segment $S \subseteq g \subseteq A$ with $x \in S$. The set of all internal points of A is denoted by A^{i}. A point of an extremal set $A \subseteq K$ not being an internal point is called a bounding point. Let $\mathbf{B d} A$ denote the set of all bounding points of A.
G. Däнn proves then the following theorems:

Theorem 6. $v_{1} \in C(v)$, iff there is $\left.\lambda \in\right] 0,1\left[\cong \boldsymbol{R}\right.$ and $v_{2} \in K$ with $v=\lambda v_{1}+(1-\lambda) v_{2}$.

Theorem 7. $C(v)=C(\bar{v})$ iff $\bar{v} \in C(v)^{\boldsymbol{i}}$.
Corollar. $C\left(v_{1}\right) \subset C\left(v_{2}\right), v_{1}, v_{2} \in K$ implies $C\left(v_{1}\right) \leqq \mathbf{B d} C\left(v_{2}\right)$.
Theorem 8. There exists $e \in G$ with $C(v)=K_{1}(e)$, hence:

$$
\hat{W}=(C(v): v \in K)
$$

Theorem 9. The extreme points of K are the atoms of the lattice \hat{W}.
Theorem 10. Each extreme point of $C(v) \leqq K$ is also an extreme point of K.

Theorem 11. Each extremal set of K contains at least one extreme point.
Together with the isomorphism between G and \hat{W} the Theorems 9 and 11 imply:

Theorem 12. The set $E(K)$ of all extreme points of K is bijectively mapped onto the set $A(G)$ of all atoms of G.
21 Commun.math. Phys.,Vol. 11

Axiom 4. For $v_{1}, v_{2}, v_{3} \in K$:
$C\left(v_{1}\right) \cap C\left(v_{2}\right)=\emptyset, \emptyset \neq C\left(v_{3}\right) \cong C\left(\frac{1}{2} v_{1}+\frac{1}{2} v_{2}\right)$ and $C\left(v_{1}\right) \perp C\left(v_{3}\right)$ implies $C\left(\frac{1}{2} v_{1}+\frac{1}{2} v_{3}\right) \cap C\left(v_{2}\right) \neq \emptyset$. \lrcorner

This axiom is equivalent to
Axiom 4'. The orthoisomorphic lattices \hat{W} and G are modular.
In [5] the implication is proved: Axiom $4 \Rightarrow$ Axiom 4^{\prime}. The converse implication may be seen as follows.

Let $C\left(v_{1}\right)=a, C\left(v_{2}\right)=b, C\left(v_{3}\right)=c$. In [6] there is shown

$$
C\left(\frac{1}{2} v_{1}+\frac{1}{2} v_{2}\right)=C\left(v_{1}\right) \vee C\left(v_{2}\right) .
$$

Hence with $a \wedge b=0, \quad 0 \neq c \leqq a \vee b, a \perp c$ and the assumption $(a \vee c) \wedge b=0$, we find by using the modularity:

$$
\begin{aligned}
c & =c \wedge(a \vee b)=c \wedge(c \vee a) \wedge(a \vee b) \\
& =c \wedge(a \vee(b \wedge(a \vee c)))=c \wedge a, \text { i.e. } \quad \emptyset \neq c \leqq a
\end{aligned}
$$

contrary to $c \perp a$. \perp
Let $\operatorname{dim} G(\operatorname{dim}(e)$ for $e \in G)$ denote the greatest number of pairwise orthogonal atoms $p_{i} \in A(G)$ with $\sum p_{i}=1\left(p_{i} \leqq e\right.$ with $\left.\sum p_{i}=e\right)$ respectively. Then in [5] there is shown.

Theorem 13. G is closed and $e_{i} \rightarrow e$ implies $\operatorname{dim}\left(e_{i}\right) \rightarrow \operatorname{dim}(e)$. Hence also $A(G)$ is closed.

The lattice G is a direct sum of irreducible sublattices $G\left(0, e_{i}\right)$, $\sum_{i=1}^{k} e_{i}=1$ of the same structure as G.

Hence each $f \in \hat{L}$ has the form $f=\sum_{i=1}^{k} f_{i}$ with $0 \leqq f_{i} \leqq e_{i}(i=1 \ldots k)$. Each $v \in K$ may be written $v=\sum_{i=1}^{k} \omega_{i} v_{i}$ defined by $\mu(v, f)=\sum_{i=1}^{k} \omega_{i} \mu\left(v_{i}, f_{i}\right)$ for all $f \in \hat{L}, \omega_{i} \in \boldsymbol{R}_{+}, \sum \omega_{i}=1$ and $\mu\left(v_{i}, e_{i}\right)=1$.

Thus, without restriction of generality, we may postulate.
P : The lattices \hat{W} and G are irreducible.

III. Some Further Consequences of the Axiomatic Scheme

Theorem 14. Let C be an extremal set. The set $\mathbf{B d} C$ of all bounding points of C equals the boundary ∂C of C relative to $M(C)$.

Proof. Since $\mathbf{B d} C \cong \partial C$, let us take $v \in \partial C \leqq C^{-}=C$ with $v \notin \mathbf{B d} C$. Obviously $v \in C^{i}$.

The n-dimensional Banach-space B is homeomorphic to \boldsymbol{R}^{n} under its euclidean norm $|x|:=\sqrt{\sum \alpha_{i}^{2}}$ with $x=\sum \alpha_{i} x_{i}, x_{i}(i=1 \ldots n)$ being a cartesian base. Let us assume $\operatorname{dim} M(C)=m \leqq n$. By $\mathfrak{U}_{\delta}(x)$ we denote the spherical open neighbourhood $\{y \in B:|y-x|<\delta\}$ of x. Since v is an internal point of C, we find $m+1$ independent points $v_{i} \in C$ with
$v=\sum \lambda_{i} v_{i}, \sum \lambda_{i}=1$ and $0<\lambda_{i}<1(i=1 \ldots m+1)$. Since all λ_{i} are positive, there exist open neighbourhoods $\mathfrak{V}_{i}\left(\lambda_{i}\right)$ in \boldsymbol{R}_{+}.

Now every $x \in M(C)$ may be written in the general form $x=\sum_{i=1}^{m+1} \alpha_{i} v_{i}$, $\alpha_{i} \in \boldsymbol{R}$ and $\sum_{i=1}^{m+1} \alpha_{i}=1$. Because all λ_{i} depend continuously on the cartesian coordinates of $v \in \boldsymbol{R}^{n}$, we find $\delta>0$ such that for all $x=\sum \alpha_{i} v_{i}$, $\sum \alpha_{i}=1$, contained in $\mathfrak{U}_{\delta}(v) \cap M(C), \alpha_{i} \in \mathfrak{V}_{i}\left(\lambda_{i}\right) \subseteq \boldsymbol{R}_{+}$consequently holds, i.e., $\alpha_{i}>0(i=1 \ldots m+1)$. Therefore, every $x \in \mathfrak{U l}_{\delta}(v) \cap M(C)$ is a convex combination of $v_{1} \ldots v_{m+1}$; i.e. $\mathfrak{U}_{\delta}(v) \cap M(C)$ is an open neighbourhood of v relative to $M(C)$ and totally contained in C. Thus, we have $v \notin \partial C$ contrary to our assumption. $-\perp$

Because of Theorem 14 we need not distinguish between boundary points and bounding points of an extremal set $C . C$ is said to be strictly convex iff one of the of the following equivalent conditions is satisfied:

1. The boundary of C includes no line segment.
2. Each boundary point of C is an extreme point.

Theorem 15. If p, q are orthogonal atoms of the irreducible lattice G, then the extremal set $C(v):=K_{1}\left(p \frac{1}{\mathrm{v}} q\right)$ is strictly convex.

Proof. Maeda [14] shows that in an irreducible atomic and modular lattice an atom $r \neq p, q$ exists which is covered by $p^{\frac{1}{v}} q$. Since \hat{W} is isomorphic to $G, K_{1}(r)=: v_{r} \in C(v)$ is an atom contained in the boundary of $C(v)$ by Theorem 7 and corollary. Supposing the boundary of $C(v)$ contains a line segment $\left[v_{1}, v_{2}\right]$ with distinct end-points, it also contains $\bar{v}:=\frac{1}{2} v_{1}+\frac{1}{2} v_{2}$. If $C(v)$ is not included in $\operatorname{Bd} C(v)$, then $\bar{v} \in C(v)^{\boldsymbol{i}}$, would follow from Theorem 7 contrary to the choice of \bar{v}. Thus, observing $v \in C(v)^{\boldsymbol{i}}$ we have the inclusion $C(\bar{v}) \leqq \mathbf{B d} C(v) \subset C(v)$. On account of $C(\bar{v}) \neq \emptyset, \emptyset \subset C(\bar{v}) \subset C(v)$ is a chain of length two. Yet all chains between \emptyset and $C(v):=K_{1}(p \stackrel{\perp}{\vee} q)$ of length two are covering chains in the modular lattice \hat{W}. Thus, contrary to containing the segment $\left[v_{1}, v_{2}\right], C(\bar{v})$ is an atom, i.e., an extreme point. This completes the proof. $-\perp$

Theorem 16. The bijective mapping $E(k) \leftrightarrow A(G)$ is a homeomorphism.
Proof. Since \hat{L} is compact, the closed set $A(G)$ is also compact. Let $\left(p_{\alpha}\right)$ be a convergent sequence in $A(G)$ with $\lim _{\alpha} p_{\alpha}=p$. On account of the compactness of K, we can find a convergent subsequence $\left(p_{\alpha}\right)^{\prime}$ so that $\left(v_{\alpha}:=K_{1}\left(p_{\alpha}\right)\right)^{\prime}$ is a convergent sequence in $E(K)$ with $v_{\alpha} \rightarrow v \in K$. If we choose $\varepsilon>0$, almost all v_{α} satisfy the inequality $\left\|v_{\alpha}-v\right\|$ $=\sup \left|\mu\left(v_{\alpha}, f\right)-\mu(v, f)\right|<\varepsilon$; in particular we have $\left|\mu\left(v_{\alpha}, p_{\alpha}\right)-\mu\left(v, p_{\alpha}\right)\right|$ $f \in \hat{L}$
$<\varepsilon$; i.e., $\left|1-\mu\left(v, p_{\alpha}\right)\right|<\varepsilon$ for almost all p_{α} converging to p. Thus $\mu(v, p)$ $=\lim _{p_{\alpha} \rightarrow p} \mu\left(v, p_{\alpha}\right)=1$; i.e., $v \in K_{1}(p)=: v_{p} \in E(K)$. Hence the mapping 21*
$A(G) \rightarrow E(K)$ is continuous. Since $A(G)$ is compact, the continuous bijection $A(G) \rightarrow E(K)$ is by a topological theorem even bicontinuous. -

This implies immediately
Corollary. The set $E(K)$ of all extreme points of K is compact.
Theorem 17. The set of all atoms of every lattice segment $G(0, e)$ $=\{x \in G: 0 \leqq x \leqq e\}, e \in G$ is connected.

Proof. Let $p, q(\neq p)$ be atoms of G. We must find a continuous mapping f of a closed segment $[\alpha, \beta] \cong \boldsymbol{R}, \alpha \neq \beta$, into the set $A(p \vee q):=\{r \in A(G): r<p \vee q\}$ with $f(\alpha)=p, f(\beta)=q$. This will be shown in several steps.

1. G is irreducible; hence there is a third atom $r<p \vee q$. Therefore, the corresponding three distinct extreme points $v_{p}, v_{q}, v_{r} \in K_{1}(p \vee q)$ are independent; i.e., they span a plane $\mathscr{E}=\mathscr{E}\left(v_{p}, v_{q}, v_{r}\right)$ in B. Since \mathscr{E} is closed, $\mathscr{C}:=K_{1}(p \vee q) \cap \mathscr{E}$ is an extremal set and strictly convex. Now let us construct the above function f in four steps.
2. For each $x \in \mathscr{E} \backslash \mathscr{C}^{\boldsymbol{i}}$, there exists one and only one euclidean nearest point on the boundary of \mathscr{C}.

To show this, let $|\cdot|$ be the euclidean norm and assume $x \in \mathscr{E}$ but $x \notin \mathscr{C}^{\boldsymbol{i}}$. Being a closed subset of $K, \mathscr{C}-x$ is compact. Since $|\cdot|$ is a continuous function on $\mathscr{C}-x, \inf |\mathscr{C}-x|:=\inf (|y-x| ; y \in \mathscr{C})$ exists; i.e., there is $\bar{v} \in \mathscr{C}$ so that $|\bar{v}-x|=\inf |\mathscr{C}-x| \cdot \bar{v}$ is said to be an euclidean nearest point of \mathscr{C} relative to x.
$\bar{v} \in \mathscr{C}$ is a boundary point of \mathscr{C}, for otherwise, the line through \bar{v} and x would intersect the boundary of \mathscr{C} in a point $v^{\prime}(\neq \bar{v}) \in \mathscr{C}$ between \bar{v} and x. This would imply $\left|v^{\prime}-x\right|<|\bar{v}-x|$ contrary to $|\bar{v}-x|=\inf |\mathscr{C}-x|$.

Now let us show that there is only one euclidean nearest point. On account of the Minkowski-inequality: $|x+y|<|x|+|y|$ iff $x \neq \lambda y$, $\lambda \neq 0$, we find for $x, y(\neq \lambda x) \in \mathscr{S}:=\left(z \in \boldsymbol{R}^{n}:|z|=1\right)$ the inequality $\left|\frac{1}{2}(x+y)\right|<1$; i.e. the boundary of \mathscr{S} containing no line segment is strictly convex.

Suppose v_{1} and $v_{2}\left(\neq v_{1}\right)$ are two nearest points of \mathscr{C} relative to x. Being convex, \mathscr{C} contains $v_{0}:=\frac{1}{2}\left(v_{1}+v_{2}\right)$. Then $\left|v_{1}-x\right|=\left|v_{2}-x\right|$ $=: d$ yields the contradiction $\left|v_{0}-x\right|=\left|\frac{1}{2}\left[\left(v_{1}-x\right)+\left(v_{2}-x\right)\right]\right|$ $<d:=\inf |\mathscr{C}-x|$. Hence $v_{1}=v_{2}$.
3. The mapping $\varphi: x \rightarrow v$ attaching to every $x \in \mathscr{E} \backslash \mathscr{C}^{i}$, its nearest point $v \in \mathbf{B} \mathbf{d} \mathscr{C}$ is continuous.

Let $\left(x_{n}\right) \subseteq \mathscr{E} \backslash \mathscr{C}^{i}$ be a convergent sequence $x_{n} \rightarrow x_{0}$. The compactness of $\mathbf{B d} \mathscr{C}$ implies the existence of a convergent subsequence $v_{m} \rightarrow \bar{v}$, of nearest points $v_{m}=\varphi\left(x_{m}\right) \in \mathbf{B} \mathbf{d} \mathscr{C}$. We need only show $\bar{v}=v_{0}:=\varphi\left(x_{0}\right)$. Now let $\varepsilon>0$ and $\left|x_{n}-x_{0}\right|<\varepsilon$. Then $\left|v_{n}-x_{0}\right| \leqq\left|v_{n}-x_{n}\right|+\left|x_{n}-v_{0}\right|$ $\leqq \inf \left|\mathscr{C}-x_{n}\right|+\varepsilon \leqq \inf \left|\mathscr{C}-x_{0}\right|+2 \varepsilon=\left|v_{0}-x_{0}\right|+2 \varepsilon$, but $\left|v_{0}-x_{0}\right|$ $=\inf \left|\mathscr{C}-x_{0}\right| \leqq\left|v_{n}-x_{0}\right|$. Hence
$\alpha): x_{n} \rightarrow x_{0}$ implies $\left|v_{n}-x_{0}\right| \rightarrow\left|v_{0}-x_{0}\right|$. On the other hand, noticing $0 \leqq\left|\left|v_{m}-x_{0}\right|-\left|\bar{v}-x_{0}\right|\right| \leqq\left|v_{m}-\bar{v}\right|$ we find;
$\beta):\left|v_{m}-\bar{v}\right| \rightarrow 0$ implies $\left.\left|v_{m}-x_{0}\right| \rightarrow\left|\bar{v}-x_{0}\right| \cdot \alpha\right)$ and β) together yield $\left|v_{0}-x_{0}\right|=\left|\bar{v}-x_{0}\right|$. Hence $v_{0}=\bar{v}$, because v_{0} is the unique nearest point of \mathscr{C} relative to x_{0}.
4. Let us consider the intersections of the supporting hyperplanes $H p, H q$ with the plane \mathscr{E}. These are lines l_{p}, l_{q}. Assume l_{p}, l_{q} not to be parallel and let \mathscr{M} be the set union of l_{p}, l_{q}; i.e., $\mathscr{M}:=(x \in \mathscr{E}: \mu(x, p)$ $=1) \cup(y \in \mathscr{E}: \mu(y, q)=1)$ obviously $\mathscr{M} \cap \mathscr{C}=\left\{v_{p}, v_{q}\right\} \subseteq \mathscr{C}^{i}$. Let \bar{v} be the nearest point of \mathscr{C} relative to $\bar{x}=l_{p} \cap l_{q}$.

Then

$$
x_{p q}(t):=\left\{\begin{array}{l}
v_{p}+t\left(\bar{x}-v_{p}\right) \text { for } t \in[0,1] \subseteq \boldsymbol{R} \\
\bar{x}+(t-1)\left(v_{q}-\bar{x}\right) \text { for } t \in[1,2] \subseteq \boldsymbol{R}
\end{array}\right.
$$

is a continuous mapping of $[0,2] \subseteq \boldsymbol{R}$ onto the union $\mathscr{U} \subseteq \mathscr{M}$ of the line segments $\left[v_{p}, \bar{x}\right],\left[\bar{x}, v_{q}\right]$. Let $v(t)=\varphi(x(t))$. Hence $v(t)$ is a continuous mapping of the connected intervall [0,2] onto the arc \mathscr{A} joining v_{p} with \bar{v} and \bar{v} with v_{q} on the boundary of \mathscr{C}. Since \mathscr{C} is strictly convex, \mathscr{A} consists only of extreme points and is a connected set. Using the homeomorphism $E(K) \leftrightarrow A(G)$ we find, in $A(p \vee q)$, an arc joining p and q. -
5. If l_{p} and l_{q} are parallel, we take $l_{r}:=(x \in \mathscr{E}: \mu(x, r)=1)$ as auxiliary line being parallel neither with l_{p} nor with l_{q}. Then the foregoing scheme applied twice yields also an connected arc in $A(p \vee q)$. \lrcorner

Using Theorem 13 and Theorem 17 and the notion of states instead of ensembles Zierler shows in [8]:

Theorem 18. G is a topological lattice; i.e. orthocomplementation, lattice union and intersection are continuous operations.

Collecting the results of Zierler [8, 9] and former results [10], MacLaren has in [11] given the following representation theorem for G.

Theorem 19. If G contains at least four orthogonal atoms, then G is isomorphic to the lattice of all subspaces of a finite-dimensional Hilbertspace H over the real, complex or quaternionic numbers.

IV. The Representation Theorem for the Dual Pair (K, $\widehat{\boldsymbol{L}}$)

Theorem 20. Let \mathscr{P} be the cone of all positive semidefinite operators of the finite-dimensional Hilbert-space $H . B y \mathscr{K}$ and $\hat{\mathscr{L}}$ we denote the subsets $(V \in \mathscr{P}: \operatorname{Tr} V=1)$ and $(F \in \mathscr{P}: F \leqq 1)$, respectively.

Then there exists a pair of topological isomorphisms $(\psi, \chi):(K, \hat{L})$ $\rightarrow(\mathscr{K}, \hat{\mathscr{L}})$ such that:

1. ψ preserves extremality in both directions.
2. χ preserves partial ordering in both directions.
3. The mapping μ and the trace of operators are related by $\mu(v, f)$ $=\boldsymbol{T r}(\psi(v) \cdot \chi(f))$.

Proof. The proof is divided into five steps.

1. The lattice \mathfrak{P} of projections of the finite-dimensional Hilbert-space H is orthoisomorphic to the subspace-lattice $L(H)$ of H which is orthoisomorphic to G by Theorem 19.

Let \mathscr{H} be the real linear space spanned by the cone \mathscr{P} of all positive semidefinite linear operators of H and let $\bar{\chi}$ be the orthoisomorphic mapping $G \rightarrow \mathfrak{P}$. By $\chi\left(\sum \lambda_{i} e_{i}\right)=\sum \lambda_{i} \bar{\chi}\left(e_{i}\right), \lambda_{i} \in \boldsymbol{R}, e_{i} \in G$, we have extended $\bar{\chi}$ to a linear mapping χ of B^{\prime} into \mathscr{H}. Since each real operator of H has an unique decomposition $\sum \lambda_{i} E_{i}$, with $E_{i} \in \mathfrak{P}$ pairwise orthogonal and $\lambda_{i} \in \boldsymbol{R}$, the mapping χ is also an isomorphism of B^{\prime} onto \mathscr{H}.
2. By a fundamental theorem of Gleason [15], to each orthomeasure m of \mathfrak{P} with $\operatorname{dim} \mathfrak{P} \geqq 3$, there exists a positive-semidefinite operator V of H defined by $m_{v}(E)=\boldsymbol{\operatorname { T r }}(V E)$ for all $E \in \mathfrak{F}$. Hence to each $v \in K$ there corresponds an operator $V=\bar{\psi}(v) \in \mathscr{P}$ and only one. For if there is another $V^{\prime} \in \mathscr{P}$ satisfying $m_{v}(E)=\boldsymbol{T r} V^{\prime} E$, we should have $\boldsymbol{\operatorname { T r }}\left(V^{\prime}-V\right) E$ $=0$ for all $E \in \mathfrak{P}$ and particularly for all atoms $P_{x} \in \mathfrak{P}$. That would mean $\boldsymbol{T r}\left(V^{\prime}-V\right) P_{x}=\left\langle x,\left(V-V^{\prime}\right) x\right\rangle=0$ for all $x \in H$, contrary to $V \neq V^{\prime}$. For all $v \in K$, we have $\operatorname{Tr} \bar{\psi}(v)=m_{v}(\mathbf{1})=\mu(v, \mathbf{l})=1$; i.e., $\bar{\psi}$ is a mapping of K into \mathscr{K}. Ву $\psi\left(\sum \lambda_{i} v_{i}\right):=\sum \lambda_{i} \bar{\psi}\left(v_{i}\right)$, with $v_{i} \in K, \lambda_{i} \in \boldsymbol{R}$, we have extended $\bar{\psi}$ to a linear mapping ψ of B into the real linear space \mathscr{H}.
3. The linear mapping ψ is injective and bicontinuous. To prove the first property it suffices to show that $\bar{\psi}$ is an injective mapping. Let $v_{1}, v_{2} \in K$ with $\bar{\psi}\left(v_{1}\right)=\bar{\psi}\left(v_{2}\right)$. Hence $\mu\left(v_{1}, f\right)=\boldsymbol{T} \boldsymbol{r}\left(\bar{\psi}\left(v_{1}\right) \cdot \chi(f)\right)$ $=\boldsymbol{\operatorname { T r }}\left(\bar{\psi}\left(v_{2}\right) \cdot \chi(f)\right)=\mu\left(v_{2}, f\right)$ for all $f \in \hat{L}$; by axiom 1β, we find then $v_{1}=v_{2}$.

According to $\|v\|=1=\mu(v, 1)=\boldsymbol{\operatorname { T r }} \psi(v) \geqq|\psi(v)|$, with the operatornorm $|\cdot|$, the injective mapping ψ is continuous. Yet with the compactness of K this implies the bicontinuity of ψ.
4. The mapping $\psi: K \rightarrow \mathscr{K}$ being linear, injective and bicontinuous obviously preserves extremality in both directions.

Because of the inequality $1=\boldsymbol{T r} V \geqq \sup \left(\boldsymbol{T r} V P_{x}: P_{x} \in A(\mathfrak{P})\right)$ $=\sup (\langle x, V x\rangle: x \in H$ and $\|x\|=1)=:|V|$, the set $\mathscr{K} \geqq \psi(K)$ is a subset of the unit ball \mathscr{B} of the linear space \mathscr{H}.

Now, according to a theorem of KADIson [16] the set of all extreme points of $\mathscr{P} \cap \mathscr{B}$ equals the set \mathfrak{P}.

Since $\psi(K) \subseteq \mathscr{K} \subseteq \mathscr{P} \cap \mathscr{B}$ and $\boldsymbol{T r} V=1$ for all $V \in \psi(K)$, the set $E(\psi(K))$ of all extreme points of $\psi(K)$ must be even a subset of $A(\mathfrak{P})$. So, to every $v_{p}=K_{1}(p) \subseteq K$ there corresponds only one atom $P \in A(\mathfrak{P})$ $\cap \psi(K)$. But being isomorphic to $A(G), E(K)$ is also isomorphic to $A(\mathfrak{P})$. Hence we have the equation $A(\mathfrak{P})=E(\mathscr{K})=E(\psi(K))$. Now $\psi: K \rightarrow \mathscr{K}$
is a surjection. This may be seen as follows: since $\boldsymbol{T r} V=1$, each $V \in \mathscr{K} \leqq \mathscr{H}$ has a convex decomposition $V=\sum \lambda_{i} P_{i}$, with $\lambda_{i} \in \boldsymbol{R}_{+}$and $\sum \lambda_{i}=1$. Because of $E(\psi(K))=A(\mathfrak{P})$, each $\psi^{-1}\left(P_{i}\right)$ is defined and is an extreme point $v_{p i} \in K$. Being a convex set, K contains the convex decomposition $v=\psi^{-1}(V)=\sum \lambda_{i} v_{p i}$.
5. Now we will prove that the mapping $\chi: \hat{L} \rightarrow \hat{\mathscr{L}}$ is an isomorphism and preserves order in both directions.

First we show that $\boldsymbol{T r} V F_{1} \leqq \boldsymbol{T r} V F_{2}$ holds for all $V \in \mathscr{K}$ iff $F_{1} \leqq F_{2}$, \leqq being the ordering in \mathscr{P}. This may be seen as follows: $\operatorname{Tr} V F_{1} \leqq \operatorname{Tr} V F_{2}$ for all $V \in \mathscr{K}$ implies $\boldsymbol{T r} P_{x} F_{1} \leqq \boldsymbol{T r} P_{x} F_{2}$ for all $P_{x} \in A(\mathfrak{P})=E(\mathscr{K})$; i.e., $\left\langle x, F_{1} x\right\rangle \leqq\left\langle x, F_{2} x\right\rangle$ for all $x \in H$. Thus $F_{1} \leqq F_{2}$. Therefore, because of the convex decomposition $V=\sum \lambda_{i} P_{i}$ for each $V \in \mathscr{K}$ and the linearity of the trace, $F_{1} \leqq F_{2}$ being equivalent to $\boldsymbol{T r} P_{i} F_{1} \leqq \boldsymbol{T r} P_{i} F_{2}$ for all $P_{i} \in A(\mathfrak{P})$ implies $\boldsymbol{T r} V F_{1} \leqq \boldsymbol{T r} V F_{2}$ for all $V \in \mathscr{K}$.

Since for $f_{1}, f_{2} \in \hat{L}, f_{1} \leqq f_{2}$ means $\mu\left(v, f_{1}\right) \leqq \mu\left(v, f_{2}\right)$ for all $v \in K$ and because $\psi: K \rightarrow \mathscr{K}$ is an isomorphism, χ is obviously order preserving in both directions and hence maps \hat{L} onto $\hat{\mathscr{L}}:=(F \in \mathscr{P}: F \leqq 1)$.

The inequality $\|f\|=\sup (|\mu(x, f)|: x \in B,\|x\|=1) \geqq \sup (\boldsymbol{T r} P F:$ $P \in A(\mathfrak{P}))=|F|$ and the compactness of \hat{L} imply the bicontinuity of χ. -

Now it remains to show that the system $(\mathscr{K}, \hat{\mathscr{L}})$ is a solution of the axiomatic scheme (K, \hat{L}). For that we must know the annihilator sets in \mathscr{K} and $\hat{\mathscr{L}}$ as well as the $C(V)$-sets in \mathscr{K}.

The set $\mathfrak{M}:=(x \in H: F x=0, F \in \hat{\mathscr{L}})$ is a subspace of H. Let E be the projection onto the subspace complementary to \mathfrak{M}. Then we have $F(1-E) x=0$ for all $x \in H$; i.e., $F=F E=E F E$.

Since $0 \leqq F \leqq 1$ and $\langle x, F x\rangle=\langle x, E F E x\rangle=\langle E x, F E x\rangle \leqq\langle E x, E x\rangle$ $=\langle x, E x\rangle$ for all $x \in H$, we find $F \leqq E$.

Now this being the case, we find $E_{i} \leqq E$ for the pairwise orthogonal projections E_{i} in the unique decomposition $F=\sum \lambda_{i} E_{i}$; hence $\sum E_{i} \leqq E$ and finally $F E=\sum \lambda_{i} E_{i} E=\sum \lambda_{i} E_{i}=F$. However, being the smallest projection with $F E=F, E$ must be equal to $\sum E_{i}$ and is said to be the carrier of F. Hence, denoting by E_{A} the carrier of $A \in \mathscr{P}$ and noticing $\boldsymbol{T} \boldsymbol{r} V F=0$ iff $V F=0$ for all $V, F \in \mathscr{P}$ we find.

Lemma 1. $\mathscr{K}_{0}(F)=\left(V \in \mathscr{K}: V E_{F}=0\right)$ and $\hat{\mathscr{L}}_{0}(V)=\left(F \in \hat{\mathscr{L}}: F E_{V}\right.$ $=0$).

Next, we show.
Lemma 2. $C(V)=\mathscr{K}_{0}\left(1-E_{V}\right)$.
Proof. Obviously $\mathscr{K}_{0}\left(1-E_{V}\right)$ is closed and convex. Let $] V_{1}, V_{2}$ [be an open line segment in \mathscr{K} containing $\widetilde{V} \in \mathscr{K}_{0}\left(1-E_{\mathrm{Y}}\right)$. Then there holds $\left.\widetilde{V}=\lambda V_{1}+(1-\lambda) V_{2}, \lambda \in\right] 0,1\left[\right.$; This implies $0=\widetilde{V}\left(1-E_{V}\right)$ $=\lambda V_{1}\left(1-E_{V}\right)+(1-\lambda) V_{2}\left(1-E_{V}\right)$. Since λ and $1-\lambda$ are positive
numbers, we find $V_{1}\left(1-E_{V}\right)=V_{2}\left(1-E_{V}\right)=0$. On account of the convexity of $\mathscr{K}_{0}\left(1-E_{V}\right)$, this implies $\left[V_{1}, V_{2}\right] \subseteq \mathscr{K}_{0}\left(1-E_{V}\right)$. Hence, $\mathscr{K}_{0}\left(1-E_{V}\right)$ is an extremal set. Obviously $V \in \mathscr{K}_{0}\left(1-E_{V}\right)$; hence $C(V) \subseteq \mathscr{K}_{0}\left(1-E_{V}\right)$. To show the converse inclusion, let $\bar{V}(\neq V)$ be another point of $\mathscr{K}_{0}\left(\mathrm{l}-E_{V}\right)$. We decompose E_{V} into a sum of m pairwise orthogonal atoms P_{i}. Being internal point of the simplex ($P_{1} \ldots P_{m}$) which spans $M\left(\mathscr{K}_{0}\left(1-E_{V}\right)\right), V$ is also internal point of $\mathscr{K}_{0}\left(1-E_{V}\right)$. Hence a $V^{\prime} \in \mathscr{K}$ exists such that $\left.V \in\right] \bar{V}, V^{\prime}[$. Then, by Theorem 6 , there follows $\bar{V} \in C(V)$. Thus we have shown $C(V) \supseteqq \mathscr{K}_{0}\left(1-E_{V}\right)$, too. Now we are able to verify the axioms. By the remark that $\boldsymbol{\operatorname { T r }} A P=0$ for all $P \in A(\mathfrak{P})$ iff $A=0$, we see that Axiom 1 holds.

Axiom 2a: Let E_{1}, E_{2} be the carrier of F_{1}, F_{2}, respectively. For all $V \in \bar{K}_{0}:=\left(\bar{V} \in \mathscr{K}: \bar{V} E_{1}=\bar{V} E_{2}=0\right)$ we find $V\left(1-E_{1}\right)=V\left(1-E_{2}\right)$ $=V$. Hence for $F:=\left(1-E_{1}\right)\left(1-E_{2}\right)$ there holds $0 \leqq F=F\left(1-E_{i}\right)$, i.e., $0 \leqq F \leqq 1-E_{i} \leqq 1$ or $1 \geqq 1-F \geqq E_{i}(i=1,2)$. On the other hand, $V(\mathrm{l}-F)=0$. Thus $F_{3}:=1-F \in \hat{\mathscr{L}}$ satisfies the conditions $F_{3} \geqq E_{i} \geqq F_{i}$ and $\mathscr{K}_{0}\left(F_{3}\right)=\overline{\mathscr{K}}_{0}=\mathscr{K}_{0}\left(F_{1}\right) \cap \mathscr{K}_{0}\left(F_{2}\right)$ of Axiom 2a.

Axiom 2b: Obviously we have $\hat{\mathscr{L}}=\hat{\mathscr{L}}$. Since $E_{F} \geqq F$ is the smallest projection E satisfying $\mathscr{K}_{0}(F) \supseteqq \mathscr{K}_{0}(E)$ Axiom 2 b holds.

Axiom 3: $\hat{\mathscr{L}}_{0}\left(V_{1}\right)=\hat{\mathscr{L}}_{0}\left(V_{2}\right)$ means $\left(F \in \hat{\mathscr{L}}: F E_{1}=0\right)=\left(F \in \hat{\mathscr{L}}: F E_{2}\right.$ $=0$), with E_{1}, E_{2} the carriers of V_{1}, V_{2}, respectively; hence $F \leqq 1-E_{1}$ iff $F \leqq 1-E_{2}$ for all $F \in \hat{\mathscr{L}}$. This implies $1-E_{1}=1-E_{2}$ and $C\left(V_{1}\right)$ $=\mathscr{K}_{0}\left(1-E_{1}\right)=\mathscr{K}_{0}\left(1-E_{2}\right)=C\left(V_{2}\right)$.

Axiom 4: The lattice \mathfrak{P} of projections is modular. Thus Axiom 4^{\prime} holds equivalently.

Summarizing Theorem 20 with the above results, we have shown.
Theorem 21. The system $(\mathscr{K}, \hat{\mathscr{L}}):=((V \in \mathscr{P}: \boldsymbol{T r} V=1),(F \in \mathscr{P}$: $F \leqq 1)$) of positive-semidefinite linear operators of the finite-dimensional Hilbert-space H, given by Theorem 19, is a categorical solution of the axiomatic scheme (K, \hat{L}).

I am indebted to Prof. G. Ludwig for his stimulating guidance.
I also thank Dr. G. Dähn and Mr. W. Prediger for critical remarks.

References

1. Ludwig, G.: Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien Z. Physik 181, 233-260 (1964).
2. - Attempt of an axiomatic foundation of quantum mechanics and more general theories II. Commun. Math. Phys. 4, 331-348 (1967).
3. - Hauptsätze über das Messen als Grundlage der Hilbert-Raumstruktur der Quantenmechanik. Z. Naturforsch. 22 a, 1303-1323 (1967).
4. - Ein weiterer Hauptsatz über das Messen als Grundlage der Hilbert-Raumstruktur der Quantenmechanik. Z. Naturforsch. 22 a, 1324-1327 (1967).
5. Ludwig, G.: Attempt of an axiomatic foundation of quantum mechanics and more general theories III. Commun. Math. Phys. 9, 1-12 (1968).
6. Däнn, G.: Attempt of an axiomatic foundation of quantum mechanics and more general theories IV. Commun. Math. Phys. 9, 192-211 (1968).
7. Mackey, G. W.: Mathematical foundations of quantum mechanics. New York: W. A. Benjamin 1963.
8. Zierler, N.: Axioms for non-relativistic quantum mechanics. Pacific J. Math. 11. 2, 1151-1169 (1961).
9. - On the lattice of closed subspaces of Hilbert-space. Pacific J. Math. 19. 3, 583-586 (1966).
10. MacLaren, M. D.: Atomic orthocomplemented lattices. Pacific J. Math. 14, 597-612 (1964).
11. - Notes on axioms for quantum mechanics, Argonne National Laboratory ANL-7065, 1-21 (1965).
12. Piron, C.: Axiomatique quantique. Helv. Phys. Acta 37, 439-468 (1964).
13. Jauch, J. M.: Foundations of quantum mechanics. London: Addison-Wesley Publ. Comp. 1968.
14. Maeda, F.: Kontinuierliche Geometrien. Berlin-Göttingen-Heidelberg: Springer 1958.
15. Gleason, A. M.: Measures on the closed subspaces of a Hilbert-space. J. Math. Mech. 6, 885-893 (1957).
16. Kadison, R. V.: Isometries of operator algebras. Ann. Math. 54, 325-338 (1951).

P. Stolz
Institut f. Theoretische Physik (I)
der Universität
3550 Marburg a. d. Lahn, Renthof 7

[^0]: * This paper is an abridged version of the author's thesis presented to the Marburg University and written under the direction of Prof. G. Ludwig.

