Statistical Mechanics of a One-Dimensional Lattice Gas

D. RUELLE

I.H.E.S., 91. Bures-sur-Yvette

Received April 30, 1968

Abstract. We study the statistical mechanics of an infinite one-dimensional classical lattice gas. Extending a result of VAN HOVE we show that, for a large class of interactions, such a system has no phase transition. The equilibrium state of the system is represented by a measure which is invariant under the effect of lattice translations. The dynamical system defined by this invariant measure is shown to be a K-system.

1. Introduction and Statement of Results

Let \mathbb{Z} be the set of all integers ≥ 0 . We think of the elements of \mathbb{Z} as the sites of a one-dimensional lattice, each site may be occupied by 0 or 1 particle. If *n* particles are present on the lattice, at positions $i_1 < \cdots < i_n$, we associate to them a "potential energy"

$$U(\{i_1, \ldots, i_n\}) = \sum_{k \ge 1} \sum_{\{j_1, \ldots, j_k\} \subset \{i_1, \ldots, i_n\}} \Phi^k(j_1, \ldots, j_k) .$$
(1.1)

The "k-body potential" Φ^k is a real function of its arguments $j_1 < \cdots < j_k$ and is assumed to be translationally invariant i.e., if $l \in \mathbb{Z}$,

$$\Phi^{k}(j_{1}+l,\ldots,j_{k}+l) = \Phi^{k}(j_{1},\ldots,j_{k}).$$
(1.2)

Let $S \subset \mathbb{Z}$ and K^S be the product of one copy of the set $K = \{0, 1\}$ for each point of S; K^S is the space of all configurations of occupied and empty sites in S; K^S is compact for the product of the discrete topologies of the sets $\{0, 1\}$. Let $\mathscr{C}(K^S)$ be the Banach space of real continuous functions on K^S with the uniform norm and $\mathscr{M}(K^S)$ its dual, i.e. the space of real measures on K^S .

If $S \subset T \subset \mathbb{Z}$ we may write

$$K^T = K^S \times K^T \backslash S \tag{1.3}$$

and there is a canonical mapping $\alpha_{TS}: \mathscr{C}(K^S) \to \mathscr{C}(K^T)$ such that

$$\alpha_{TS} \varphi(x_S, x_{T \setminus S}) = \varphi(x_S) . \tag{1.4}$$

We denote by α_{ST}^* the adjoint of α_{TS} :

$$\alpha_{ST}^* \mu(\varphi) = \mu(\alpha_{TS}\varphi) . \tag{1.5}$$

19 Commun. math. Phys., Vol. 9

D. RUELLE:

It will be convenient to use a functional notation for measures, writing $\mu(x) dx$ instead of $d\mu$. We have then

$$\mathbf{x}_{\mathbf{S}\,\mathbf{T}\,\boldsymbol{\mu}}^{*}(x_{\mathbf{S}}) = \int dx_{\mathbf{T}\setminus\mathbf{S}\,\boldsymbol{\mu}}(x_{\mathbf{S}}, x_{\mathbf{T}\setminus\mathbf{S}}) \,. \tag{1.6}$$

Let $(a, b] = \{i \in \mathbb{Z} : a < i \leq b\}$ be a finite interval of \mathbb{Z} . The *Gibbs* measure $\gamma_{ab} \in \mathscr{M}(K^{(a,b]})$ associates to each point $x = (x_{a+1}, \ldots, x_b)$ of $K^{(a,b]}$ the mass

$$\gamma_{a\,b}(x) = e^{-U(S(x))} \tag{1.7}$$

where¹

$$S(x) = \{i \in (a, b] : x_i = 1\}.$$
(1.8)

The measure γ_{ab} is positive, has total mass

$$Z_{b-a} = \int \gamma_{a\,b}(x) \, dx = \sum_{x_{a+1}=0}^{1} \cdots \sum_{x_{b}=0}^{1} \gamma_{a\,b}(x) \tag{1.9}$$

and the corresponding normalized measure is

$$\bar{\gamma}_{a\,b} = Z_{b-a}^{-1} \, \gamma_{a\,b} \,.$$
 (1.10)

Theorem 1. Let \mathscr{E} be the space of sequences $\Phi = (\Phi^k)_{k \ge 1}$ such that

$$\sum_{b>0} \sum_{0 < i_1 < \cdots < i_l} i_l |\Phi^{l+1}(0, i_1, \ldots, i_l)| < +\infty$$
(1.11)

if $\boldsymbol{\Phi} \in \mathscr{E}$, then

l

(i) the following limit exists and is finite

$$P(\Phi) = \lim_{b \to a \to \infty} \frac{1}{b - a} \log Z_{b - a}$$
(1.12)

it is continuously differentiable on any finite dimensional subspace of \mathscr{E} . (ii) for every finite $S \subset \mathbb{Z}$ there exists $\rho_S \in \mathscr{M}(K^S)$ such that

$$\lim_{a \to -\infty, b \to \infty} \alpha^*_{S,(a,b]} \, \bar{\gamma}_{a\,b} = \varrho_S \,. \tag{1.13}$$

There is a measure $\varrho \in \mathscr{M}(K^{\mathbb{Z}})$ such that

$$\varrho_S = \alpha_S^* {\mathbb{Z}} \, \varrho \tag{1.14}$$

for all finite $S \in \mathbb{Z}$, and ϱ depends continuously on Φ on any finite dimensional subspace of \mathscr{E} for the vague topology of measures².

This theorem expresses that a thermodynamic limit (infinite system limit) exists for the statistical mechanics of a one-dimensional lattice system if the condition (1.11) is satisfied. Furthermore the state of the infinite system, described by the measure ϱ , depends continuously on the temperature and chemical potential, which means that no *phase transi*-

 $\mathbf{268}$

¹ It is customary to write in (1.7) instead of U(S) the expression $\beta(-n\mu+U'(S))$ where β^{-1} is the *temperature*, μ is the *chemical potential* and U' is computed by replacing $\sum_{k\geq 1} by \sum_{k>1} in (1.1)$. For notational convenience we absorb here $-\mu$

² I.e. the w*-topology or the weak topology of $\mathscr{M}(K\mathbb{Z})$ in duality with $\mathscr{C}(K\mathbb{Z})$.

tion can occur³; the system remains a "gas". If $\Phi^{l+1} = 0$ for l > 1, then (1.11) becomes

$$\sum_{i>0} i |\Phi^2(0,i)| < +\infty.$$
 (1.15)

This condition ensures that the energy of interaction of all particles at the left of a point of \mathbb{Z} with all the particles at the right is bounded⁴.

Given $S \in \mathbb{Z}$, the translation $T^i: i \to i + l$ defines a homeomorphism of K^S onto K^{S+i} :

$$T^{l}(\ldots, x_{-1}, x_{0}, x_{1}, \ldots) = (\ldots, x_{-l-1}, x_{-l}, x_{-l+1}, \ldots)$$
(1.16)

and if $f \in \mathscr{C}(K^S)$, $\mu \in \mathscr{M}(K^S)$ we define ⁵ $T^{l}f \in \mathscr{C}(K^{S+l})$, $T^{l}\mu \in \mathscr{M}(K^{S+l})$:

$$T^{i}f(x) = f(T^{-i}x), \quad T^{i}\mu(x) = \mu(T^{-i}x)$$
 (1.17)

so that

$$\mu(T^{l}f) = \int dx \,\mu(x) \,f(T^{-l}x) = \int dx \,\mu(T^{l}x) \,f(x) \approx T^{-l}\mu(f) \qquad (1.18)$$

Since the measure ρ is visibly *T*-invariant in $\mathscr{M}(K^{\mathbb{Z}})$, the triple $(K^{\mathbb{Z}}, \rho, T)$ is a dynamical system⁶.

Theorem 2. The dynamical system $(K^{\mathbb{Z}}, \varrho, T)$ is a K-system.

This implies that the measure ρ is ergodic and satisfies a "cluster property" (see Sec. 2) as one expects for a gas.

2. Proof of Theorems 1 and 2

Let $\mathbb{N}^* = \{i \in \mathbb{Z} : i > 0\}$ and $K_+ = K^{N^*}$. For every integer $m \ge 0$ we may write

$$K_{+} = K^{(0,m]} \times T^{m} K_{+} . \qquad (2.1)$$

In particular if $x \in K_+$; then $(0, x) \in K_+$, $(1, x) \in K_+$. We let $F_{\phi} \in \mathscr{C}(K_+)$ be given by

$$F_{\Phi}(x) = \exp\left[-\sum_{l \ge 0} \sum_{0 < i_1 < \cdots < i_l} x_{i_1} \dots x_{i_l} \Phi^{l+1}(0, i_1, \dots, i_l)\right]$$
(2.2)

where $x = (x_1, \ldots, x_i, \ldots) \in K_+$, $x_i = 0$ or 1 for each i > 0. The continuity of F_{ϕ} on K_+ is ensured by (1.11). A mapping \mathscr{L}_{ϕ} of $\mathscr{C}(K_+)$ into itself is defined by

$$\mathscr{L}_{\Phi}f(x) = f(0, x) + F_{\Phi}(x) f(1, x)$$
(2.3)

³ This result was known when Φ has finite range, i.e. when there exists $L < +\infty$ such that $\Phi^{l+1}(0, i_1, \ldots, i_l) = 0$ for $i_l > L$ (hence for l > L). In that case $P(\Phi)$ is real analytic on finite dimensional subspaces of \mathscr{E} (is this true also here ?). A generalization of this result exists to continuous systems with a "hard core", see VAN HOVE [5].

⁴ If $\Phi^2 \leq 0$ and (1.15) is violated, the existence of a phase transition has been conjectured by M. FISHER [2] and M. KAC (private communications). I am indebted to M. FISHER for correspondence on this point.

⁵ We let formally $d(T^{i}x) = dx$.

⁶ The notions of dynamical systems and of K-system are discussed in ARNOLD and AVEZ [1] and JACOBS [3]. 19*

269

D. RUELLE:

its adjoint $\mathscr{L}_{\phi}^{*}: \mathscr{M}(K_{+}) \to \mathscr{M}(K_{+})$ is given by

$$\begin{cases} \mathscr{L}^*_{\varPhi} \mu(0, x) = \mu(x) \\ \mathscr{L}^*_{\varPhi} \mu(1, x) = F_{\varPhi} \mu(x) . \end{cases}$$
(2.4)

Theorem 3. (i) For every $\Phi \in \mathscr{C}$ there exist $\lambda_{\Phi} > 0$, $h_{\Phi} \in \mathscr{C}(K_+)$, $v_{\Phi} \in \mathscr{M}(K_+)$ such that $h_{\Phi} > 0$, $v_{\Phi} \ge 0$, $v_{\Phi}(1) = v_{\Phi}(h_{\Phi}) = 1$ and ⁷

$$\mathscr{L}_{\varPhi}h_{\varPhi} = \lambda_{\varPhi}h_{\varPhi} \tag{2.5}$$

$$\mathscr{L}^*_{\phi} \nu_{\phi} = \lambda_{\phi} \nu_{\phi} . \tag{2.6}$$

(ii) If $f \in \mathscr{C}(K_+)$ the following limit

$$\lim_{n \to \infty} \left\| \lambda_{\overline{\phi}}^{-n} \, \mathscr{L}_{\phi}^{n} f - v_{\phi}(f) \, h_{\phi} \right\| = 0 \tag{2.7}$$

holds uniformly for Φ in a bounded subset of a finite dimensional subspace of \mathscr{E} .

(iii) If $\mu \in \mathcal{M}(K_+)$ the following limit

$$\lim_{n \to \infty} \lambda_{\phi}^{-n} \mathscr{L}_{\phi}^{*n} \mu = \mu(h_{\phi}) \nu_{\phi}$$
(2.8)

holds for the vague topology of $\mathcal{M}(K_+)$.

(iv) On any finite dimensional subspace of \mathscr{E} , λ_{Φ} is continuously differentiable, h_{Φ} is continuous for the uniform topology of $\mathscr{C}(K_+)$, v_{Φ} is continuous for the vague topology of $\mathscr{M}(K_+)$.

This theorem will be proved in Sec. 3., here we use it to establish the results announced in Sec. 1. For notational simplicity we shall often drop the index Φ from F, \mathscr{L} , \mathscr{L}^* , λ , h, ν .

Lemma. Let us write

$$L = \lambda^{-1} \mathscr{L}, \quad L^* = \lambda^{-1} \mathscr{L}^*.$$
 (2.9)

(i) If $\mu \in \mathcal{M}(K_+)$, then

$$\sum_{n_{1}=0}^{1} \cdots \sum_{n_{l}=0}^{1} L^{* l} \mu(n_{1}, \ldots, n_{l}, x) = L^{l} \mathbf{1}(x) \cdot \mu(x) .$$
 (2.10)

(ii) If $f \in \mathscr{C}(K_+)$, then

$$\nu \cdot \alpha_{N^*, N^* + l} T^l f = L^{*l} (\nu \cdot f) . \qquad (2.11)$$

⁷ For every finite $S \subset \mathbb{N}^*$ let

$$\lim_{m\to\infty}\alpha^*_{S,(0,m]}\bar{\gamma}_{0m}=\nu_S$$

One can show that ν_{Φ} defined by Theorem 3 (i) is such that

$$v_S = \alpha^*_{SN^*} v$$

The measure ν_{Φ} describes thus the state of a system occupying the semi-infinite interval $(0, +\infty) = \mathbb{N}^*$.

 $\mathbf{270}$

We prove (i) by induction on l:

$$\sum_{n_1} \cdots \sum_{n_{l+1}} L^{*\,l+1}\,\mu(n_1,\ldots,n_{l+1},x)$$

$$= \sum_{n_{l+1}} L^l\,\mathbf{1}\,(n_{l+1},x)\cdot L^*\mu(n_{l+1},x)$$

$$= L^l\,\mathbf{1}\,(0,x)\cdot L^*\mu(0,x) + L^l\,\mathbf{1}\,(1,x)\cdot L^*\mu(1,x) \qquad (2.12)$$

$$= L^l\,\mathbf{1}\,(0,x)\cdot\lambda^{-1}\mu(x) + L^l\,\mathbf{1}\,(1,x)\cdot\lambda^{-1}F(x)\cdot\mu(x)$$

$$= L^{l+1}\,\mathbf{1}\,(x)\cdot\mu(x).$$

To prove (ii) it suffices to apply repeatedly the following identity

$$\begin{bmatrix} \nu \cdot \alpha_{N^*, N^*+1} & Tf \end{bmatrix} (n_1, x) = \nu(n_1, x) \cdot f(x) = L^* \nu(n_1, x) \cdot f(x) \\ = \begin{cases} \lambda^{-1} \nu(x) \\ \lambda^{-1} F(x) & \nu(x) \end{cases} \cdot f(x) = [L^* (\nu \cdot f)] (n_1, x)$$
 (2.13)

Let $\delta \in \mathscr{M}(K_+)$ be the unit mass at $x_0 = (0, \ldots, 0, \ldots)$. It is readily checked that

$$\gamma_{0m} = \alpha^*_{(0,m], \mathbf{N}^*} \mathscr{L}^{*m} \delta .$$
(2.14)

By (1.6), (1.9) we have

$$Z_m = \int \mathscr{L}^{*m} \,\delta(x) \, dx = \mathscr{L}^{*m} \,\delta(1) = \delta(\mathscr{L}^m \, 1) \tag{2.15}$$

and using (2.7),

$$\lim_{b-a\to\infty}\frac{Z_{b-a}}{\lambda^{b-a}} = \lim_{n\to\infty}\frac{\delta(\mathscr{L}^n 1)}{\lambda^n} = \nu(1)\cdot\delta(h) = h(x_0) > 0 \qquad (2.16)$$

which implies⁸ (1.12) with $P(\Phi) = \log \lambda_{\Phi}$ and Theorem 1 (i) follows from Theorem 3 (iv).

We study now the limit (1.13) with S = (0, m] (this is sufficient because we may by translation of \mathbb{Z} map S into (0, m] for some m). Let $f \in \mathscr{C}(K^{(0, m]})$, using (2.14), (2.16), part (i) of the Lemma and parts (ii), (iii) of Theorem 3 we get

$$\begin{split} \lim_{a \to -\infty, b \to \infty} & \alpha_{(0,m],(a,b]}^{*} \bar{\gamma}_{a b}(f) \\ &= \lim_{l,n \to \infty} \alpha_{(0,m],(-l,m+n]}^{*} \bar{\gamma}_{-l,m+n}(f) \\ &= \lim_{l,n \to \infty} \alpha_{(l,l+m],(0,l+m+n]}^{*} \bar{\gamma}_{0,l+m+n}(T^{l}f) \\ &= \lim_{l,n \to \infty} Z_{l+m+n}^{-1} \alpha_{(l,l+m],\mathbf{N}^{*}}^{*} \mathscr{L}^{*l+m+n} \delta(T^{l}f) \quad (2.17) \\ &= h(x_{0})^{-1} \lim_{l,n \to \infty} \sum_{n_{1}=0}^{1} \cdots \sum_{n_{l}=0}^{1} \int dx \, L^{*l+m+n} \, \delta(n_{1}, \dots, n_{l}, x) \\ &\cdot \alpha_{\mathbf{N}^{*},(0,m]} f(x) \\ &= h(x_{0})^{-1} \lim_{l,n \to \infty} \int dx \, L^{l} \mathbf{1}(x) \cdot L^{*m+n} \, \delta(x) \cdot \alpha_{\mathbf{N}^{*},(0,m]} f(x) \\ &= h(x_{0})^{-1} \int dx \, \nu(1) \, h(x) \cdot \delta(h) \, \nu(x) \cdot \alpha_{\mathbf{N}^{*},(0,m]} f(x) \\ &= \int dx \, h(x) \cdot \nu(x) \cdot \alpha_{\mathbf{N}^{*},(0,m]} f(x) \, . \end{split}$$

⁸ Actually (2.16) is a much stronger statement than (1.12).

D. RUELLE:

This establishes the existence of the limit (1.13) and shows that the measure ρ defined by (1.14) satisfies

$$\alpha_{\mathbf{N}^*\mathbb{Z}}^* \varrho = h \cdot \nu . \tag{2.18}$$

In view of Theorem 3 (iv), the r.h.s. of (2.17) is a continuous function of Φ on finite dimensional subspaces of \mathscr{E} . Because of the invariance of ϱ under T, the same is true of $\varrho(\alpha_{\mathbb{Z}} S f)$ for every finite $S \subset \mathbb{Z}$ and $f \in \mathscr{C}(K^S)$. Part (ii) of Theorem 1 follows then from the density of

$$\cup_S \alpha_{\mathbb{Z}} \mathscr{S} \mathscr{C}(K^S)$$

in $\mathscr{C}(K^{\mathbb{Z}})$ for the uniform topology.

We come now to the study of the dynamical system $(K^{\mathbb{Z}}, \varrho, T)$. Let \mathscr{B}_1 be the algebra of all ϱ -measurable subsets of $K^{\mathbb{Z}} \pmod{0}$ and \mathscr{B}_0 be the subalgebra consisting of the sets of measure 0 or 1 (i.e. \emptyset and $K^{\mathbb{Z}} \pmod{0}$). The system $(K^{\mathbb{Z}}, \varrho, T)$ is a K-system if there exists a sub-algebra \mathscr{A} of \mathscr{B}_1 such that

(i) $\mathscr{A} \subset T^{-1} \mathscr{A}$.

(ii) The union of the $T^{-l}\mathscr{A}$ generates \mathscr{B}_1 .

(iii) The intersection of the $T^{i} \mathscr{A}$ is \mathscr{B}_{0} .

We write

$$K^{\mathbb{Z}} = K^S \times K^{\mathbb{Z} \setminus S} \tag{2.19}$$

and define \mathscr{A} to be the subalgebra of \mathscr{B}_1 generated by all the sets $X \times K^{\mathbb{Z}\setminus S}$ where $X \subset K^S$ and S is a finite subset of \mathbb{N}^* . The properties (i) and (ii) are then clearly satisfied. Let now $A \in \bigcap_{l \ge 0} T^l \mathscr{A}$ and B be of the form $X \times K^{\mathbb{Z}\setminus S}$ with $X \subset K^S$, S finite $\subset \mathbb{N}^*$. For all $l \ge 0$ the characteristic function of A may be written as $\alpha_{\mathbb{N}^*,\mathbb{N}^*+l} T^l f_l$, let also $f_B \in \mathscr{C}(K_+)$ be the characteristic function of B. Using part (ii) of the Lemma, we get

$$\varrho(A \cap B) = \int dx h(x) \cdot \nu(x) \cdot \alpha_{\mathbf{N}^*, \mathbf{N}^* + l} T^l f_l(x) \cdot f_B(x)$$

= $\int dx [L^{*l}(\nu \cdot f_l)] (x) \cdot h(x) \cdot f_B(x)$ (2.20)
= $\int dx \nu(x) \cdot f_l(x) \cdot [L^l(h \cdot f_B)] (x) .$

Given $\varepsilon > 0$, (2.7) shows that, for sufficiently large l,

$$\|L^{l}(h \cdot f_{B}) - \nu(h \cdot f_{B})h\| < \varepsilon.$$
(2.21)

From (2.20) and (2.21) we find

$$\begin{aligned} |\varrho(A \cap B) - \varrho(A) \,\varrho(B)| &= |\int dx \,\nu(x) \cdot f_1(x) \cdot [L^i(h \cdot f_B) \,(x) \\ &- \nu(h \cdot f_B) \,h(x)]| < \varepsilon \end{aligned}$$
(2.22)

and therefore

$$\varrho(A \cap B) = \varrho(A) \varrho(B) . \tag{2.23}$$

By translation, (2.23) remains true for any B of the form $X \times K^{\mathbb{Z} \setminus S}$ with $X \subset K^S$, S finite $\subset \mathbb{Z}$, and therefore for any $B \in \mathscr{B}_1$. In particular for

B = A, we obtain $\varrho(A) = \varrho(A)^2$ hence $\varrho(A) = 0$ or 1, proving the property (iii) of K-systems and therefore Theorem 2.

Let S be a finite subset of \mathbb{Z} and define $f_S \in \mathscr{C}(K^{\mathbb{Z}})$ by $f_S(x) = 1$ if $i \in S \Rightarrow x_i = 1, f_S(x) = 0$ otherwise. The correlation function $\bar{\varrho}$ associated to ϱ is a function of finite subsets of \mathbb{Z} defined by

$$\bar{\varrho}(S) = \varrho(f_S) . \tag{2.24}$$

Notice that by Theorem 1, $\rho_{\Phi}(S)$ is a continuous function of Φ on finite dimensional subspaces of \mathscr{E} . We have also

$$\lim_{l \to \infty} \bar{\varrho}(S_1 \cup T^l S_2) = \bar{\varrho}(S_1) \cdot \bar{\varrho}(S_2)$$
(2.25)

a property known as *cluster property* and which should be possessed by the correlation function of a gas. The cluster property (2.25) is a consequence of *strong mixing*, which is a property of all *K*-systems⁹. The entropy of a *K*-system is $> 0^{10}$, this entropy is identical to the mean entropy in the sense of statistical mechanics (see [4]). The *K*-system property (iii) has here a simple physical interpretation: it is not possible to make the system look different "at finite distances" by imposing restrictions "infinitely far away" on the configurations of the system (absence of long-range order).

3. Proof of Theorem 3

In this section we establish a series of propositions which will result in a proof of Theorem 3.

For $m \ge 0$ we let $\mathscr{C}_m = \alpha_{N^*,(0,m]} \mathscr{C}(K^{(0,m]})$, i.e. \mathscr{C}_m is the subspace of $\mathscr{C}(K_+)$ consisting of those f such that f(x) = f(x') if $x_i = x'_i$ for $i \le m$.

Proposition 1. Let $f \in \mathscr{C}_m$, $f \ge 0$ and $x_i = x'_i$ for i = 1, ..., k. If $n \ge 0, n \ge m - k$, then

$$A_k^{-1} \le \frac{\mathscr{L}^n f(x')}{\mathscr{L}^n f(x)} \le A_k \tag{3.1}$$

where

$$A_{k} = \exp\left[\sum_{l>0} \sum_{0 < i_{1} < \cdots < i_{l} > k} (i_{l} - k) |\Phi^{l+1}(0, i_{1}, \dots, i_{l})|\right].$$
(3.2)

If $k \ge m$, then f(x') = f(x) and (3.1) holds thus for n = 0. If n > 0, (2.3) yields

$$\frac{\mathscr{L}^{n}f(x')}{\mathscr{L}^{n}f(x)} = \frac{\mathscr{L}^{n-1}f(0,x') + F(x') \mathscr{L}^{n-1}f(1,x')}{\mathscr{L}^{n-1}f(0,x) + F(x) \mathscr{L}^{n-1}f(1,x)} .$$
(3.3)

Using induction on n we may assume that for $n_1 = 0, 1$, we have

$$A_{k+1}^{-1} \le \frac{\mathscr{L}^{n-1}f(n_1, x')}{\mathscr{L}^{n-1}f(n_1, x)} \le A_{k+1}$$
(3.4)

⁹ See [1] 11.4.

¹⁰ See [1] 12.31.

and

$$\exp\left[-\sum_{l>0} \sum_{0< i_{1}<\cdots< i_{l}>k} |\Phi^{l+1}(0, i_{1}, \ldots, i_{l})|\right] \leq \frac{F(x')}{F(x)}$$
(3.5)

$$\leq \exp \left[\sum_{l>0} \sum_{0 < i_1 < \cdots < i_l > k} |\Phi^{l+1}(0, i_1, \ldots, i_l)|\right].$$

Therefore

$$A_{k}^{-1} \leq \frac{\mathscr{L}^{n-1}f(0,x')}{\mathscr{L}^{n-1}f(0,x)} \leq A_{k}$$
(3.6)

$$A_{k}^{-1} \leq \frac{F(x') \,\mathcal{L}^{n-1} f(0, x')}{F(x) \,\mathcal{L}^{n-1} f(0, x)} \leq A_{k}$$
(3.7)

and (3.1) follows.

Notice that if we write

$$B = \exp\left[\sum_{l \ge 0} \sum_{0 < i_1 < \dots < i_l} |\Phi^{l+1}(0, i_1, \dots, i_l)|\right]$$
(3.8)

then $B^{-1} \leq F(x) \leq B$.

Proposition 2. There exist $v \in \mathcal{M}(K_+)$ and λ real such that $v \geq 0$, ||v|| = 1 and

$$\mathscr{L}^* v = \lambda v . \tag{3.9}$$

Furthermore $1 + B^{-1} \leq \lambda \leq 1 + B$ where B is given by (3.8).

The set $\{\mu \in \mathcal{M}(K_+) : \mu \ge 0 \text{ and } \mu(1) = 1\}$ is convex, vaguely compact and mapped continuously into itself by

$$\mu \to [\mathscr{L}^* \mu(1)]^{-1} \mathscr{L}^* \mu . \tag{3.10}$$

By the theorem of SCHAUDER-TYCHONOV this mapping has a fixed point ν : (3.9) holds with $\lambda = \mathscr{L}^* \nu(1) = \nu(\mathscr{L} 1)$. Since $\mathscr{L} 1(x) = 1 + F(x)$ and $B^{-1} \leq F(x) \leq B$, we have $1 + B^{-1} \leq \lambda \leq 1 + B$.

Proposition 3. (i) The closed hyperplane $H = \{f \in \mathscr{C}(K_+) : v(f) = 1\}$ is mapped into itself by $L = \lambda^{-1}\mathscr{L}$.

(ii) Let $f \in \mathscr{C}_m, f \ge 0, n \ge m$, then

$$\sup_{x \in K_+} L^n f(x) \le A_0 \nu(f) \tag{3.11}$$

$$\inf_{x \in K_+} L^n f(x) \ge A_0^{-1} \nu(f) .$$
 (3.12)

(iii) If $f \in \mathscr{C}(K_+)$, the sequence $||L^n f||$ is bounded by $A_0||f||$.

(iv) A norm $||| \cdot |||$ on $\mathscr{C}(K_+)$ is defined by

$$|||f||| = \nu(|f|) = \int dx \,\nu(x) \,|f(x)| \le ||f|| \,. \tag{3.13}$$

- (v) $|||Lf||| \leq |||f|||$ for all $f \in \mathscr{C}(K_+)$.
- (vi) If $f \in \mathscr{C}_m$, v(f) = 0, and $n \ge m$, then

$$|||L^n f||| \le (1 - A_0^{-1}) |||f|||$$
. (3.14)

(i) follows from

$$\nu(Lf) = \lambda^{-1} \mathscr{L}^* \nu(f) = \nu(f) , \qquad (3.15)$$

 $\mathbf{274}$

(ii) follows from (3.1) with k = 0:

$$\begin{aligned} \nu(f) &= \nu(L^n f) \leq \sup_{x' \in K^+} L^n f(x') \\ &\leq A_0 \inf_{x \in K_+} L^n f(x) \leq A_0 \nu(L^n f) = A_0 \nu(f) . \end{aligned} \tag{3.16}$$

Using (3.11) with m = 0 we have

$$\|L^n f\| \le \|L^n |f|\| \le \|f\| \sup_{x \in K_+} L^n 1(x) \le A_0 \|f\|$$
(3.17)

which proves (iii).

It is clear that $|||\cdot|||$ is a semi-norm and that $|||f||| \leq ||f||$. We conclude the proof of (iv) by showing that if $f \geq 0$, $f \neq 0$ then |||f||| > 0. We may indeed choose m and $f' \in \mathscr{C}_m$ such that $0 \leq f' \leq f$ and $f' \neq 0$, then $L^m f' \neq 0$ and (3.11) yields

$$|||f||| = \nu(f) \ge \nu(f') \ge A_0^{-1} ||L^m f'|| > 0.$$
(3.18)

To prove (v) we notice that

$$\begin{aligned} |||Lf||| &= \nu(|Lf|) = \lambda^{-1}\nu(|\mathscr{L}f|) \leq \lambda^{-1}\nu(\mathscr{L}|f|) = \lambda^{-1}\mathscr{L}^*\nu(|f|) \\ &= \nu(|f|) = |||f||| . \end{aligned}$$
(3.19)

To prove (vi) let $f_{\pm} = 1/2$ ($|f| \pm f$), we have

$$|||f_{+}||| = \nu(f_{+}) = \nu(f_{-}) = |||f_{-}||| .$$
(3.20)

On the other hand by (3.12)

$$\inf_{x \in K_+} L^n f_{\pm}(x) \ge A_0^{-1} |||f_{\pm}||| .$$
(3.21)

Therefore

$$\begin{aligned} |||L^{n}f||| &= \nu (|L^{n}(f_{+} - f_{-})|) \\ &= \nu (|L^{n}f_{+} - A_{0}^{-1}|||f_{+}|||) - (L^{n}f_{-} - A_{0}^{-1}|||f_{-}|||)|) \\ &\leq \nu (|L^{n}f_{+} - A_{0}^{-1}|||f_{+}||| + |L^{n}f_{-} - A_{0}^{-1}|||f_{-}||| |) \\ &= \nu (L^{n}(f_{+} + f_{-}) - A_{0}^{-1}(|||f_{+}||| + |||f_{-}|||) \\ &= \nu (L^{n}|f| - A_{0}^{-1}|||f|||) = \nu (|f|) - A_{0}^{-1}|||f||| \\ &= (1 - A_{0}^{-1}) |||f||| \end{aligned}$$
(3.22)

which proves (3.14).

Proposition 4. Define

$$\Sigma = \{f \in \mathscr{C}(K_+) : v(f) = 1, \quad f \ge 0\}$$

and

$$A_k^{-1} \le \frac{f(x')}{f(x)} \le A_k \quad \text{if} \quad x'_i = x_i \quad \text{for} \quad i = 1, \dots, k\} .$$
 (3.23)

- (i) $L\Sigma \subset \Sigma$.
- (ii) If $f \in \Sigma$, then $||f|| \leq A_0$ and if $x_i = x'_i$ for i = 1, ..., k, then $|f(x') - f(x)| \leq A_0(A_k - 1)$. (3.24)
- (iii) The set Σ is convex and compact in $\mathscr{C}(K_+)$.
- (iv) If $f, f' \in \Sigma$, then

$$|||f - f'||| \ge B^{-k}(1 + B)^{-k}(||f - f'|| - 2A_0(A_k - 1))$$
(3.25) for all k.

(i) follows from Prop. 3 (i) and the same argument as in the proof of Prop. 1.

If $f \in \Sigma$, then $\nu(f) = 1$ hence $\nu(f-1) = 0$ and one can choose \tilde{x} such that $f(\tilde{x}) \leq 1$ hence $f(x) \leq A_0 f(\tilde{x}) \leq A_0$, proving $||f|| \leq A_0$. If $x_i = x'_i$ for $i = 1, \ldots, k$ we get

$$f(x') - f(x) \le f(x) (A_k - 1) \le A_0(A_k - 1)$$
(3.26)

and (3.24) follows by exchanging the roles of x and x'.

The set Σ is clearly convex and closed, since it is bounded and equicontinuous by (ii) the theorem of ASCOLI shows that it is compact, proving (iii).

Let $f, f' \in \Sigma$. We can choose \tilde{x} such that $|f(\tilde{x}) - f'(\tilde{x})| = ||f - f'||$. Denote by g the characteristic function of the set $\{x \in K_+ : x_i = \tilde{x}_i \text{ for } i = 1, \ldots, k\}$, using (ii) we obtain

$$|||f - f'||| = \nu(|f - f'|) \ge (||f - f'|| - 2A_0(A_k - 1)) \cdot \nu(g)$$
(3.27)

and (iv) follows from

$$\nu(g) = \nu(L^k g) = \frac{\nu(\mathscr{L}^k g)}{\lambda^k} \ge \frac{B^{-k}}{(1+B)^k},$$
(3.28)

where we have used $F(x) \ge B^{-1}$, $\lambda \le 1 + B$ (see Prop. 2.).

Proposition 5. (i) There exists $h \in H$ such that Lh = h (i.e. $\mathcal{L}h = \lambda h$), $\nu(h) = 1$.

(ii) If $f \in H$, then $\lim_{n \to \infty} ||L^n f - h|| = 0$, more generally if $f \in \mathscr{C}(K_+)$, then

then

$$\lim_{n \to \infty} L^n f = \nu(f) h \tag{3.29}$$

in the uniform topology.

(iii) If $\mu \in \mathscr{M}(K_+)$ the following limit exists in the vague topology

$$\lim_{n \to \infty} \lambda^{-n} (\mathscr{L}^*)^n \, \mu = \mu(h) \cdot \nu \,. \tag{3.30}$$

By Prop. 4 (i), (iii) the convex compact set Σ is mapped into itself by L which has therefore a fixed point h by the theorem of SCHAUDER-TYCHONOV, proving (i).

Let $\tilde{f} \in \Sigma$, in view of Prop. 4. (i), (ii), we can for each integer n > 0 choose m(n) independent of N such that

$$\|(L^N \tilde{f} - h) - g\| < \frac{1}{n!}$$
(3.31)

for some $g \in \mathscr{C}_{m(n)}$ with $\nu(g) = 0$. Then by Prop. 3. (v), (vi),

$$\begin{aligned} |||(L^{N+m(n)}\tilde{f}-h)||| &\leq |||L^{m(n)}g||| + \frac{1}{n!} \\ &\leq (1-A_0^{-1})|||g||| + \frac{1}{n!} \leq (1-A_0^{-1})||L^N\tilde{f}-h||| + \frac{2}{n!} . \end{aligned}$$
(3.32)

If we put $M(n) = \sum_{i=1}^{n} m(i)$, we get

$$\lim_{n \to \infty} |||L^{N+M(n)}\tilde{f} - h||| = 0$$
(3.33)

uniformly in N, using then Prop. 4. (iv), we have thus

$$\lim_{n \to \infty} \|L^n \tilde{f} - h\| = 0 \tag{3.34}$$

when $\tilde{f} \in \Sigma$. This remains true if $\tilde{f} \in H$ and \tilde{f} is a linear combination of elements of Σ , these linear combinations include the elements of \mathscr{C}_m for all m and are thus dense in H. By Prop. 3 (iii), $||L^n f||$ is bounded for all $f \in \mathscr{C}(K_+)$, hence the theorem of BANACH-STEINHAUS shows that

$$\lim_{n \to \infty} \|L^n f - \nu(f) \cdot h\| = 0 \tag{3.35}$$

proving (ii).

If $\mu \in \mathcal{M}(K_+)$, then for every $f \in \mathcal{C}(K_+)$

$$\lim_{n \to \infty} \lambda^{-n} (\mathscr{L}^*)^n \,\mu(f) = \lim_{n \to \infty} \,\mu(L^n f) = \mu(\nu(f) \cdot h) = \mu(h) \,\nu(f) \quad (3.36)$$

proving (iii).

Proposition 6. Let \mathscr{F} be a finite dimensional subspace of \mathscr{E} and B a bounded subset of \mathscr{F} .

(i) The limit $\lim_{n\to\infty} \|L_{\Phi}^n f - v_{\Phi}(f) \cdot h_{\Phi}\| = 0$ holds uniformly in $\Phi \in B$.

(ii) h_{Φ} is a continuous function of $\Phi \in \mathscr{F}$ for the uniform topology of $\mathscr{C}(K_+)$.

(iii) v_{Φ} is a continuous function of $\Phi \in \mathscr{F}$ for the vague topology of $\mathscr{M}(K_{+})$.

(iv) Let $\Phi, \Psi \in \mathscr{F}, \Phi(t) = \Phi + t\Psi, t \in \mathbb{R}$, then the function $t \to \lambda_{\Phi(t)}$ has a derivative

$$\frac{a}{dt}\lambda_{\boldsymbol{\Phi}(t)} = \nu_{\boldsymbol{\Phi}(t)}\left(\mathscr{L}'_{\boldsymbol{\Phi}(t),\boldsymbol{\Psi}}h_{\boldsymbol{\Phi}(t)}\right) \tag{3.37}$$

where $\mathscr{L}'_{\Phi,\Psi}$ is the bounded operator on $\mathscr{C}(K_+)$ defined by

$$\mathscr{L}'_{\phi,\Psi}f(x) = \left[-\sum_{l \ge 0} \sum_{0 < i_1 < \cdots < i_l} x_{i_1} \cdots x_{i_l} \, \Psi^{l+1}(0, i_1, \dots, i_l) \right] \\ \cdot F_{\phi}(x) f(1, x)$$
(3.38)

and $\frac{d}{dt} \lambda_{\Phi(t)}$ is a continuous function of $\Phi \in \mathscr{F}$.

Let $\tilde{f} > 0$ satisfy, for all k and all $\Phi \in B$

$$A_k^{-1} \le \frac{\tilde{f}(x')}{\tilde{f}(x)} \le A_k$$
 if $x'_i = x_i$ for $i = 1, ..., k$. (3.39)

Then, $\nu_{\varPhi}(\tilde{f})^{-1}\tilde{f} \in \Sigma$. Since A_k , B depend continuously on $\varPhi \in \mathscr{F}$, the estimates in the proof of Prop. 5 (ii) can be made uniformly in $\varPhi \in B$, hence

$$\lim_{n \to \infty} \| v_{\varPhi}(\tilde{f})^{-1} L_{\varPhi}^{n} \tilde{f} - h_{\varPhi} \| = 0$$
(3.40)

uniformly in $\Phi \in B$. Since $\nu_{\Phi}(\tilde{f}) < \|\tilde{f}\|$, (i) holds for $f = \tilde{f} > 0$ satisfying (3.39).

In particular $L_{\phi}^{n} 1$ tends to h_{ϕ} uniformly in $\Phi \in B$, and $||L_{\phi}^{n}1||^{-1}L_{\phi}^{n}1 = ||\mathscr{L}_{\phi}^{n}1||^{-1}\mathscr{L}_{\phi}^{n}1$, which is continuous in $\Phi \in B$, tends uniformly in $\Phi \in B$ towards $||h_{\phi}||^{-1}h_{\phi}$ which is therefore continuous in $\Phi \in \mathscr{F}$.

We have the identity

$$t^{-1}(\lambda_{\varPhi+t\Psi} - \lambda_{\varPhi}) \nu_{\varPhi} \left(\frac{h_{\varPhi+t\Psi}}{||h_{\varPhi+t\Psi}||} \right) = \nu_{\varPhi} \left(t^{-1} [\mathscr{L}_{\varPhi+t\Psi} - \mathscr{L}_{\varPhi}] \frac{h_{\varPhi+t\Psi}}{||h_{\varPhi+t\Psi}||} \right) \quad (3.41)$$
and in the norm of generators on $\mathscr{L}(K)$

and, in the norm of operators on $\mathscr{C}(K_+)$,

$$\lim_{t\to 0} \|t^{-1}(\mathscr{L}_{\phi+t\Psi} - \mathscr{L}_{\phi}) - \mathscr{L}'_{\phi,\Psi}\| = 0.$$
(3.42)

Therefore

$$\lim_{t \to 0} t^{-1} (\lambda_{\phi + t \Psi} - \lambda_{\phi}) = \nu_{\phi} (\mathscr{L}'_{\phi, \Psi} h_{\phi})$$
(3.43)

which proves (3.37); λ_{Φ} is a continuous function of $\Phi \in \mathscr{F}$ because of the boundedness of $|v_{\Phi}(\mathscr{L}'_{\Phi, \Psi} h_{\Phi})|$ for $\Phi \in B$ (use $h \in \Sigma$).

We may consider $L^n: f \to L^n_{\Phi} f$ as a bounded operator from $\mathscr{C}(K_+)$ to $\mathscr{C}(K_+ \times B)$. For each $f \in \mathscr{C}(K_+)$ the sequence $L^n_{\Phi} f$ is bounded in $\mathscr{C}(K_+ \times B)$ by Prop. 3 (iii). We have seen that (i) is satisfied for linear combinations of $\tilde{f} \geq 0$ satisfying (3.39) for all k and all $\Phi \in B$, these include again the elements of \mathscr{C}_m for all m and are thus dense in $\mathscr{C}(K_+)$. Applying the theorem of BANACH-STEINHAUS to the sequence L^n proves then (i).

Applying (i) to f = 1 yields (ii). More generally (i) shows that $v_{\sigma(f)}h_{\sigma}$ is continuous in $\Phi \in \mathscr{F}$, using then (ii) we see that $v_{\sigma}(f)$ is continuous in Φ for each $f \in K_+$, proving (iii). Finally the continuity of the derivative (3.37) follows from the continuity in $\Phi \in \mathscr{F}$ of v_{σ} (by (ii)), h_{σ} (by (iii)) and $\mathscr{L}'_{\sigma,\mathscr{V}}$.

Bibliography

- 1. ARNOLD, V. I., et A. AVEZ: Problèmes ergodiques de la mécanique classique. Paris: Gauthier-Villars 1967.
- FISHER, M. E.: The theory of condensation (Sec. 6.). Lecture given at the Centennial Conference on Phase Transformation at the University of Kentucky, 1965.
- 3. JACOBS, K.: Lecture notes on ergodic theory. Aarhus Universitet (1962-1963).
- ROBINSON, D., and D. RUELLE: Mean entropy of states in classical statistical mechanics. Commun. Math. Phys. 5, 288-300 (1967).
- 5. VAN HOVE, L.: L'intégrale de configuration pour les systèmes de particules à une dimension. Physica 16, 137-143 (1950).

D. RUELLE Institut des Hautes Etudes Scientifiques F 91 Bures-sur-Yvette

 $\mathbf{278}$