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Abstract. We apply the existence theorem for solutions of the equations of
motion for infinite systems to study the time evolution of measures on the set of
locally finite configurations of particles. The set of allowed initial configurations
and the time evolution mappings are shown to be measurable. I t is shown that
infinite volume limit states of thermodynamic ensembles at low activity or for
positive potentials are concentrated on the set of allowed initial configurations and
are invariant under the time evolution. The total entropy per unit volume is shown
to be constant in time for a large class of states, if the potential satisfies a stability
condition.

§ 1. Introduction

In [1], we proved an existence and uniqueness theorem for solutions
of the equations of motion for systems of infinitely many particles. In
this article, we will apply this theorem to the study of the time-evolution
of states of classical statistical mechanics. Let us recall briefly the
notation and results of [1]. We denote by 9£ the set of locally finite con-
figurations of labelled particles and by \9C\ the corresponding set of
configurations of unlabelled particles. A state of classical statistical
mechanics is a probability measure on [&] invariant under space trans-
lations. Let ί% denote the set of labelled configurations satisfying con-
ditions 1) and 2) of [1]. Theorem 2.1 of [1] asserts the existence of a solu-
tion of the equations

and the initial conditions

provided that F has compact support and satisfies a Lipschitz condition

and that the initial configuration (qi9 p^) is in $E\ it also asserts the uni-

* On leave from: Department of Mathematics, University of California, Berkeley,
California.
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queness of the solution in the class of trajectories satisfying a certain

regularity condition. This theorem enables us to define a one-parameter

group T* of evolution operators mapping \9Γ\ (the set of unlabelled con-

figurations corresponding to the set SC of labelled configurations) onto

itself. If the mappings T* are measurable, they define a time evolution

of measures on [$Γ] and in particular of states of classical statistical

mechanics which are concentrated on \βΓ\ (i.e., for which [^*]\[^Γ] has

measure zero). This time evolution will be the object of our investigations.

In § 2, we develop some notation and tools which will be needed in

the course of this article, and we restate in a convenient form the results

we will need from [1], Section 3 is devoted to some measurability ques-

tions which are technically important if not very interesting; we prove

that [&] is a Borel subset of \3C\ and that the time-evolution mapping

(t, x) i—> T*x is a Borel mapping from R x [$Γ] to \β£\ In § 4 we show

that for a state ρ of classical statistical mechanics to be concentrated on

\2C\ it is sufficient that ρ:
i) has a Maxwellian velocity distribution,

ϋ) has correlation functions ρn(ql9 . . ., qn) of all orders (see [2])
admitting a majorization of the form

&(Si> >ϊn) ^ λn

with λ independent of n, q1} . . ., qn.
These two conditions are satisfied if ρ is an infinite volume limit state

obtained from the grand canonical ensemble at small activity and, for
a non-negative potential, at arbitrarily large activity.

In § 5, we prove an approximation theorem which will be our main
technical device for the rest of this article and which asserts that the
time evolution of the part of an infinite system contained in a bounded
region can be arbitrarily well approximated by the evolution of the
corresponding part of a system with a large but finite number of par-
ticles. We apply this approximation theorem in § 6 to show that states
obtained by taking infinite volume limits of grand canonical ensembles
with a given twice-continuously-diίferentiable stable1 potential of com-
pact support are invariant under the time-evolution defined by that
potential, provided again either that the activity is small or the potential
non-negative.

In § 7, we show that the entropy per unit volume is conserved by
the time evolution. Here, for the first time in our investigations, thermo-
dynamic stability properties of the potential defining the interparticle

1 A function Φ on JR is a stable potential if there exists B such that, for all n
and all ft,. . .,qn9

Σ Φ(<li-qj)^-nB.
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force play an essential role. We assume that the interparticle force is the
derivative of a potential Φ with compact support which may be written
in the form

φ = φ1 + φ2

with Φλ stable and of compact support and Φ 2 non-negative, continuous,
and strictly positive at the origin. We consider a state ρ which is concen-

A

trated on \β~\ and which has:
i) finite mean kinetic energy in (0, 1),

ϋ) finite mean square number of particles in (0, 1),
and we let ρι denote the time-evolved measure ρ o T~t.
Under all these hypotheses we show that, for any t, the entropy per unit
volume of ρ* is equal to that of ρ.

§ 2. Preliminaries

We will need, unfortunately, a rather complicated set of tools these
are developed in this section. Most of the results given here are of
limited originality. In particular, Sections 2.1 and 2.2 draw heavily on
[2], and Section 2.3 on [3].

2.1. The Space of Locally Finite Configurations

Recall that the set 2£ of locally finite labelled configurations is defined
as the set of all mappings (qί9 pt) from an index set [which is either
(1, 2, 3, . . ., n) or (1, 2, 3, . . .)] to R x R, subject to the restriction that
lim \q{\ = σo if the index set is not finite, and that \βC\ denotes the set

i->oo

of all equivalence classes of such mappings, two mappings being equi-
valent if they differ only by a permutation of the index set. We will
define a topology on \βζ"\ by specifying a class of functions on [3£] and
giving \βC\ the weakest topology making each function in this class
continuous.

Let Jf*! denote the set of all continuous real-valued functions / on
R x R whose supports have bounded projections onto the first factor.
In other words, a continuous real-valued function / is in JΓ1 if and only
if there is a bounded set Λ C R such that / (q, p) — 0 whenever q $ A. For
/ in JΓ1? we define a function Sf on

if (qi9 pi) is a representative of x. The sum has only finitely many non-
zero terms because of the support properties of / and the local finiteness
of x] moreover, Sf(x) evidently does not depend on the choice of the
representative (qi9 p{) of x. We give [3F] the weakest topology making
Sf continuous for every / in Jf1.
18*
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We can give another description of this topology. For any x in \β"\9

let (qif p{) be a representative of x, and define a measure μx on R x R by

In other words, μ^ is the measure which assigns, to every subset of
R x R, the number of particles whose position and momentum lie in
that set. I t is easy to see that μx determines x, so [#*] may be thought
of as a set of measures on R x R. From the formula

it follows that the topology on \β~\ is just the weak topology on measures
defined by the space Jf\ of functions. Using measure theory, one proves
the following:

Lemma 2.1. The set of positive linear functionals on C^Ύ of the form
f i—> Sf(x) is closed in the weak topology in the algebraic dual of J f r

By TYCHONOV'S theorem, this implies the following compactness
criterion:

Proposition 2.2. A closed subset X of \9Γ\ is compact if and only if
each Sf is bounded on X.

We want to transform this criterion into one which is more directly
applicable. Before doing this, we will define some notation. For any
bounded set ΛcR, we define three functions on [3Γ]:

Here, as usual, (qi} p^) is a representative of x. NΛ, K.E.Λi and PΛ are
respectively the number of particles in Λ, the total kinetic energy of the
particles in Λ, and the maximum velocity of any particle in Λ. The
following proposition is easily obtained from Proposition 2.2.

Proposition 2.3. A closed subset X of [3£] is compact if and only if,
for every bounded open set Λ, NΛ and PΛ are bounded on X.

We also have:
Proposition 2.4. Let Abe a bounded open subset of R. Then NΛ, K.E.Λ,

and PΛ are lower semi-continuous functions on \β\
Proof. Let ψn be an increasing sequence of non-negative continuous

functions on R x R converging pointwise to the characteristic function
of A x JR. Then NΛ = Sup S ψn since each S ψn is continuous by defini-

n

tion, NΛ is lower semi-continuous. A similar argument shows that K.E.Λ

and that
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are lower semi-continuous. Every point of [3£] has a neighborhood on
which NΛ is bounded; on such a neighborhood, P% converges uniformly
to PΛ as n goes to infinity. Hence, PΛ is lower semi-continuous.

The following proposition is proved by showing that the topology of
\β\ may be defined by a suitably chosen countable subset of the func-
tions of the form Sf, f in j Γ r

Proposition 2.5. The space \βΓ\ is a Polish space, i.e. it is separable
and its topology is compatible with a metric with respect to which it is
complete.

2.2. Borel Measures on [3£]

For any bounded non-empty set AcR, we let [$?] (A) denote the set
of configurations of finitely many unlabelled particles in A:

(Λ) = Π (Λ x R)t
ymm

where JJ denotes disjoint union and (A x JR)Jymm the symmetric product
of n copies of A x R, i.e., the set of all equivalence classes of 7i-tuples
of points in A x R, two ^-tuples being equivalent if they differ only by
a permutation of their labels. Since [#"] (A) is a disjoint union of quo-
tients of products of copies of A x R, it has a natural topology. This
topology in itself is not very useful, and we will use it only to define the
Borel subsets of [3f] {A).

Given any bounded non-empty subset A of R, there is a natural
mapping from [$Γ] to [5Γ] (A) which simply forgets about all particles
outside of A. We will refer to this mapping as the restriction from R to
A it is a Borel mapping2 if A is a Borel set3.

Let [a, b) be a non-trivial bounded interval in R then we can de-
compose R into a countable union of disjoint translates of [α, b). I t is
easy to see that this decomposition gives a bijective mapping from

to JJ [&]([an,bn))(an = a + n(b-a),bn = b + n(b-a)) and that
fl es — OO OO

this mapping is in fact a Borel isomorphism if JJ [3£] ([αn, bn)) is given
n — — oo

the product topology. Thus, we have a fairly simple description of the
Borel structure on

2 A mapping from one topological space to another is Borel if the inverse image
of every Borel set is Borel.

3 The restriction mapping is not continuous: A continuous trajectory in [#*]
can have a varying number of particles in A (since particles can move in and out
of A), whereas the number of particles is constant on continuous trajectories in
\βΓ\ (A). This is why the topology we have defined on [#"] (A) is not very useful.
If A is open, a better topology can be denned on [#*] (A) by imitating the definition
of the topology on [#*]; this topology makes the restriction mapping continuous
and has the same Borel sets as the topology we are using.
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The representation of \9C\ as a product space gives a useful technique
for constructing measures on \βC\ Let μ be a probability measure on
\βC\ ([a, b)). For each n, translation by n(b — a) gives a Borel iso-
morphism of [β£~\ (Jan, bn)) with [3£] (Ja, b)), and we get therefore a proba-
bility measure on each [$Γ] ([αn, δw)). Taking the product of all these
measures gives a probability measure on \S£~\. We will refer to this
procedure for passing from a measure on [3£] ([a, b)) to a measure on
\β£~\ as the product measure construction. I t gives a measure which is
periodic under translations, with period b — a.

We can apply this construction in particular to thermodynamic
ensembles. Thus, let a stable two-body potential Φ, an inverse tem-
perature β, and a chemical potential μ be given. For any interval [a, b),
we define a measure on ([a, b) x R)n as:

- ί - exp |y3 \μ~γΣ Pi -Σφ(<Ii~ ^ ) ] W i > >dqndp1} ...,dpn

(where d^dpi is Lebesgue measure on [a, b) x R). Because of the sta-
bility of the potential Φ, this collection of measures defines a finite
measure on [ΰF] (Ja, b)), and by normalizing we get a probability measure,
which we will call the grand canonical ensemble on [α, b). Applying the
product measure construction to this measure gives a probability measure
on \βΓ\ which, physically, corresponds to the grand canonical ensemble
for the infinite system with insulating walls at the points a.n.

Let Jί1 \βC\ denote the set of Borel probability measures on \β\
We will introduce two topologies on Jίx \βC\ each of which is a weak
topology defined by regarding Ji1 \βC\ as a subset of the dual of a space
of bounded measurable functions on \βC\ Thus, let 2ί be the 0* algebra
of functions on [S£] generated by the set of all functions of the form
φ(Sfλ, . . ., $/7c), where fl9 . . ., fk belong to Jf\ and φ is a bounded con-
tinuous function on Rk. The (7* algebra 21 defines a topology on t^#1 \βC\
which we will refer to as the 21 topology. When we speak of convergence
in ^f1 \βC\ without specifying a topology, we will always mean conver-
gence with respect to the 21 topology. I t is sometimes useful to consider
the topology defined by the 0* algebra 2loo generated by all functions
obtained by composing a bounded Borel function on [5Γ] (Λ) (A some
bounded Borel set) with the restriction mapping from \β£~\ to [9Γ\ (A).
We will refer to this topology as the 2ί^ topology it is evidently strictly
stronger than the 21 topology.

We may regard [3£] as a subset of the spectrum of 21, and it may be
seen that the 21 topology on [$Γ] coincides with the initial topology. Since
21 is defined as an algebra of functions on \βC\, it is clear that [$*] is dense
in the spectrum of 2ί. The following proposition further clarifies the way

lies in the spectrum of 2ί.
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Proposition 2.6. There exists a family {φm,n) of elements of 2ί
0 5j φm,n ^ φm+itn = 1> such that, if the φmfn are regarded as functions
on the spectrum of 2ί, then the characteristic function of \βC\ is

inf sup φm>n .

In particular [&] is a Baire set4" in the spectrum of 21.
This proposition is due to BXJELLE ([2], Proposition 4.2 and Corollary

4.4). The proof in this reference is inseparable from other and more com-
plicated considerations; for the convenience of the reader we will give
here a direct proof. The idea of the proof is simple: A point of the spec-
trum of 2ί which does not belong to [$?] heuristically represents a situa-
tion in which some bounded interval, which we can take to be of the
form (— n, n), contains either infinitely many particles or a particle with
infinite velocity; we will therefore construct φmtn so that lim φmtTl = 1

tn—>oo

on [$Γ] but such that φm,n = 0 for all m if there are infinitely many par-
ticles, or a particle with infinite velocity, in (— n, n).

Let χ be a continuous non-increasing function on R such that χ (t) = 0
for t ^ 1 and χ(t) — 1 for t ^ 0. Let ψn be a continuous non-negative
function on R which has compact support and which is equal to one on
(— n,n). We will prove that we may take:

with fn(q, p) = ipniΦ (1 + P*)' S i n c e fn ^s m ^ Ί a n < ^ X ^s hounded and
continuous, it follows from the definition that ψm>n belongs to St. Since
0 S. % ̂  1, and since χ is non-decreasing, we have

0 ^ φm>n g φm+1,n ^ 1

Clearly, lim ψm>n(x) = 1 for all x in \β£\
m—>oo

It remains to be shown that the φw, n ' s have the desired property of
separating \βC\ from the rest of the spectrum of St. Thus, let x be a point
of the spectrum of 21 which does not belong to \β\ and let xκ be a net in
[iΓ] converging to x. We claim that, for some n, lim sup Sfn(xx) = oo.

α

If this were not the case, it would follow from Proposition 2.3 that
the net (xx) has a cluster point in \β\ and this would contradict the
assumption that lim xκ $ [#"]. Thus, for that value of n, we must have

α

4 On any topological space, we define the set of Baire functions to be the
smallest set of functions containing the continuous functions and closed under
pointwise limits, and the Baire sets to be those sets whose characteristic functions
are Baire functions. Every Baire set is also a Borel set; the converse is true if the
topological space in question is metrizable.
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for all m. Hence, inf sup φm,n = 0 on Q \β\ whereas we have seen that
n m

inf sup φm> n = 1 on [3F].
n m

Let E (21) denote the set of states of 21 E (21) may be identified with
the set of regular Borel probability measures on the spectrum of St. Any
Borel probability measure on [#*] may be regarded as a Borel probability
measure on the spectrum of 21 which assigns measure zero to the com-
plement of \β\ Moreover, such a measure is automatically regular. To
see this we remark first that, since any finite Borel measure on a compact
space is regular on the Baire sets [4], it suffices to show that any Borel
set in [3F] is a Baire set in the spectrum of 2ί. This last assertion follows
from the fact that \βΓ\ is a Baire set in the spectrum of 21 and the fact,
easily verified, that there is a countable set in 21 which generates the
topology of \βC\ We may therefore, when convenient, regard τJf^lβZ"] as
a subset of E (21). It is easy to construct integrals of functions with values
in E (21) we will need some technical results which assure us that, if we
consider such a function whose values actually lie in <Jίx\β£\ then the
integral is also a measure on \β£\

Proposition 2.7. Let (X, v) be a probability measure space and x \—> ρx

a mapping from X to E(Qί) such that x \—> ρx{ψ) is measurable for every
ψ in 21. Define a state ρ of $lby

S(y>) = f dv(χ) ρΛ(y>). (2.1)

Then, for all bounded Baire functions f on the spectrum of 21, x \—> f fdρx

is measurable and
I fdρ = f dv{x) f fdρx.

Proof. Let & denote the class of all bounded Baire functions on the
spectrum of 21 for which the proposition holds. Since the continuous
functions on the spectrum of 21 are just the elements of 21, J^ contains
the continuous functions by the definition of ρ. On the other hand, if
(fn) is a uniformly bounded sequence of functions in 3F converging
pointwise to /, then a double application of the dominated convergence
theorem shows that / is in 3F. Hence, IF contains all bounded Baire
functions.

Corollary 2.8. Let the notation be as in Proposition 2.7. Then ρ belongs
to <Jίx [&] if and only if ρx belongs to Jί1 \9C\ for almost all x.

Proof. By Proposition 2.6, the characteristic function χ^ of \βC\
is a Baire function. The assertion therefore follows from (2.1) and the
remark that ρ belongs to Jί1 \βC\ if and only if

Corollary 2.8 a. Let the notation be as in Proposition 2.7, but assume
that ρx is in ^£ι \βΓ\ for almost all x. Let f be a bounded or non-negative
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Borel function on \βC\ Then

= fdv(x)ffdρx. (2.2)
Proof. The assertion for non-negative functions follows from the

assertion for bounded functions by the monotone convergence theorem.
The assertion for bounded functions follows from the corresponding
assertion for characteristic functions of sets, by a standard approxima-
tion argument. The assertion for characteristics functions of sets follows
from Proposition 2.7 and the fact that every Borel set in [^] is a Baire
set in the spectrum of 21.

If ρ belongs to Λlx \βC\ we define a translated measure τsρ by

foρ) (φ) = Q{φoτs)

for φ in 21. I t is easy to see that, for any φ in 21 and any x in \3C\
s i—• φ(ts

χ) i s continuous. Hence, by the dominated convergence theorem,
s i—> τsρ is continuous in the 21 topology. We may therefore construct

a

I/a f ds τ8ρ, which belongs to JP lβP]. If we temporarily denote this
o

measure by ρ, then by Corollary 2.9 we have

] (2 3)

for any semi-bounded Borel function / on [$Γ], If ρ is periodic with
period a, then ρ is translation invariant. We will refer to this measure
as the average of ρ over translations. We can apply this construction in
particular when ρ is obtained by the product measure construction from
a measure ρ1 on [#*] ([a, δ)); we will refer to the operation of passing
from ρx to this invariant measure as the averaged product measure
construction.

2.3. Entropy

We will need the notion of the total entropy per unit volume of
a measure on [3£] which is periodic under translations. In our discussion
we will follow, roughly, the work of ROBINSON and RTJELLE [3]. The
infinite volume of momentum space, however, introduces some com-
plications not present in the theory of the configurational entropy.

We will start by defining, abstractly, the entropy of a probability
measure with respect to an arbitrary σ-finite measure. Let X be a set
and £f a a-algebra of subsets of X. We will consider the σ-algebra £f to
be fixed and suppress it from our notation, i.e., we will speak of measures
on X rather than of measures defined on 3* and of measurable functions
on X rather than of functions measurable with respect to Sf. Let σ be
a σ-finite measure on X. If ρ is a probability measure on X, we want to
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define the entropy of ρ with respect to a as — σo if ρ is not absolutely
continuous with respect to a and as

if ρ is absolutely continuous with respect to a. Unfortunately, this
integral need not make any sense the positive and negative parts of the
integrand may both have infinite integrals. If a is a finite measure, this
difficulty does not arise because x \ogx is bounded below. If a is not
a finite measure, we must restrict the class of probability measures ρ that
we consider. This we do by choosing a non-negative measurable function
φ which is rapidly increasing in the sense that / e~^ da < oo, and con-
sidering only ρ's such that / φ dρ < oo.

Lemma 2.9. Let X, a, φ be as above let f be a non-negative measurable
function on X such that f f da = 1 and f f φ da < oo. Then the positive
part of —f log/ has finite a-integral, and

- I f log/ da ^ / f.φ da + log(/ β~* da) . (2.4)

Proof. The first statement of the lemma follows at once from the
identity

-/log/ = f.φ-e~* (//e-*) log(//β-*) (2.5)

and the integrability of f.φ and e~^. The inequality (2.4) is proved by
integrating this identity and using the concavity of — α loga;.

We now make the following definition: Let ρ be a probability measure
on X such that J φ dρ < oo. Then we define s(ρ, a), the entropy of ρ
relative to a, by

•<*••>--/(ΪM&)*-
if ρ is absolutely continuous with respect to a,

= — σo otherwise.

(We could have given a more general definition by defining the entropy
for any probability measure ρ for which there exists a φ with the desired
properties. For our purposes, it will be convenient to work with a fixed φ.)

We will denote by Jί1 (X) the set of probability measures on X. There
is an obvious pairing between ^-(X) and the space of all bounded
measurable functions on X we will refer to the weak topology induced
on the set of measures by this pairing as the j£?°° topology. Any state-
ments implying a topology on ~//τ(X) are to be understood in the «̂ f°°
topology. If we identify probability measures which are absolutely con-
tinuous with respect to a with elements of ^ ( σ ) , then the £?°° topology
corresponds to the weak topology on L1^).
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Proposition 2.10. Let a be a finite measure, and let N be a real number.
Then s(ρ, a) is an upper semi-continuous junction of ρ and

{ρ:s(ρ,σ)^ - N}
is compact.

Proof. Using the concavity of — xlog£, one checks easily that

where the infimum is to be taken over all partitions of X into a finite
number of disjoint measurable sets {Al9 . . ., An} each of which has
strictly positive σ-measure. Since ρ \—• Q{A^) is continuous, s(ρ, a) is the
infimum of a collection of continuous functions and is therefore upper
semi-continuous. In particular, {ρ : s(ρ, a) ̂  — N} is closed in Jίx{X).

Let SPX (σ) be the set of non-negative elements of L1 (σ) with integral
one to complete the proof of the proposition it will suffice to prove that

is relatively compact for the weak topology on L1(σ).
To prove this, it is enough to show that

lim / / da = 0

uniformly for / in Jf* [5].
Let λ be a real number greater than one. Then

ffdσ= f fdo+ f fdσ^λσ(E)+ f f da.
E En{f^λ} ED{f>λ} {f>λ}

We therefore want to show that

lim f fdσ = 0
λ->oo {/>A}

uniformly for / in Jf*. But

N^fflogfdσ^log(λ) ffdσ-γfdσ9

{f>λ} X

or

^ / fdσ,
}

which completes the proof of the proposition.
Proposition 2.11. Let (X, a) be a measure space, and let φ be a non-

negative measurable function on X such that f e~oc(f> dσ < oo for all α > 0.
Let M, N be real numbers. Then ρ ι—• s(ρ, σ) is an upper semi-continuous
function on {ρ ζ JP-(X) : / φ dρ g M}, and {ρ i^1{X) : / φ dρ ^ M
and s(ρ, a) ̂ > — N} is compact.

Proof. I t follows from the hypotheses on φ that there exists a non-

negative measurable function ^ o n l such that f e~~* da < oo and such



268 O. E. LANFORD I I I :

that

Km 4 τ ί v - = 0 (2.6)
X)<χ> φ{X)

Let σ' denote the finite measure e~~̂  σ. Then we have
A

s(ρ, σ) = s(ρ,σ') + / φdρ

by (2.5). Proposition 2.10 asserts that s (ρ, σr) is an upper semi-continuous

function on t ^
1 (X). We will prove the upper semi-continuity of s(ρ, a)

by proving that ρ ι—> f φ dρ is continuous on

{ρζ:^
1{X): f φdρ rg if}.

A A A

Let φn= φ An; then φn is a bounded measurable function on X, so

ρ i—> f φn dρ is continuous. On the other hand,

dρ- Jφndρ ^ f φ dρ ̂  sup ( ^ Q ] * /
{φ^} Φ(X)^

and, by (2.6), the right-hand side goes to zero as n goes to infinity
A

uniformly for ρ in {ρ : / φ dρ fg M}. Hence, ρ i—> f φ dρ is a uniform
limit of continuous functions and is therefore continuous.

It remains to prove the compactness of

{ρ ^Jβ{X): f φdρ ^ M,s(ρ,σ) ^ - N} .

Since / φ dρ = sup f (φ An) dσ, ρ \—> / φ dρ is lower semi-continuous, so
n

{ρ ζ eJf1 (X): / φdρ ^ M,s (ρ, a) ̂  - N} is closed. Let a" = e~φ σ; then
S(Q><*) = S(Q> <*") + f φdσ .

It therefore suffices to prove that {ρ ζ Jίx(X): s(ρ, a") > - (M + N)}
is compact this follows from Proposition 2.10 since a" is a finite measure.

Proposition 2.12. Let ρ1? ρ2 ζ tjf
1(X), α ^ suppose f φ dρx < σo and

f φ dρz < σo. Let 0 ^ α ̂  1. jΓ&ew

α*(ftι> σ) + ί1 ~ α ) *(£2> σ ) = s ( α fti + ί1 - α ) ^ cr)
(2.7)

g α s(ρ l5 σ) + (1 - α) s(ρ2, or) + Iog2 .

Proof. This follows, just as in [3], from the concavity of —xlogx
and the monotonicity of log#.

Proposition 2.13. Let T be a one-one measurable mapping of X onto
itself with a measurable inverse. Suppose that a is invariant under T, i.e.,
that σ(T~1E) = σ(i£) for every measurable subset E of X. Let ρ be a proba-
bility measure on X such that

f φdρ < oo , / φ d{ρ o T~λ) < oo .
Then

s(ρ,σ) = s(ρoT-\σ).
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Proof. This proposition follows at once from the definitions.
We now apply this general construction to statistical mechanics. For

any bounded Borel set A, let σΛ be the Borel measure on \βΓ\ (A) whose
restriction to each (A x R)^γmm is given by the measure

~^dql9. ..,dqndpx,...,dpn

on (A x R)n. If ρ is a probability measure on \β£~\, the image of ρ under
the restriction mapping is a probability measure ρΛ on [&] (A). The role
of the function φ of the preceeding propositions will be played by the
kinetic energy in A note that, for any α > 0, we have

f e-*κ-E Λ dσΛ = e |/-^- V(Λ) (2.8)

where V(Λ) is the Lebesgue measure of A. If / K.E.Λ dρ < oo, we will
define sΛ(ρ), the entropy of ρ in A, to be sίρ^, σΛ).

Proposition 2.14. Let ρ be a probability measure on \β"] such that
J K.E.Λ dρ < oo for all bounded Borel sets A. Then sΛ(ρ) is a subadditive
set function, i.e.,

^ΛlUΛ2(ρ)^sΛi(ρ) + sΛ2(ρ) (2.9)

for all pairs Al3A2of disjoint bounded Borel sets, and we have

»Λ(Q) £s(γ)V*V(Λ) [-ψ~fK.E.Λdργ3 (2.10)

for all bounded Borel sets A.
Proof. The subadditivity is proved in exactly the same way as in

Proposition 1 of [3]; the inequality (2.10) is obtained by applying (2.4)
of Lemma 2.9 and (2.8) to get

for any α > 0, then minimizing with respect to α.
Let a be a positive real number, and let <Jί\\β£} denote the set of

probability measures on \βC\ which are periodic under space translations
with period a. If ρ ( e / J [ 5 ] , and if f dρ K.E.^0>a^ < oo, then
f dρ K.E.Λ < oo for every bounded Borel set A. Thus, we can define
sΛ(ρ) for all such A.

Proposition 2.15. Letρ f J ^ [ J ] , and suppose that f K.E.[0>a)dρ< oo.
Then:

1. Km — S[Xtβ)(ρ) exists. We denote this limit by s(ρ); it is the
β—α—>oo p — 0C

entropy of ρ per unit volume.

2.s(ρ) = inί-Lsl0,na)(ρ).
fi It) Hi

3. s(ρ) is an affine function of ρ.
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/π\i/3 Γ 1 11/3
4. S(Q)£3(τ) [~JK.E.ί0,a)dρ\ .
5. For any pair of real numbers M, N,

jr={ρζΛh[aT]:f K.E.[Ot β ) dρ £ M, s(ρ) ^ - N}

is compact for the 21^ topology, and the 21 topology agrees with the 21^
topology on Jf.

6. For any real number M, s(ρ) is an upper-semi continuous function
for the 21 topology on {ρ £ Ji\ [3Γ] : / K.E.[Ot a) dρ ^ M}.

Proof. By Proposition 2.14, S[0,wα) (Q) *S a sub-additive function of

n, so lim —5[o,wα)((?) exists and is equal to inf — <$[0>nα)(ρ). Now let

β > cc be given and let w, n' be chosen so that na ^ oc < (n -{- 1) a,
nfa^ β < (nf + 1) α. Then by subadditivity

- *[«,(n+l)α)(ρ)

By (2.10) the right-hand side is not greater than

so

lim sup -—-<W)(ρ) ^ Km -—s[Q$na)(ρ) .
^ — α—j.oo p — α n—>oo W ί ϊ

Similarly,

Hminf - — - s [ ΰ ί > β ) ( ρ ) ^ Hm — <s [0,wα)(ρ) ,
β—oc—>oo p — Oί n—>oo 71(1

so statements 1. and 2. are proved.
The fact that s(ρ) is an affine function of ρ follows from inequality

(2.7) of Proposition 2.12. The bound 4. follows from 2. and inequality
(2.10) of Proposition 2.14.

To prove statement 5., let ρα be a universal net5 in Jf. Then since
we have:

s(Q<x,[-na,na)>G[-na,na)) ^ ~ 2 na N

it follows from Proposition 2.11 that ρα,[-nβ,wα) converges in the £?°°
topology for measures on [3F] ([—na, na)). Let §[-na,na) denote the
limiting measure. Then the collection of measures (ρ[-nα,nα)) i-s consistent
and therefore defines a unique measure ρ on [$Γ] evidently ρα converges
to ρ in the 21^ topology. It remains to be checked that ρ belongs to C%\
It is clear that ρ is in Jί\\β\ Since for any ρ ζ ^ 1 ^ ] f K.E.[Of(l) dρ
= sup / [K.E.[Qta) Λ ή] dρ} ρ ι—> f K.E.[Ota) dρ is a lower semi-contin-

5 See [6], for the definition of a universal net. A universal net is roughly one
which is a refined as possible. Every net has a universal subnet; the image of
a universal net under any mapping is universal; a Hausdorff topological space is
compact if and only if every universal net in it converges.
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uous function on t ^# 1 [^] with the 21 ,̂ topology; hence, f K.E.[OfCl)
•dρ^M.

By Proposition 2.11, each <S[_nα,nα) (ρ) is an 21^ upper semi-con-
tinuous function on {ρ ξ_ Jί\ [3£]: / K.E.[Oi a) dρ ^ M} and hence, by 2.,
s(ρ) is also 21^ upper semi-continuous on this set. Hence, in particular,
s(ρ) ^ — N, so ρ belongs to Jf and Jf* is 2100-compact. From the com-
pactness of J f in the 21^ topology, and the fact that the 21 topology is
a Hausdorff topology which is no finer than the 21^ topology, it follows
that the 21 topology coincides with the 21^ topology on C/f.

We still have to prove 5., and we know already that s(ρ) is 21^
upper semi-continuous on JΓ' = {ρ ζ Jί\ \β\ : / K.E.[Ota) dρ ^ M}. To
prove 21 upper semi-continuity, it is enough to prove that, if ρα is a net
in W which converges to ρ, then s(ρ) ^ lim sup <s(ρα). There is evidently

α

nothing to be proved if lim sup s (ρα) = — oo. If this is not the case, then
oc

we can pass to a subnet for which s(ρu) is bounded below, without
changing the lim sup. In other words, we can assume that all the ρΛ are
contained in

{ρ £•>*£[£•] : / K E.[o,a) dρ g M, s(ρ) ^ - N} ,

for some choice of N. But, on this set, the 21 topology coincides with the
2loo topology, so ρα converges to ρ in the 21^ topology, and

s(ρ) ^ limsup<s(ρα)
α

follows from the 21^ upper semi-continuity of s.
Proposition 2.16. Let X be a compact topological space, x \—> ρ^ a con-

tinuous mapping from X to Jί\[βC\ and v a Radon probability measure
on X. Suppose f K.E.ιOt a) dρx is bounded with respect to x. Let
ρ = f dv(x) ρx. Then

f K.E.[Ota) dρ^f dv(x) f K.E.[Ota) dρx

and
= fdv{x)s(ρx).

Proof. The first formula follows immediately from Corollary 2.9.
Replacing X, v by their images under x \—• ρ̂ , we can suppose that
I C « i J [ ί ] and that ρ is the barycenter of v. But s(ρ) is affine and
upper semi-continuous on any set on which f K.E.[Ota) dρ is bounded;
hence, by the theorem of the barycenter6

6 The theorem of the barycenter asserts that, if X is a compact convex set in
a locally convex topological vector space, v a probability measure on Jf with
barycenter r(v)9 and / an affine upper semi-continuous function on Jf, then
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(To justify the application of the theorem of the barycenter, we have to
know that the closed convex hull of the image of X in Jί1 \β~\ is com-
pact, or equivalently, that the closed convex hull of the image of X in
2£(2l) is contained in tJί1\β"\. This follows easily from Corollary 2.8.)

Corollary 2.17. Let ρ ^Jί\\β\ and assume f K.E.[Ofa) dρ < oo. Let

1 a

Q = ΊΓ f ds(τsQ)- Then
o

/ K.E.[o,a) dρ = f K.E.[0ia)dρ<°o, and s(ρ) = s(ρ) .

Proof. By Proposition 2.16, we have only to prove

fK.E.[0ta)oτsdρ = fK.E.[0>a)dρ for 0 rg s ^ a .

Now K.E.[0>a) oτs = K.E.^SfS^a) = K.E.^S>Q) + K.E.[0>a-s). By the
periodicity of ρ,

Reassembling gives:

JK.E.[Qta) oτsdρ = f [K.E.[Qta-a) + J5L0. [ β-β f β )] dρ = / K.E.l0,α) dρ

2.4. The Existence Theorem

In this section we summarize and reformulate the main results of [1]
in a form which will be convenient for our purposes in this article.

For any x = (q{, p{) in 2£9 we define

where log+(g) = log(|g| v e). The quantity |a;| is either a non-negative
real number or -f oo. We will regard | | either as a function on 9£ or on
[W] as convenient.

A

The set 3? is {x ζ ΘC: \x\ < oo}. For any non-negative real number ό,

we define £δ = {x ζ %: \x\ g δ}. We denote by φ] and by φδ~\ the

corresponding sets of equivalence classes.
We want to solve the equations of motion

dt ^PiW, dt S

with initial data in ^ . Throughout this article, we will assume that F
has compact support and satisfies a Lipschitz condition. We will always
use R to denote the range of F, i.e., the smallest number such that
F(q) = 0 whenever \q\ ^ R.

To solve the equations of motion, we introduce for each initial con-
figuration x = (gi? Pi) the Banach space <3/x of sequences ζ = (ξi9 η{) of
pairs of real numbers such that
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For ζ in <E/X9 we let x -f ζ denote the configuration (qi -f ξi9 pi + η^.
The equations of motion with initial configuration x can be reformulated
as an evolution equation in (WX:

dt -Ax(ζx(t)),

the solution of the original equations is then obtained as

x(t) = x+ζx(t).

We may obtain the solution of the evolution equation by an iterative
procedure. Define

Co.«(0=0

ζn,χ(t)=fdτAa(ζn_Ux(τ)) for rc= 1 , 2 , 3 , . . . ,
o

i. e.?

t

£i,n,x(t) = / dτ[Pi + ηun-uxM]
0 (2.12)

o U
Let xn(t) = a? + CTC,a.(O For each positive real number m, define

a semmorm .on Wx by

The following proposition is a more explicit version of Remark 4.3 of [1]:
Proposition 2.18. There exist functions h(δ, T) and ε(n, m, δ, T) such

that
i) \\ζn,x(t)\\x^h{δ,T)foτalln

whenever \x\ ̂  δ and \t\ ̂  T.
ii) lim ε(n, m, δ, T) = 0 for all m, δ, T

and

mKn,x(t) ~ Cx(t)\\x ^ βfa, ™, δ, T)

whenever \x\ fg δ and \t\ ̂  T.
We define T* to be the mapping of [J^] into itself which takes the

equivalence class of x to the equivalence class of x(t). The mappings Tι

form a one-parameter group of transformations on \β£~\. We let Tι

n denote
the mapping of \β£~\ into itself which takes the equivalence class of x to
the equivalence class of xn(t). From Proposition 2.18, one easily obtains
the following:

Proposition 2.19. For any pair of positive numbers δ, T, and any ψ

lim ψ(Tix) = ψiTtx)

A

uniformly for x in [&$] and \t\ ̂  T.
19 Commun. math. Phys.,Vol. 11
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2.5. Space- Per iodized Systems

We will have occasion to consider systems of a finite number of par-
ticles moving in a finite interval [—a, b) "with periodic boundary con-
ditions". From a fundamental point of view, this is a matter of studying
a second order differential equation on torus. For our purposes, it is
convenient to formulate the equations in a slightly different way.

For any function / defined on R, and any positive real number α,
we let /α denote the function on R which is periodic with period α and
which agrees with / on [— α/2, α/2). To find the motion of a system of
n particles moving on [— a, b) with interparticle force F and with periodic
boundary conditions, it is enough to solve the system of ordinary
differential equations:

(Note that, if a + b ^ 2i?, then J?α + & satisfies a Lipschitz condition since
JP does.) The Pi(tys are the correct velocities, but the ^(ί)'s are not
necessarily the correct positions; these latter are obtained from the
qi(ty& by subtracting appropriate integral multiples of a -f b to give
values in [— a, δ).

The solution of this system of equations gives a one-parameter group
of mappings of {$£] ([— a, b)) onto itself; we denote these mappings by
T\__a>by If we identify

oo
\Of-\ _ ΓT

n = — oc

and if we consider the separate evolution of each factor, we get a one-
parameter group of mappings of [3?] onto itself which we will also denote
b y 1 [-a,b)

We also need to adapt some ideas from statistical mechanics to the
framework of periodized systems. A two-body potential Φ will be said
to be P-stable if there exist constants B and D such that

Σ ^d(ft-ft) ^ - B n (2 1 4 )

for all n, qί} . . ., qn, whenever d ^ D. Passing to the limit d -> oo in
(2.14) with the q{ held fixed gives

JLJ

i.e., any P-stable potential is stable.
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Although the notion of P-stability is a useful tool, it is not a very
pleasing hypothesis from an aesthetic point of view. Fortunately, for
potentials of compact support, it reduces to the ordinary notion of
stability.

Proposition 2.20.7 Any stable potential of compact support is P-stable.
Proof. Suppose Φ(q) — 0 for \q\ ̂  B, and suppose that

for all n, qlf . . ., qn. We will show that

ΣΣ ^dfe ~ qs) ̂ - Bn

for all n, qv . . ., qn, if d ^ 2B. We can assume that qv . . ., qn ξ [0, d).
For any positive integer N, define qnn + i^^d + qi for K = 0,l,... ,N — 1
and i = 1, 2, . . ., n.
Then

= - Bn.

If Φ is P-stable and if α + b is large enough, we can construct the
grand canonical ensemble on [— α, b) for the potential Φ α + δ. We will
refer to this measure on [#*] ([— α, b)) as £&e per iodized grand canonical

ensemble on [—α, δ). If F(q) = — -g— Φ(ζf), where Φ is an even P-stable

potential, and if a -\- b is larger than 2B, then the measure on \3C\
obtained by the product measure construction from the periodized
grand canonical ensemble on [— α, b) is invariant under the one-
parameter group T\_aby

§ 3. Measurability of [$} and T*
A

Proposition 3.1. Each [3£δ] is a compact subset of [#"].
A

Proof. By definition, [$Γd] is the set of all x in \βΓ\ such that
i) P(-QiQ)(x) ^ ό l°g+(<Z) f° r all positive real numbers q.
ii) J\Γ(αfiί)(a;) ^ ό(/5 - α) for all α, ̂  with ^ - α > log+ ^

By Proposition 2.5, for any g, α, β9

{x:P{^,Q)(x)^ δlog+(q)}
and

7 This proposition is due to D. RTJELLE (unpublished).

19*
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are closed in \S£\ Hence, \βΐ δ~\ is the intersection of a collection of closed
sets and is therefore closed. On the other hand, for any bounded open

A

set Λ, PΛ and NΛ are bounded on \βC δ\ Hence, by Proposition 2.3,

\3>δ\ is compact.

Corollary 3.2. \β\ is a Borel subset of [&].
Next we investigate the measurability of the time-evolution map-

pings T*.

Proposition 3.3. For each ό, the mapping (t, x) \—> Tιx is continuous

from R x [dδ] to [#"].
Proof. I t suffices to prove that (t, x) ι—-> \p(Tlx) is continuous for

every ψ in 21. We know from Proposition 2.19 that
lira ψ{Tix) = \p{Tιx)

n—>oo

and that the convergence is uniform as t runs over any bounded interval
and x runs over [&δ]. Hence, it will be enough to prove that (ί, x)
i—> ip(Tl

nx) is continuous. Furthermore, we can suppose that ψ depends
only on the co-ordinates of the particles in some bounded interval
[—A, λ]. By Proposition 2.18 there is, for any T > 0, a constant H such
that

\ξitn,a(t)\ ^Hlog+(qi)
A

whenever |ί| ^ T and x = (qiy pt) ζ θ£δ.

Now choose λ0 so that \q\ — H log+(g) ^ λ implies \q\ < λo; if x ζ &δ,
if |ί| ^ T, and if \qt + ξi,n,x(t)\ ^ λ for some n, then | ^ | < Ao. Choose
successively λv λ2, . . . so that |g| ^ Â  and |gr| ^ λj+1 implies

\q\ + H log+(?) + Λ < |g'| - H \og+{q') j = 0, 1, 2, . . .

Then if a; ζ ^ and if \q{\ ̂  Afc, l^ ] ̂  Afc+1, we have

for all n and all \t\ ̂  J7. [We have introduced the notation qi,ntX(t)

From the formula (2.12) for ξitfltX(t)ί ηiintX(t)9 we see that, if |ί| ^ ϊ 7

and if \q{\ ̂  Â , then qitnjX{t) and Pi,n>x{t) depend only on t, on the
values of Pitn-i,xW> r between 0 and t, and on the values of qj,n~i,xM>
τ between 0 and t, for those ?"'s with \q^ ^ λk+v By induction, and using
the fact that qi,0,x{t) = q^ Pi,0,x{t) = ^ , we see that, if |g |̂ ^ λ0, and if
|ί| ^ T, then qitn,x(t) and pitn,x(t) depend only on £ and on those q/s
and £>/s with \qό\ ̂  An. Furthermore, from the continuity of F we see
that the (qi,n,x{t)> Pi,n,x(t))i a n < ^ hence ψ(xn(t))} are continuous functions
of these variables. (Here, we regard i/ a s a function on 2£ rather than on
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It is now an elementary exercise in the topology of [3?] to conclude

from these statements that ψ(Tι

nx) varies continuously with t and x for

|*| < T and x ζ \βtδ\

Corollary 3.4. The making (t, x) ι—> Tιx is a Borel mapping from

R x [£] to [£].
A

§ 4. Measures Concentrated on \?£\

If ρ is a probability measure on \3C~\, we let ρΛ denote the probability
measure on \9£\ (Λ) which is the image of ρ under the restriction mapping.
Specifying a probability measure on [W] (Λ) is equivalent to specifying,
for each n, a finite permutation-invariant measure on (Λ x R)n such that
the sum of the total masses of these measures is one. We say that ρ has
a Maxwellian velocity distribution with inverse temperature β if, for
each Λ, the component of ρΛ on (Λ x R)n has the form

e x P I - -t Σ Pi\ dPv . dpn

where qn

A is a permutation-invariant measure on Λn.

Proposition 4.1. Let ρ ^Jiγ\β\ For ρ to be concentrated on [3£] it is
sufficient (but not necessary) that the following two conditions both hold:

A. ρ has a Maxwellian velocity distribution (with some inverse tem-
perature β).

B. There exists a real number λ such that, for any interval [a, b) of
length at least one, and any n = 0, 1, 2, . . .,

a>ι) - 1) . . . (Nla,b) -n)^ [λ(b - α)]»+i . (4.1)

Moreover, we can put the estimates in a more quantitative form: There
exists a f

such that

exists a function ε(δ, β, λ) such that lim ε(<5, β, λ) = 0 for all (β, λ) and
δ—> oo

^ e(δ,β,λ)

whenever ρ satisfies A. and B.
Proof. Let P be a real number, and let

YltP = {x ζ \β£~\'> for some integer m there is a particle with

m ^ qί < m + 1 and \p{\ ^ P log+(m)};

Y2fP = [x ζ \βΓ\: for some integers m, j with 2j ^ log+(m), the interval

[m ~ j , m + j) contains more than 2 Pj particles}.

We will estimate ρ(Yχ9p) and ρ(Y2tP) and show that they both go to
zero as P goes to infinity; this will prove the proposition.
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Let ρm>n be the ρ measure of the set of configurations with precisely
n particles in [m, m -f- 1), and let

An elementary calculation showτs that the ρ measure of the set of con-
figurations having at least one particle in [m, m + 1) with velocity at
least P log+ (m) is

Σ ρ«.»[i - (i - Φ(Vβ:Piog+(m)))»]
0

log + (m)) j ? ρ m > n »
n = 0

Hence,
oo

ρ(l r

1 >p) ^ 2̂7 ^{^ There is a particle in [m, m + 1) with velocity
Wl = — OO

at least P log+ (m)}

Using the fact that φ(ξ) decreases more rapidly at infinity than e ^2/2

it is easy to verify that the right-hand side of this inequality goes to
zero as P goes to infinity.

To estimate the measure of Y2t P, we let ρw> u n denote the ρ measure
of the set of configurations having exactly n particles in the interval
[m — j , m + j), and we let

σm,j,k = / d ρ N[m-jfm + j) , (N[m^jfm + j) - 1) . . . (N[m-jtm + j) - h -f 1)

y nl

By condition B.?

It is straightforward to verify, using this inequality, that 8

8 The possibility of using such an identity to estimate particle number proba-
bilities was suggested to me by D. RUELLE.
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Thus, the measure of the set of configurations with more than 2 Pj par-
ticles in [m — j , m -j- j) is not greater than

n>2Pj ""

If P ^2λ, the ratio of succeeding terms in this sum is not greater than
1/2, so the sum is not greater than twice its first term. Using STIRLING'S

/ ep+λ λp \
formula, we see the sum is majorized by C I pp—I . Letting

f(P, λ) = ( — p ^ — j , Λve have

e(γ2,p)^ Σ Σ c[f(P,λ)]*t

Since lim f(P, λ) = 0, the right-hand side goes to zero as P goes to
P—>oo

infinity, so the proof of the proposition is complete.
Condition B. holds, in particular, if ρ has correlation functions of all

orders ρn (qv . . ., qn) and if there exists a constant λ such that

QniQv ' •) $n) ̂  λn (4.2)

for all n and all qlt . . ., qn. In fact, we have:

/ dρ N(a,b] (Nia>b] - 1) . . . (Nia)b] - n + 1)

= / dqlt . . ,dqnρn{qv . . ., qn) .

There are two cases in which inequalities of the form (4.2) are known to
hold:

i) ρ is a state obtained by taking the infinite-volume limit of the
grand-canonical ensemble at low activity9 [8].

ϋ) ρ is a state obtained by taking any infinite volume cluster point
of the grand-canonical ensemble for a system with a non-negative poten-
tial, at any value of the temperature and chemical potential.

In both these cases, ρ also has a Maxwellian velocity distribution and

is therefore concentrated on [&].
Case ϋ) requires some explanation. Suppose we have fixed a tem-

perature and a chemical potential, and suppose Φ is a non-negative
two-body potential. For any positive number m, let ρm be the measure
on \βΓ\ obtained from the grand canonical ensemble on [— m, m) by the
averaged product measure construction, and let ρm be the corresponding
measure obtained from the periodized grand canonical ensemble. The
measures ρm and ρm are translation invariant, and it may be seen that
they both have correlation functions satisfying (4.2) with λ equal to the
activity 3. Furthermore, / K.E.[Ofl) dρm and — s(ρm), and the corre-

9 The activity 5 corresponding to the inverse temperature β and chemical
potential μ is
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sponding quantities for ρm, are bounded if m stays away from zero. Hence,
by statement 5. of Proposition 2.15, {ρm : m ^ 1} and {ρm : m ^ 1} have
compact closures in ^Z/1 [$Γ\. Any cluster point of the net (ρm), or of the
net (ρw), has a Maxwellian velocity distribution and satisfies (4.2) with
λ = 3, and is therefore concentrated on [3Γ]. It is to such cluster points
that ii) refers. We will see in § 6 that, if Φ has compact support and has
a first derivative satisfying a Lipschitz condition, so that we can solve

the equations of motion with F (q) = — -r— Φ(q), then any cluster point

of the net (ρm) is invariant under the time evolution given by this F.

§ 5. Approximation by Space-Periodized Systems

In this section we show that, if we consider the time-evolution of an
infinite configuration x, but look only at those particles in some bounded
interval, we find a motion which is well approximated by the evolution
of a corresponding system which is space-periodized with respect to some
much larger interval. To be more explicit, we will show that, for any ψ
in 21, any x in \βC\ and any t, ψ(Ttx) = lim ψ{T\__a>b^x) as a, b go to
infinity in an appropriate way. Since the space-periodized evolution is
constructed by putting together infinitely many independent finite
systems, this result enables us to approximate infinite system by finite
ones. It therefore makes possible the use of the classical mechanics of
finite systems, notably of LIOUVILLE'S theorem and energy conservation,
to obtain information about the infinite system.

This approximation theorem will be proved as follows: we start from
the equations for a finite periodized system in the form given in §2.5,
Eq. (2.13). These equations are formally identical with the equations for
a non-periodized system, and we will study them in the same way. Thus,
we convert these equations to a non-linear evolution equation, which we
solve by successive approximations. By keeping track of the way the
estimates depend on the interval [—α, b) of periodization, we find that
the convergence of the solution by successive approximations is uniform
in a, b, provided that they are large enough and that one is not too much
larger than the other. Thus, all we have to do is to show that the nth
approximation for the periodized system is close to the n th approxima-
tion for the original infinite system. Now the evolutions of the two
systems differ only by "boundary effects" having to do with the behavior
of particles near the ends of the periodicity interval. Using the finite
range of the forces, and bounds on the distances particles can travel, we
can control the propagation of these boundary effects and show that, for
any n and any finite interval (α, β), the ?ι-th approximations to the
motion of the particles inside (α, β) for the periodized system and the
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non-periodized system are identical, provided that the ends of the
periodicity interval are far enough from the origin.

The details of the proof will consist primarily of the rewriting of the
estimates of [1] in the slightly different context of finite periodized
systems. We will frequently have to impose some restrictions on the
periodicity intervals we consider, and it is convenient to have an ab-
breviation for this set of restrictions. We will say that an interval
[- a, b) is allowable if a ^ ee, b ^ ee, a + b ^ 2E, and 1/2 <: log (a)/log (6)
^ 2. (No special importance should be assigned to the number ec; it is
simply a conveniently large number. A similar remark holds for the
bounds on log(α)/log(δ).)

Let [—a, b) be a finite interval, and let x = (p^ p1; . . .; qni pn) be
a configuration of particles in [—a, b). We may regard « a s a configura-
tion in R which happens to be finite and to be contained in [— a, b); with
this convention we will use the definitions given in § 2.5 for \x\, ύ#x, || \\x,

m\\ \\x, etc. If x(t) denotes the solution of the Eqs. (2.13) with x(0) = x,
we write x(t) —- x + ζx(t), with ζx(t) in <2/x. The differential equations
become

^ Λ x , a + b(ζx(t)) (5.1)

where

Λx,a + b(ζ) = (Pi + Vi, Σ Fa+h(qi + ξ< - q3- - ξ,)) . (5.2)

The following lemma generalizes Lemma 3.4 of [1]:
Lemma 5.1. There exists a constant K such that, for all allowable inter-

vals [— α, b)} for all finite configurations x = (qv pλ; . . . qn, pn) in [— α, b)}

for all closed intervals [α, β] C [—»9 &], for all λ ^ 1, and for all n-tuples

of numbers (£4 ) ^ ^ sup -—^— ^ λ, we have the inequality:

# {i * h tβ_m { /
^ |.τ| {^ - α + i Γ λ [ l o g + ( λ ) + l o g + ( | α | v \β\)]

Proof. By Lemma 3.4 of [1], we have an estimate of the desired form
on # {j : qj + f̂  ζ [α, β]}. Thus, we Λvant to consider *̂'s such that

aj + ζj ί [&> β] -\- k (a -\- b) for some H O . Since [oc, β] C [~ &, b], we
must at least have qό + ξό $ {—a, b). But |#3 | ^ ay b, so ^ must be
within a distance 2 log+(α v b) of the boundary of (— a, b), and the num-
ber of such q/s is not greater than 2 \x\ λ log+ (a v b). On the other hand,
the interval [α, β] + h{a -\- b) must also come within a distance
λ log+(α v b) of the boundary of (— α, δ), and this implies that

|α| v |j8| ^ α Λ b - λ log+(α v 6) .
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Using the inequalities
log+(α v b) ^ 2 log+(α Λ b)

and

γlog+(a v b) ~ log+(log+(α v b)) ^ ~^-log+(a v 6)

(which follows from, a v 6 ^ ee), and also using the sub-additivity of
log+, we get

log+(|α| v |j8|) ^ log+(α Λ b) - log+(λlog+(α v b))

^ γ^+(a v &) - log+(λ) - log+(log+(α v 5))

Hence,

so the proof of the lemma is complete.
Proposition 5.2. There exist constants G, D such that for all alloiυable

[—a, b), all configurations x in [—a, b), and all ζ in <&Xi we have

The proof of this proposition, using Lemma 5.1, is nearly identical with
the proof of Proposition 3.3 of [1]; we omit the details.

Lemma 5.3. Let a real number d be given. Then there exists a constant B
such that, for all α > 0 there exists an m0 such that, for all m ^ m0, all
allowable [—a, b), all configurations x in [— a, 6), and all ζ, ζ' in (&x with
Hίll ^ d, HίΊI ^ d, we have:

m\\£«,a + i>(ζ) - A x , a + b(ζf)\\x g B \x\ log+(m)κm\\ζ - ζ% .

The proof is essentially the same as that of Lemma 4.1 of [1].
We now define:

o

Proposition 5.4. There exist functions h(d, T) and έ(n, m, δ, T), with

lim ε(n,m,δ, T) - 0
n—»σo

/or all m, δ, T, such that:

J . I U
/or α?i w, m, whenever [—a, b) is an allowable interval, x is a configuration
in [—a, b) with \x\ ̂  δ, and \t\ 5j T.
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The proof is essentially the same as that of Proposition 4.2 of [1].
We now state the principal result of this section:
Proposition 5 5. Let γ > 0, δ, and T be given, and let ψ belong to 2ί.

Then there exists a real number A such that, whenever a ^ A, b ^ A.
1/2 <: log(α)/log(δ) ^ 2, we have

if x ζ [iδ] and \t\ ^ T.
Proof. I t suffices to prove the proposition for ψ of the form

φ(Sfv . . .,Sfk), with φ a bounded continuous function on Rn and
fv . . ., fk in Jf\. Choose m so that f{{q, φ) — 0 for all i if ]g| ^ m.

For any labelled configuration x belonging to 3C and any finite interval
[ — a, b), let x be the part of x in [— a} b). [The index set for the finite
labelled configuration x may not be of the form (1, 2, 3, . . ., n), but this
is inessential.] Note that \x\ g |a?|. Using Propositions 2.18 and 5.4, we
see that there is a constant H such that

(5.3)

whenever [— a, b) is allowable, \x\ ̂  δ, and |ί| ^
Choose m0 so that

|g| — 2 i/ log+ (g) ^ m implies |g| ^ m0 . (5.4)

Now these inequalities imply that, if [— a, b) is allowable, if \x\ ̂  δ, if
|ί| ^ ^ ? and if a ^ m, b JΞ> m, the sums defining Sfj(Ttx) and
8fj(T[_a)b^x) can be restricted to those ί's with |gt | ^ m0. The number
of terms in such a sum is not greater than 2 δm0, and (5.3) enables us
to put an upper bound on the velocities of the particles entering the sum.
Hence, the fj, and also φ, are uniformly continuous on the relevant ranges
of variables. To prove the proposition, then, it will suffice to prove the
f ollowing assertion: For all m0, δ, T and ε > 0, there exists a real number
A > m0 such that, if 1/2 g log(α)/log(δ) ^ 2, if a ^ A, b ^ A, if |α| ^ <5,
and if |*| ^ T7, then

Again using Propositions 2.18 and 5.4, we see that there exists n
such that

whenever |ί| g T, \x\ ̂  δ, and [— a, b) is allowable. Comparing these
inequalities with (5.5) shows that it suffices to find, for any given n,
a constant A ^ m0 such that, whenever [— α, 6), t, x are as above, with
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a ^ A, b ̂  A, we have

for all i with |^ | ^ m0.
We choose successively mv m2, . . ., mn so that, if |g| ^ m€, \q'\ ̂  ^ + i ,

|g| + H log(g) + Λ < \q'\ -211 log+(q') . (5.7)

We assert that we can take A = mn. We will prove (5.6) by showing by
induction that, for [— α, b), t, x as above, for a ^ mn and b ̂  mn, and
for 0 ^ /ύ ̂  n, if |g |̂ ̂  mn-k> then

This is clearly true for & = 0 since everything is then identically zero.
Suppose it is true for k we will prove it for k + 1 Now

%i,k+i,x(t) = f dτ[Pi + ήi,k,x(τ)] > (5.9)
o

_ f r .

and corresponding Eq. (2.12) hold for ξi,k+ι,x{t) and ^,fc+i,a:(0 ^
|ft| ^ m ^ j . j , then |g |̂ ̂  mn_fc, so fjί)Jc^(τ) = ηitkίX(τ)hy the induction
hypothesis. Hence, by (5.9) and the first part of (2.12), 1

From the inequalities (5.3) and (5.7) it follows that, if \qt\ < mn_k_1,
the sums over j in (5.10) and in the second part of (2.12) may be restricted
to those fs with \q^\ < mn-k> a n <^ Fa+b may be replaced by F. But from
the induction hypothesis

for all j with | ^ | 5j mn_k. This proves the induction step (5.8) and
therefore the proposition.

§ 6. Equilibrium States

In this section, we prove two propositions which imply that many
infinite-volume limits of thermodynamic ensembles are invariant under
the time-evolution defined by the corresponding potentials.

Proposition 6.1. Let (αα) be a net of positive numbers, with lim aa — oo.
α

A

For each α, let ρα be a probability measure on \βΓ\ tvhich is invariant under
Tr-a ,a y Suppose that

lim ρ α (CM = 0

uniformly in oc, and that
lim f dρ^ψ^ ρ(ψ)
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for all ψ in 21. Then the state ρ of $1 is a probability measure concentrated
on [$?] and is invariant under T*.

Proposition 6.2. Let (aΛ) be a net of positive numbers, with lim ax = oo.
α

For each a, let ρα be a probability measure on \β£\ which is invariant under
1 a<*

T\_a a y Let ρα = -£— ί ds (τs ρα) and suppose that

"lim &(C [ £ ] ) = <>
o—> oo

uniformly in oc and that
limfdρx<ψ = ρ(ψ)

α

for every ψ inQt. Then the state ρ of 21 is a probability measure concentrated

on \9£~\ and is invariant under Tt.
We will give the details only for Proposition 6.2; the proof of Pro-

position 6.1 is similar but less complicated. Let us first dispose of showing
Λ Λ

that ρ is concentrated on \β£\ Choose δ so that ρ α (Cf^l) = 1 — £ f°Γ

all α. Since ρ is a measure on the spectrum of 21, and since, by Proposi-

tion 3.1, [&s\ is a compact subset of the spectrum of 01, we have:

ρ([dδ]) = inf {ρ(ψ) : ψ ζ 21, ψ ̂  0, ψ ̂  1 on [£δ]} .

But for any such ψ, ρκ(ψ) ̂  1 — ε for all oc, so ρ(ψ) ̂  1 — ε; hence,

^ 1 — £• We can make this argument for any ε > 0, so

To prove the rest of the proposition, it suffices to show that

fdρψoT^fdρψ (6.1)

for all ψ in 21 with \\ψ\\ g 1. The first thing we want to show is that

JdρψoTt = limf dρx ψ o T* . (6.2)
α

This is not immediate since ψ o Tι is not in 21. However, we can argue

as follows: Let δ be chosen large enough so that ρα(C \β£δ\) ^ ε f° r all α.

By Proposition 3.3, ψ o T* is continuous on [ ^ ] . Since [^] is compact

in the spectrum of 21, the Tietze extension theorem asserts that there

exists ψ in 21 with \\ψ\\ g 1, such that ψ = ψ o Tb on [ ^ ] . Then

ifdρ^ψoT* -<φ)\ ^ 2ε
for all α, and similarly

ifdρiψoTt-ψ)] ^ 2 ε .

Hence, whenever α is large enough so that \ρ(ψ) — ρa(ψ)\ ^ ε> w e have

|/ dρ(ψ o T*) - f dρx(ψ o T*)\ ̂  \f dρ(ψ o T* - ψ)\

so (6.2) is proved.
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Next observe that Eq. (2.3), applied with / equal to the characteristic

function of \β£\ implies that τ s(ρα) is concentrated on [β] for almost

all (and therefore for all) s between — ax and au. Also notice that:

(lot

fde*Ψ = -iϊ f dsfdρxψoτs

= 2 ^ / d
— Cloc

doc

= Ύ^ f
—«α

-JdQa(WoTt)+-±- fdsfdρ*

• [ψ o 2* ί

[_α α + β ί V f β ) - f o f ] o r r

[The first equality is just the definition of ρα; the second follows from the
in variance of ρκ under T\_a a \; the third follows from:

and the fourth uses Eq. (2.3) with / = ψ o TK]

Let 6α = sup {s < aa : 2 log (αα — s) S log (αα + «)} then lim - ^ = 1,

and proving (6.1) reduces to proving:

" φ f μ J (6.3)

Also, lim(αα - 6J = oo, and, if |s| ^ 6α, 1/2 <: log(αα - 5)/log(αα + θ) ^ 2.
α

We are therefore in a position to apply Proposition 5.5. For any δ,
define χδ on \β£~\ by

1 Λ

χδ = -y on [# d ]

Then for

Hence,

l i t

sufficiently large α

sup ψ o T\

1
α s u P 2αα

f"d
-bcc
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for all δ. Since lim / dρaχδ = 0 uniformly in α, (6.3) is proved and the
δ—»σo

proof of the proposition is complete.
We now describe two applications of these propositions to proving

that thermodynamic limit states are invariant under the time evolution.

Assume that F(q) — — -j- Φ(q), where Φ is even, of compact support,

and stable. We choose an inverse temperature and a chemical potential,
and we construct, for every real number m ^ B which is large enough
so that the P-stability inequality holds, the periodized grand canonical
ensemble on [—m, m]. Recall that, in our terminology, this is a proba-
bility measure on \β£~\ ([— m, m)). Let ρm be the measure on [#*] obtained
from this measure by the product measure construction. By LIOUVILLE'S
theorem and energy conservation, ρm is invariant under ί*[_m>m).

A straightforward adaptation of the arguments in [8] shows that, if
the activity is sufficiently small, the measures ρm:

i) have correlation functions satisfying a bound of the form (4.2),
where λ may be taken to be independent of m

ϋ) converge as m goes to infinity to a translation-invariant measure
ρ on [#•].

Moreover, ρ is the same state as is obtained in [8] as the infinite
volume limit of non-periodized grand canonical ensembles. The dis-
cussion in this reference is in fact formulated in terms of correlation
functions and not in terms of measures, but, because of the bound (4.2),
statements about correlation functions may easily be translated into
statements about measures10.

Taking into account Proposition 4.1, we see that

lim ρ m ( C M = 0
<5->co

uniformly in m. Hence, Proposition 6.1 applies and shows that ρ is
invariant under the time evolution.

Now assume that Φ is non-negative, rather than merely stable, and
consider ρm, the average of ρm over translations, for any fixed values of
the inverse temperature and chemical potential (i.e., not necessarily for

10 If a measure ρ on the space of locally finite position configurations has
correlation functions ρ satisfying (4.2), then the measure may be recovered from
the correlation functions as follows: Let A be a bounded Borel subset in Rt and
let E be a symmetric Borel subset of Λn. The ρ-measure of the set of all configura-
tions having precisely n particles in A and those n particles distributed so that
their co-ordinates form a point of E is

— γ Σ Ί fdq1,...,dqn J\ dq[, . . ., dq'5 ρn+i(q19 . . ., qH9 q[, . . ., q ) .

This formula, which does not seem to appear in the literature, was pointed out
to me by D. RXJELLE.
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small activity). By the last paragraph of § 4, {ρm} has compact closure
in JP [#] and

Hm ^
o—>oo

uniformly in m. Hence, Proposition 6.2 implies that any cluster point
of the net (ρm) is invariant under the time evolution.

§ 7. Conservation of Entropy

In this section, we will assume that the interparticle force F is of the

form — -ξ—Φ(q), where Φ is even, of compact support, and stable, and

we will consider probability measures ρ on \βC\ which are translation

invariant and concentrated on \βC\ and which have, in addition,

J dρN\0>1) <oo , f dρK.E.[Ofl) < oo .

For such a measure ρ, we denote by ρ* the measure ρ o T%. The main
result of this section is the following:

Proposition 7.1. Let ρ, F be as above. Then, for any t,

so s(ρt) is defined, and we have:

Hρ*) ^ HQ)

This would immediately imply that s(ρt) = s(ρ) if we knew that

we will also prove this, but under more restrictive assumptions on the
potential Φ.

In outline, the proof of Proposition 7.1 goes as follows:
1. We consider, instead of ρf, the measure ρ^ = ρ o T\_n}U), which

should be a good approximation to ρf for large n, by Proposition 5.5.
Although it need not be translation invariant, ρι

n is periodic with period
2n.

2. Using conservation of energy for the periodized system, together
with the P-stability of the potential, we obtain a bound

valid for large n. In particular s(ρι

n) is defined for such n.
3. Using LIOTJVILLE'S theorem, we show that
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4. Denoting by ρ^ the average of ρ^ over translations

we have by Corollary 2.17 s(ρ^) = β(ρ)

f dρίK.E.l(hl) = J-Jκ.E.ι_n,n) dρi £ M .

5. Finally, using Proposition 5.5, we prove

Km ρι

n == ρ*
n—>σo

which implies by a semi-continuity argument:

/ K.E.[Otl) dρ*^ lim inf / K.E.[Oιl) dρ^ M

u

β ( ρ * ) ^ Π m s u p s ( ρ ι

n ) = s{ρ).

n

We now proceed to fill in the details. Step 1. merely defines the
notation. For step 2., we define the energy in [— n, n) for the periodized
interaction as:

= 4" Σ

where (g? , >̂e ) is a representative of x. By conservation of energy for the
periodized system,

We will prove that E[_ni7l) is ρ-integrable and estimate its integral.
By the translation invariance of ρ,

/ dρ K-E.^^ = 2njdρ K.E.ί0>1)

on the other hand, if K is an upper bound for |Φ|, and if J is an integer
not smaller than R, then

^-^, jζ n—l J

~γ Σ Σ N[i,i+l)

where i -f j means that integer in [—n,n) which is equal to i + j modulo
2n. Applying the Schwarz inequality and translation invariance, we get

fdρ PJE.i.n,n) g K(2J+ 1) n JdρNf0Λ).
Hence,

/ dρi E^n,n) ^fdρ E{_n>n) o Φ\_n_n) = fdρ E{_n,n) £ 2n M' ,

where Mf does not depend on n.
20 Commun. math. Phys.,Vol. 11
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Now suppose that n is large enough so that

Σ

for all m, ql9 . . ., qm. Then

But we also have

/ dρi N{_n> n) = f dρ N{_n>n) o Tf_n>%) = / dρ iVΓ

[_n,n)

= 2nfdρNiQtl)

and therefore

fdρt

nK.E.i_ntn) ^ f dρi [E{_ntn) + B N{_ntn)] ^ 2rc Jf

where again M does not depend on n. This finishes the proof of 2.
To prove step 3., it suffices, by statement 2. of Proposition 2.15, to

prove that

for all odd integers j . LIOIJVILLE'S theorem asserts that the measure
σ[-jn,jn) i s invariant under T\_ntny, our statement now follows from
Proposition 2.13.

Step 4. is a straightforward application of Corollary 2.17. For step 5.,
we have first to prove

Km - L f ds fdρ ψoτ8o Tf _n>n) = fdρψoT* (7.1)

for all ψ in 21. Using the equation

τ s o T[_nin)= f[_n +

and the translation invariance of ρ, we have

1 Γ 7 Γ 7
Λ — I ds I dρ w<

—n
1

= -s- da dρ ψ o T[_n(1_a)na + a)) .
- 1

By Proposition 5.5, if — 1 < α < 1,

Jirn^ ψ o ΐΓf_n(i_α),n(i+α)) = V ° Tt

on [«^] hence, applying the dominated convergence theorem twice gives
(7.1).

To finish the proof of step 5., and hence of the proposition, we have
only to show that

[ K.E.TQ I) dρ1 <S M
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then the statement about the mean entropy will follow from statement 6
of Proposition 2.15. Because ρ* is translation invariant, K.E.(Ofl)
— K.E.[Qil) almost everywhere, so it will suffice to prove that

ρι-+fK.E.iQΛ)dρ

is a lower semi-continuous function on Jl1 \3C\ Let {χ^ be an increasing
sequence of non-negative continuous functions on R converging point-

wise to the characteristic function of (0,1), and let fj(q9 p) =

Then ψj — (Sfj) A j is an increasing sequence in 21 such that

7

for all ρ in Jί1 \β\ Since ρ ι—• ρ (ψj) is continuous, our assertion is proved.
Next, we take up the question of the integrability of NfOtl^ with

respect to ρf.
Proposition 7.2. Let ρ be as in the first paragraph of this section;

assume that F(q) = — -^— Φ(q), where Φ has compact support and is of

the form Φx -f Φ a , with Φτ and Φ 2 both even, Φ± P-stable, and Φ2 non-
negative and bounded away from zero on a neighborhood of the origin. Then

fdρ*N%tl)<oo.

Proof. We will keep the notation of the proof of the preceding pro-
position. Since ρ* is translation invariant,

Arguing as in the proof of step 5. of the preceding proposition, we see
that ρ 1—• f dρ iVfo,i) ^s lower semi-continuous on *Jlx [β"\ and therefore
that it suffices to obtain an upper bound on

2~~ Σ f dξin Nfjj +1) which is uniform in n for large n.

By Eq. (2.3),
2n

Kί—1 /» Ί /» Λ 71—1=± f
2n . _ 1

0 " ^ ~ n

For any value of s between 0 and 2 n, some of the intervals (j — s, j — s -f- 1)
will be contained in (—n,n) and some in (—3%, —n). One, at most, will
contain — n. Ίi j — s < — n <j — s -\- 1, we can estimate

- / dρi (N(j_Sf_n) + N^n>j_8+1))^

20*
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From these two remarks, and the periodicity of ρι

n, we see that to

prove the proposition it will be sufficient to show that there is a con-

stant K such that, whenever n is large enough,

for all pairwise-disjoint collections {Iv / 2 , . . .} of intervals of unit length

contained in [—n,n). Using the conservation of energy and particle

number for the space-periodized evolution, we can get such an estimate

if we can find constants C, Cf such that

Σ N% ^ C Ei-'^ + C'Nί~n,n)
j

whenever n is large enough and {/l5 / 2 , . . .} is as above.

From the P- stability of Φ1 ? we have

2 J t _ n f W ) (x) ^ - B N{_n,n) (x) + Σ &2,2n(<li - Qi)

Qi,Qj€ί—n,n)

(where (qi} p{) is a representative of x).

Since Φ2 is non-negative, we can omit any terms we like from the

sum on the right we keep only those pairs with qί} qό both belonging to

the same one of the /Λ

Js. The proposition now follows from the fact [9]

that there exist B', B"', with B" > 0, such that, for all m and all

qv . . .,qmin [0,1],

Σ Φ2 to - ft) ^ - B'm + B"m* -Σ
j
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