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Abstraet. We give a detailed analysis of the structure of some Von Neumann
algebras which describe free relativistic fields or infinite systems of free particles
with finite density.

1. Introduction

We intend to give the explicit structure of Von Neumann algebras
which have been used in the description of some physical systems.

Some of these algebras are associated to an infinite free Bose or Fermi
gas at any temperature [1, 2]; others to relativistic free fields described
in terms of observables associated to each space-type region [3, 4].

The purpose of the analysis we are going to make, is twofold. One
will gain a better understanding of some (formal) properties of infinite
free systems with finite density, and will be able to give a completely
algebraic description of a free field.

Also, one may hope that part of the structure exhibited for the
particular cases at hand, has a general character (i.e. is shared by less
trivial systems) and may be used as a first step in the construction of
more realistic models.

We shall follow the good practice of going from the simpler to the
more complicated, and shall therefore begin with a simple example, i.e.
the free Fermi gas at finite temperature.

2. Free Fermi Gas at Finite Temperature

The general properties of this system have been analyzed in ref. (2).
It is shown there that an infinite free Fermi gas can be described in
terms of a suitable representation of the canonical anti-commutation
relation (c.a.r.). By representation of the c.a.r. on a Hilbert space #
we mean a set a; of operators on # such that

[@; a1+ =0, [a;af]y = 0,y
where [c, d]+ = c¢d + dc¢ and ¢* denotes the adjoint of ¢. A representation
is called irreducible if the smallest Von Neumann algebra [5]"which
containes all the a;, a¥ (i.e. the Von Neumann algebra generated by the

a,;'s) is B (), the set of all bounded operators on 5.
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Two representations on M, S#°? are equivalent if there exists an
isometry of S#® onto S ® such that the induced isomorphism of
B (H,) on B(H ) carries alV to al? for all .

A representation is of Fock type iff there exists in 5 a vector {2 with
the properties

a;2=0 Ve¢.

Let {a(f); f € Z£2(R")} define on J# a Fermi system [6] on £2(R»). This
is a linear mapping Z2(R") 5 f — a(f) € # () which satisfies
[g’(]‘)z a*(9))+ = (f> g): [a f), ]+*

where (f, g) is the scalar product in #?(Rn). If this representation of the
c.a.r. is of Fock type, we shall write £ = 5#%. Let {b(f)} define another
such system and set !

H = A HY.

There are canonical isomorphic maps @, resp. ¢, of %(#%), resp.
AB(AH"), on B(A") with the properties

[, pl@* Nl =9, [e@{), e@* @)+ = (f, 9)

all other anti-commutators vanish.
This isomorphism can be explicitly given through

H—">a(f)®1
(f) =2 eV (@ @ b(f) .
Here N(a Z a*(fy) a(fr), with {f,} an orthonormal basis of £%(R").

(SRS

N(a) exists and is independent of the basis used in its definition [6].

We shall write a(f) = @(a(f)), b(f) = ¢@(f).

It is clear that {a(f)}, resp. {b(f)} define " a representation of the
Fermi system which is a multiple of the Fock one. We shall use the
notation " = %%:b. With these preliminaries out of way, we can state
the results of ref. (2) as follows:

A Fermi gas at finite temperature (in an n-dimensional space), with
no condensation and with density distribution g (k), k € R* (in “momen-
tum” space), can be described by the Von Neumann algebra on Jf"ﬁ;b
generated by the representation of the c.a.r. given by operators o, o*

of the form - -
a(fy = a1 —of) — b*(Vef)
¥ (f) = a* (Y1 — of) — b(}/ef)

(one has 0 < p < 1).

(1)

1 For definitions and basic properties of tensor product of Hilbert spaces and of
the Von Neumann algebras associated with them we shall refer to [7].
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By definition, there exists in # ;;b a vector 2, such that
a()2=0b(N2 =0 Vjec LR 2)

The representation given by (1) is not in general of Fock type. We shall
denote by .27 the Von Neumann algebra it generates 2. Another representa-
tion of the c.a.r. which will be of interest is the one given on #%° by the
operators

B =a*(Ven)+ b(Y1— ef)
pr(h = a(ef) +* (V1 - ef).
The corresponding algebra will be denoted by %.

(3)

One easily checks that

(), B(@))+ = [a(f), p*(D]+ =0 V[ gc L2R). (4)

It is shown in ref. (2) that Z is unitarily equivalent to 2/ and that
o/ N B ={c-1} (the multiples of the identity operator on A %%); it is
also shown that o7 is a factor, i.e. that &/ N &/’ = {c - I} where .27’ is the
commutant of /. We shall re-obtain these results as a by-product of

our structure analysis; we shall also give the connection between 27’
and Z.

3. Preliminary Results

To study the structure of the algebras .7 and % we shall use the
following :

Lemma 1 [8]3. Let 4 be a self-adjoint operator on a separable Hilbert
space K. One can find on J two self-adjoint operators D and T, where
D has totally discrete spectrum and T is a Hilbert-Schmidt operator (i.e.
trace T*T < o), such that

A=D+T.

Moreover, D can be so chosen that D = A on the subspace associated to
the discrete spectrum of A; and that the spectrum of D is dense in the con-
ttnuous part of the spectrum of A.

We shall use this lemma in the following way. Let A4~ be the sub-
space of R* on which p takes the value 1, #?(4") the corresponding
subspace of £2(R”). If A" has Lebesque measure zero, #2(A") is empty.

We take for 4 the null operator on £?(4") and, on Z2(R*) © L*(A")
the operator defined by multiplication by VIL—@ Let f, € Z2(R"), A, € RY,
t € I (I the positive integers) be the eigenvalues and eigenvectors of D.

2 Tf condensation is present, the algebra of interest is not & but &/ @ 7,
where £ is a type I factor.

3 We include for completeness in an appendix the proof of this lemma.
6*
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The lemma states that A — D is Hilbert-Schmidt, i.e.
> 2 (foo (A4 — D2fi) = X (for (A4 — 29)*f2)

=2 (Vl—e Ai)f"z

where Q)" is the sum extended to all ¢’s for which f; ¢ £%(A4"). Since
[/1 — p is a bounded operator, one has from (5)

X (o~ /1= il <o ®
Recall that o7, & are generated by operators of the form
a(f) = (Y1~ of) = v*(Vef)
= a*(Vel)+ b(/1 - of)

®)

and define

V1+/12 [a(Y1—of; + LVofs) + b*(LY1 —ef—Veli)] -
UHL [a*(—Vofi+ AY1 = 0 1)+ b(a Vo fi + V1 — )] -

For notational compactness we have taken 1/4; = 0 (ie. 4, = a(f,)) if
f: € L2(A). One can easily convince oneself that the 4;, B; define on
H#'%P an irreducible representation of a Fermi system over

LB e L2(R").

We claim that this representation is of Fock type; this is equivalent
to saying that there exists in %" a cyclic vector with the properties

4=

B, =

‘ A,Q=BR2=0 Vicl. (8)
In fact, let
A,, i< N
L B P R A L V) B
9)
B, i<N
BY = (Ve + 4Y1= o))~ b((A e +V1— o)f)]

For each N, {4¥, BY} define on #%?" an irreducible representation of
the c.ar. of Fock type. Indeed, AN Q)= BMQ =0 for i > N (see
eq. (2)) and all representations of a Fermi system over a finite-dimen-
sional space are equivalent. There exists therefore 2¥ ¢ #%%, with the
properties

ANQN = BYQN =0, V1. (10)
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One now checks that inequality (6) guarantees the convergence of the
sequence ¥, N — co.
In fact,
lim |Q¥ — QM]2

M, N >0
N>M

= 2lim (1 — exp [ Z log( - + 7 ) I(%; [/l l/é)lez]) =
Let 2 be the limit vector. For every ¢ € I, one has

Indeed, e.g.
|B; Q| = Vlim |B; QY| = Vlim |BY Q¥ =0

where the first equality follows from || B,| = 1, the second from Eq. (9),
and the third from Eq. (10).

Since the representation defined by 4,, B; on #%" is of Fock type,
one can write4

2
Hyh=HyP=Q (Hy e ) (12)
[

where Q= &) (2! ® 2F), and there arc canonical isomorphisms

A;—> A, € BAH4G), Bi— B¢ B(HE) such that 4,04 = B,QF =0.
Notice that 92”2‘," ® %”B' is a four- ohmensmnal space. From Egs. (7), (3)
one obtains

1 li

af)=o; = I + = 4; +

*®
]/1+Z,?Bi
A e

_V1+/12 Poyrya Tt

(13)

B(fi) = P

4. Structure Analysis

All finite-dimensional representations of the c.a.r. being unitarily
equivalent, one has
© 2
Hi P = Q) (A58 #H4hy) (14)

2
where Q, = Q4 @ QF.
One can now find a canonical isomorphism

=L 0 (xel)el,;®

¢ See Ref. [7] or [9] for the definition and properties of a separable Hilbert
space #, infinite direct tensor product of Hilbert spaces 5#, relative to a direct
product vector 2 = @ £2,, 2, ¢ ;. We shall only recall that, roughly speaking,
S is the closure of the set of those vectors, in the infinite tensor product space, which
have 7'® component == £2, only for a finite set of values of the index 3.
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where «; give a representation of the c.a.r. on 5 and I, is the identity
on H0.

The algebra o/ generated by the a; can be identified with o, the
algebra generated by the o;; indeed, the isomorphism can be written

o =Yo; U= HeinNﬁg)’ N = of o, (15)
2

and the double inclusion &/ C &/ C &/ is evident from KEq. (15) and
afo; = of ;. Since o] acts irreducibly on #°% for each 4, the algebra
(o7 and therefore) .o/ has the form

A= BN, 0 5 i=12..] (16

where [.#]~ indicates the Von Neumann algebra generated by the set .#
of operators. &7 is therefore [7] simple (it has no two-sided ideals).

It also follows [10] from (16) that .7 is a factor and that o7 is unitarily
equivalent to its commutants 27’. The factor &7’ is given explicitely by

A= @I BHNOL;,;® 5 i=1,2,...1". (I7)
The type of the factor o/ is determined by the sequence {d;} where
d’:gm,f 1Q — & ® ni, &Ef%”j‘m’ mé%’”f', |8l =Inil =1.

One verifies without difficulty that in our case
1 As
d.=2(1— = o
; (1 sup []/le AT 1?]) (18)

(notice that d; < /2()/2 — 1) and d, = /2()/2 — 1) iff 2, = 1).

The type of the factor o/ is now determined by the following well
known

Lemma 2 [7,11]. Let {d;} be an infinite sequence of positive numbers
with exactly one accumulation point d.,. Then the factor o as defined
in (16) s

1) of type I if 3] d; < >, d, =0,

2) of type 11 iftZ W2(y2 — 1) — di| < o, do =)/2()/2 - 1),

3) of type 111 otherwise.

We shall need two more results:

If o7 and # are factors, one proves [5] that &/ ® # is type II if o/
is type IT and & is type I or 11, and that o/ @ & is type III if o7 is
type III.

Finally, if .#; are Von Neumann algebras, one proves [10] that

[]1® ...®'/”’i®li+1® tty iEI]—
= [Ik1® '.'®‘/%ki®lki+1® “'9]01'6[{]—-@ [Ih,® ”'®'ﬂh1®”'ahieﬂ]-
it KNnH=0,K+ H=1 (I, a denumerable index set).
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As we have already remarked, £%(D,) is either zero or infinite-
dimensional, where D; is defined by D,:{k: (k) = ;}. We can now
collect all the information we have obtained so far on the structure of <7,
in the following

Proposition 1. a) The factor o7 associated to the description of a Ferms
gas at finite temperature s
— of type I if the density function g (k) takes values different from 0,1
only on a set of (Lebesgue) measure zero,

— of type II if o(k) takes values different from 0,1, 1/2 only on a set of
measure zero, and the value 1/2 is taken on a set of non-zero measure,
— of type I11 otherwise.

b) Moreover, two algebras o7, and <7, relative to distribution functions
0, and g, are unitarily equivalent (i.e. spatially isomorphic) if they are
algebraically tsomorphic.

c) 7, and S/, are isomorphic if o, and o, have the same continuous
spectrum independently of multiplicity and their discrete isolated eigen-
values o, o, coincide (again discarding multiplicity). Here

Or = mf[@k: 1- Qk]5 k=1,2.

Part C of proposition 1 requires some comments.

The isomorphism between 27; and 7,, when it holds, is independent
of the multiplicity of the spectra of g,, g,. For the isolated point spectrum
this follows because, as we have seen, the multiplicity is always infinite
there. For the continouum part of the spectrum, independence from
multiplicity is guaranteed by the following facts: the corresponding
algebra o, is always of type III; o/, ® #(# y) is algebraically iso-
morphic to &/, (N =1,2,...;3#; an N-dimensional Hilbert space);
algebraic isomorphism implies spatial isomorphism for type III factors
on a separable Hilbert space [5] (the latter result is also used in statement
b) of the Proposition). The conditions for isomorphism given in ¢) are
sufficient; for the discrete isolated part of the spectrum this follows from
the construction explicitely given for o/ (Eq. 16). The same arguments
can be used for the continuous part of the spectrum, if one remarks that,

when 3 (g;) = 3 (02) ( 2 (o) is the continuous part of the spectrum
(4 4 c

of g) , one can choose in Lemma 1 the same spectrum for D; and D,5.

Notice also that the points of the discrete spectrum which are not
isolated from the continuous part, do not enter in the conditions for the
isomorphism between o7, and &7,. In fact, if a, is a discrete non-isolated
point in the spectrum of A4, one can find a sequence of points {a;}, which
belong to the continuous part of the spectrum of A and to the spectrum

5 It seems quite probable that the conditions stated in c) be also necessary.

One would need for the proof a refinement of recent results by R. Powers [12];
we hope to come back in the future on this point.
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of D (Lemma 1) such that 3} |ay — a;] < co. Since for the continuous
B

part of the spectrum of A4 the isomorphism is independent of multi-
plicity, the statement follows.

This implies in particular that, if p;, o, are continuous functions, and
if they have the same range, the two factors o), and 7, are spatially
isomorphic (and the corresponding representations of the c.a.r. are
equivalent).

We come back now to the factors o7, % associated to an infinite
Fermi system with density function g (k).

We have already seen the structure of 7.

The algebra # is spatially isomorphic to &7 ; this can be seen using
Proposition 1, or also directly as follows.

The algebraic automorphism ¢ of [.«7 U Z]= (the smallest C* algebra
which contains &7 and &) defined by

“kL’ B lgkl—’ — %y

exchanges o/ and & and leaves 2 invariant (as a state of [&/ U Z]~).
The isomorphism ¢ can therefore [6] be implemented by a unitary
operator V and extends to the weak closure to give

VA V1= . (19)

We end this section proving that there exists a unitary operator U with
the property
UAU1=A. (20)

o
Consider, on (X) (Jff," ® H gl’) the unitary operators
i
U;=exp {inLZ,(oc}f e+ PE Be) BE ﬂk} .
¢ <1
One checks easily that

i = Vm ]0><x4 [0>ﬁi + W

(with obvious notations), and therefore

" (§9)- g4

[1>°¢{ “‘>ﬁi

Therefore the limit

lim U,

1—>00
exists in the weak sense [10], and defines a unitary operator U. One
easily verifies that U has the property indicated in (20). Combining
Eq. (19) and (20) one also obtains

A =Wl W (21)
(weak duality) where W = V-1U.
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5. Free Bose Gas at Finite Temperature

We shall now consider the structure of the algebra associated [1] to a
free bose gas at finite temperature.

The analysis will parallel very closely the one we have given for the
free Fermi gas; we shall therefore give only a brief sketch, omitting
many details. Also for the Bose gas we shall treat only the case in which
there is no condensation in the ground state (physically, temperatures
above the critical one). The generalization to include a system with a
condensed phase is trivial and leads to no essential change in the structure
of the algebra of interest. To fix our notation, we recall that a representa-
tion on a Hilbert space S# of the canonical commutation relations
(c.c.r.) (a Weyl system) over a Hilbert space % (in what follows, & = 2 (R”))
is a mapping from % to pairs of unitary operators on # such that

h, f={U{), V(H}
Ufy) V(fa) = V(fs) U(f)etP7 (22)
UHh), Uf)]-=[V(H), V(f)]-=0
V(Af) and U(Af) are, for each f¢€ k, weakly continuous in A at zero.
One can define closed operators a(f), a*(f) on a dense set of 3#, by

lim ZEN=L —a(f) + a*(p o
lim PED =L —a(h—ar(h).

The a, resp. a* are called destruction, resp. creation operators. They
satisfy the commutation relations (always on a dense set of vectors)

[a(f), a*(9)]-= (1, 9)

la(f), a(@)]- =0
An irreducible representation of a Weyl systems is called of Fock type if
there exists a vector 22 € 5 in the domain of all a(f) such that

a(fHQ=0 Vfch. (25)
Equivalently, £ is characterized by

1 1 ;
QU() V@) = exp{— g it =5 ok — 5 (. 9} -
If the representation is of Fock type, we shall write
H=Hp UD=UH), VH=Ts().
With these notations, a free Bose gas at finite temperature, in absence of
condensation and with density o(k), 0 >0, k€ R» (interpreted as

momentum space), is described [1] by the following representation of the
Weyl system over % (R"), on #% @ Hh= H# LD

V() = Vi + o)'f) ® Vi(—o'*f)
U*(f) = Up((1 + 0)'*f) ® Uk (0'2f) .

VigeZLiR). (24)

(26)
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The corresponding creation and destruction operators are written
a(fy = a((l + o)V*f) + b*(0*?f) ,

(27)
a*(f) = a*((1 + 0)V*f) + b(0V?*/)

where, e.g.
alg)=alg) el
a(g) € (%)  (linear operators on S£%) .
The similarity with (1) is obvious; the analysis of the structure of the
algebra o7 ‘“‘generated” by the «(f), f€ £2(R?) will parallel the one
given for the Fermi system, with the simplifying features that all
injections (e.g. a(g) — a(g), b(g) — b(g)) will be trivial since
[a(f), b(@)]-=0 VYig.
Define (this parallels (3))

UP(f) = Ut (e"*f) ® Uk((1 + 0)**f),

28
VE(f) = Vi(—e"2)) ® Vi((1 + 0)"2f) %)

ie.
B(f) = a*('*f) + (1 + 0)"*) .
One checks easily
. [O=(f), UP(9)]-= [U*(), V(@I = [V=(), VE(g)] =0 (29)
ie.

B, @] =[B(), oa*()1=0 Vfgc LI (R).

Apply now Lemma 1, with 4 = ‘/1—%—5 . Since A has spectrum in 0 H 1,
also D can be chosen to have spectrum in the same interval. Let A; be the
eigenvalues of D, 0 < A, <1, {f;} the corresponding (orthonormal
complete) set of eigenvectors.
UA4i — (U“i)ci (Uﬁi)Si
VAI - (V“;)cz (Vﬁo) i
UPi = (UPys (U (30)
VBi — (Vﬁ Ve (V)8
=1 =72 =402
ie.
A;=cio; — slﬁf >
By =c¢; ; — s;o*.
Repeating the arguments which led from (7) to (11), one proves that the
representation given by the 4;, B;7 =1, 2, ... is of Fock type, i.e. there

exists Q¢ #%% such that 4,2 = B,Q2=0. One can therefore write
HYP = Hy B, where A(f;)) = A;. For the algebra 4 one has again an
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expression like (16)
AL =Le @ BHHNOIIN®L4;...,1=12,...]7 (3

where o, = o(f;) and % ; is an infinite-dimensional separable Hilbert
space.

As in the Fermi case (compare Egs. (19), (20), (21) one can show that
there exists a unitary operator V on g%”g,’B such that

oL = VBV (32)

where %, the Von Neumann algebra generated by the representation
B(f), p*(f) of the c.c.r., has the form

B=Le LB ANNOL1y...,1=1,2,...].

One has also the “duality theorem® (notice the simplification as com-
pared to (20))
oA =X . (33)

6. Structure Analysis, Bose Case

We can now determine the type of the factor &7. As in the previous
case, it depends on the numerical sequence {d,}, 0 < d; < 2, defined by

di=inf |Q—&@nf, &EHp, meHP & =lnd=1.
i Ni

If }'d, < o a straightforward application of Lemma 2 shows that the

algebra 7 is a multiple of the Fock representation and is therefore of
type L. In all other cases, &7 is of type III. Indeed, one has the following
Lemma 3. If 3 d; = oo, &7, as defined in (31), is a factor of type I1I.

i

The proof of this lemma can be found in ref. (11), see also ref. (4).
One can also give a shorter proof, using the results of refs. [14, 15].

It remains to be seen under which conditions two algebras, 27, and <7,
associated to densities p; and g, are unitarily equivalent (i.e. spatially
isomorphic).

Since 7, and &7, are either type IIT or type I, with I, commutant,
&7, and &7, will be unitarily equivalent if (and only if) they are iso-
morphic [5]. One can easily verify that in the case we are examining,
one has

d;=2(1-)1-2). (34)
The presence of a continuous part in the spectrum of the operator V%

is incompatible with }| 1, < o (see Lemma 1); moreover, all the eigen-
B

spaces of

i i p to the eigenvalue ¢, 0 < ¢ < 1, are infinite-dimensional.

We have therefore
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Proposition 2. a) The Von Neuwmann algebra o7 associated to the
description of a Bose gas at finite temperature, with density o, is of type I if
and only if o is different from zero only on a set of Lebesgue measure zero.
In all other cases, o is a factor of type I11.

b) Two algebras o7, and o7 , associated with densities p;, p, are unitarily
equivalent if and only if they are isomorphic.

c) Two algebras 7, and o, are isomorphic if® the ranges of the two
corresponding density functions o, p, contain the same open intervals and
the same isolated points.

7. Relativistic Neutral Free Field, Spin Zero

A relativistic neutral free field ¢ with spin zero and mass m is [16]
a distribution with values (unbounded) operators on a space 5, and
satisfying the Klein-Gordon equation. In other words, if g, 1€ Z,(R%)”
one has

¢ () is an unbounded operator on S

d(A) =1 (A);  S(f + 1) = d(f) + S ()
2 3 2
(O +mAD =0 Vi Dz%ﬁ‘?%@

and all the ¢(f) have a common dense domain of definition. For all §,
¢ (f) is essentially self-adjoint.
It is further assumed that there exists a vector £ € J# such that

$MQ=0 i T®)|p_yrrm—0.
Clearly ¢ () = ¢(£,) if £, (p)|pe— me = f3(P)|pe— me; this allows an alter-
native description of the field, at “‘a fixed time”, using canonical fields

éo and 7, at =0, considered now as distributions on 2,(R3). The
connection is given by

mo(h) = ¢ (1) o (k) = ¢ (&), AP R, 1€ DR

where T, (p) |- yrras = b (D) = 5 (D)lp, = — e -
The vector {2 satisfies
[¢0((—l72+m2)h)+ino(h)].Q=0 Y &< 2D,(R3

2 S o
where V =i£a_x?’

It can be shown that the field acts irreducibly on 5 ; % () is there-
fore the smallest Von Neumann algebra o7 (R3) affiliated with ¢,(%),
7o(h) (in the sense that it contains all the elements of the spectral
families of the essentially self-adjoint operators ¢ (), 7o (k).

& These conditions are likely to be also necessary. One would need for the proof
the extension to the c.c.r. of results recently obtained by R. Powzsrs [12] for the
c.a.r.

7 Space of real infinitely differentiable functions with compact support.
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The free field can be alternatively described (“‘equal time” formula-
tion, see e.g. [6]) as a representation of the canonical commutation
relations (i.e. as a Bose system) over #2(R?). The vector £ will play
the role of “no particle” state and the representation of the c.c.r. at
hand will therefore be Fock. To every f € .%,.(R?) one associates a pair
U(f), V(f) of unitary operators on 5, according to:

f=U), V),
U(f) = Up(w™'2)) (35)
V(i) = Vr(o'?f)

where w = (—V2 4+ m2)¥2 and Up (&), Vy(&), £€ &, (R3) define the Fock
representation of the Bose system over #2(R?), with 2 as no-particle
vector. The mapping defined in (35) realizes a representation of the c.c.r.
over #?(R3). Indeed, with f, g ¢ &, (R3) (dense in #Z(R?)) one has

U(f) Vig) = V(g) U(f) ™" ho"0 = ¥ (g) U(f) einth0)

The choise of the representation (35) is, as well known dictated by
“covariance’ conditions (under the action of the Lorentz group) (see
e.g. ref. [19]). Indeed, for this representation the following is true; let
. UG —1
lim —

lim =igo(), lim TH=L iz

Denoting by £€&,(R%) any function such that ?(p)]pozym
= 1(P)|p,= — Vi = [ (P) a unique field ¢(f), satisfying ¢((D + m?)f)
=0 Yic S (RY is defined over &, (RY) by ¢(f) = ¢o(f); &) = 7, (f).
The field ¢ (which can be identified with the one introduced at the

beginning of this section) is real, satisfies the Klein-Gordon equation
and the “covariance” condition

UA) ¢(g) UH(A) = d(Ag), g€ &L (RY,

where (Ag) (z) = g(A~x) and U (A) is the representation of the Lorentz
group which is defined on s# through (35) [5] from the unitary mapping
g—Agin F2%(RA).

One could have chosen instead of (35), the representation
f=Ur(), Vr(f). (35)

This would correspond, in the physicist’s terminology, to define the
field using the Newton-Wigner localization [20], i.e. labelling the points
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in space-time using the Newton-Wigner position operator. One would
then loose covariance of the field (and locality, i.e. commutativity at
space-like points, whether associated to the same time or not).

8. Local Rings, “Equal Time* Formulation 3

Here, we are interested in the structure of the algebras associated
to open regions @ C R? (local rings at fixed time). The algebra =7 (0) is
defined as the Von Neumann algebra generated by all the U(f), V(f),
€ 2,.(0). Alternatively one can define it as the smallest Von Neumann
algebra affiliated to all ¢y (f), 7, (f), f € Z,(0). Notice that £ = # (R?)
= Hp(0)® Hp(OL) where (0@ 0L)=R3 and H#p(D) is the Fock
space of the Bose system over D. The Von Neumann algebra generated
by all Up(f), Vr(f), f€ 2,(0) is therefore #(£*(0)® 1, a type I,
factor (with I, commutant). This in particular determines the structure
of the local rings, when local is understood “‘a la Newton-Wigner”. They
are all type I, factors, with I, commutant. We already know [3] that
this is not the case for the algebras &7 (0) defined above. To determine
the structure of /(@) we proceed as follows, paralleling the analysis
given for the free Bose gas at finite temperature. The step of passing
from the oy to the A;, B; (Eq. 30) will correspond to writing the U (f),
V(f); [ € 2,(0) as a function of some Up(&,), Vp(&;), where the &; will
be an orthonormal complete set in some Hilbert space h. The Uy(§,),
V#(&;) form the Fock representation of a Bose system over h, and this
representation is of infinite-direct product type. Such will also be then
the representation given by U (f), V (f) if the choice of the &; will have
been judicious enough. It seems appropriate (we are looking for the
analogous of a;, #;, 4;, B;, in Eq. (30)) to focus our attention on four
(not orthogonal) subsets of £, (R3), A9, ¢ =1, 2, 3, 4, defined by

MY = {07 2], € D,(0),
MY = {w'f, f€D,(0)},
MY = {w'g, g€ D,(01)},
MY = {0, g€ D,(0)} .

Here w is the operator which acts as multiplication by V}Bﬁ;ﬁ on the

(36)

S 3 2
Fourier transformed of f; formally w = ]/— Veqem?2, V2= 3 a—axg— (m is
i=1"""
the “mass” of the field).

8 We shall study here only the “equal time” formulation. The covariant for-
mulation, in which local rings are associated to open-regions in R* (with the Min-
kowsky metric), can be treated in much the same way. We plan to come back at
some other time to the structure of the local rings in the covariant formulation.
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We shall denote by .#; the closure of #? in the topology of £2(R3).
If the boundary of @ is sufficiently regular, one has ZZ(R3) = A, & A,
— My M, (3]0

With out choice of w, all sets .#9 are mutually disjoint, since
(— V2 4+ m2)1/2 is an “antilocal” operator [17] in the sense that

(=2 m?f=yg, [ 9¢2,(0)
implies f = g = 0 for any open region ¢ with non empty open complement
0L . Also, since w is closed and >m, A3 = M,, M= M, We shall not

use for the time being the explicit form of w nor its antilocality. This
will allow us to have the structure of .27 (0) also for more general situa-

tions and for the case in which o is local (e.g. for the non-relativistic free

field theory, where w = — {—;—) and is local, in that wf€ 2,(0) if

1€ 2,(0).

The vectors in .#, determine® a linear operator ¢ (unbounded, in
general) from a subset of .#,, to A{ (= L2(R3) © #,). Indeed, every
vector 7 € .#, admits a unique decomposition:

We want to define ¢ by

n==E+g- & @iy, ncMyo (Myn i) (37)

This mapping is certainly linear; to show its existence we have to prove
that, if 9" =&+, 0 € My (Myn Mi), then (' = ¢ - &,

One has %' — (' =9n—¢ ie. 9 —n=_{—¢-& But A&>¢
— @+ &, therefore ' — ¢+ &=0. The operator ¢ is not necessarily
densely defined on .#;. Indeed, one can check that the closure of its
domain of definition is .4, © (M, N A7) (in other words, if £,€ A, N M5,
it cannot be approximated by a sequence of &, which can appear in (37)
with a suitable choice of 7,,).

Also, the null space of ¢ is A4, N M,; indeed, if ¢+ &= 0, one has
Myd1 = &€ M. One should notice here that, when w is anti-local,
M) MY =0, but one can have ;N #,= 0. The operator ¢ is
closed; indeed, let £, —~ &, ¢ - &, > {. Then &, — ¢ - &, converges and its
limit, %, is in .#, (since .#, is closed).

® Since #,C .#7, the problem is to show that .#; = 4, i.e. that every
0 € L2(O)NZDL? can be approximated by a sequence of functions a,, o, € 2(0),
such that w'2(c, — o) — 0 (in the topology of #2(0)). This can be proved at
least for open regions @ C R?, such that @ @ (the boundary of 0) is piecewise differen-
tiable (see e.g. [3]).

The structure of /(@) which we shall exhibit holds actually independently
of this restriction; only the duality relation and the fact that < is a factor depend
on it.

10 This analysis can be found in Ref. [3]. We give it here for completeness.
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Therefore 1 = & + { for some € #,, and { = ¢ - £ g.e.d. One can
also check without difficulty that the closure of the range of ¢ is

Mi© (Myr M) © (My N\ M) .

To semplify the discussion, we introduce now the notation

N 1= M. 1N M. QL ’

Ng=MF N My,

N = My My, (38)

N y=M& N M-

Ng =M O (N & N),

Ng=Mz O (Ny®N)).
In what follows we shall be mainly interested in ¢,, the restriction of ¢
to 5. The operator ¢, is closed, linear, densely defined (on A7) with
densely defined inverse (¢, has no proper eigenvalue zero!) and with
dense range (in A7%). It admits therefore an adjoint [18], denoted by
@, a densely defined closed linear operator from A7 to A,

Moreover, the properties of ¢, guarantee [18] the existence of the
polar decomposition

®o = Uo(@§ @o)t/? (39)

where U, is a unitary operator which intertwines A", with A7.

9. The Structure of the Local Rings

We are now in position to discuss the explicit form of the algebras
associated to a given open region 0 ¢ R3. We assume of course that 01
(the interior of the complement of ¢ in R3) is not empty. Otherwise
A (0) = of (R3) = B (H) since the field ¢ is assumed to act irreducibly
on .

Corresponding to the decomposition

6
LR = P A,
n=1
one has a decomposition of the Fock representation
Up(f): V() e T (RY)
in the direct product of the six representations

Up(f®), Vp(f®), fOcAH;t=1...6

6
the i acting on %, where # = (X) #%. The ring o7 (0) is generated,

=1
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we recall, by the representation of the c.c.r. defined by
{Uvn. vig} 1ge2(0),
U(fy = Up(w™12); V() = Vp(o'?f).

Equivalently, o7 (0) can be considered as generated by

Ur&), Veln)}, &€y neMy. (41)
Indeed, {w=%2f;fc 2(0)} is dense in .#; (for the Z2(R?®) norm),
{w'?f; f € 2(0)} is dense in #,, and, for the Fock representation

{Up(a), x€ X}~ ={Up(@), 2" ¢ X'}~

(and the same for Vp) where X and X’ are both dense in (a subspace of)
h, the space over which the representation is taken. The algebra =7 (0)
factors therefore in the direct product [7]

(40)

c 14
7 (0) = ( ® L0 w)) ) 2,(0) (42)

i=1...4
where o7 (0) acts on #5 @ H.

It is immediately seen that &/ ® (0) and 7@ (0) are maximal abelian
algebras in AP, AP respectively. We sketch the proof for o/® (¢). One
has V(0) = Land Ay N (My N M3) = 0. Therefore o7 ® (0) is generated
by {Up(&); &€ My M5}, and this is a maximal abelian algebra. The
algebra .o/ @ (0) is composed of the multiples of the identity in %, i.e.
{c- 14} Indeed, (Mi{ N My) N My =0 = (M{ N Ms) N My; therefore
W (0) is generated by Uz(0), Vz(0), i.e. by 14, The algebra 7@ (0)
is associated to the Fock representation of the c.c.r. in #%, therefore
IO (O) = B(AHP). To see this, it is enough to notice that, if ; is an
orthonormal complete basis in .#; N A ,, 27 (0) is generated by {Up(L,),
Ve(}, ie. by {Ur(:), Vp(C)} Vi.

One can therefore write
L (0) =60 €0 B(AD)® (1P} ® 7,(0) (43)

where %, €, are maximal abelian.
It remains to be determined the structure of 27,(0). From (41) one
sees that 7, (0) is generated by

{UpE), Vel + g O} E€AN 3N Dy (44)

Consider now the algebra % (0) defined in the same way as &7 (0) (see
Eq. (41)) but now with & ¢ A3, 5 € M7 ie. B(0) is generated by

{Up(&), Ve, S My, nCdi. (41)
One checks without difficulty that Z(0) decomposes according to
BO)=%,8 €, ® {c- 10} ® B(HP) @ B,(0) . (43")

7 Commun. math. Phys., Vol. 9
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The algebra %, (0) satisfies %, (0) > %,(0), where %,(0) is generated by

{Urn — gin), Vem)}  n€AN g Do (44)
To see this one has only to recall that
n— o€ My © (My N M)D (My M) . (45)

One could show at this point that
{n— @in;n € Doy} = My © (M3 N M) ® (Mz N M)
and therefore %,(0) = %,(0).

We shall see this more directly in a moment.

The next step is to construct a new representation of the c.c.r. on
HP @ A#Y and to show that it is of Fock type.

We shall use, in most of what follows, the notation # = #® @ H#®.
Apply Lemma 1 to the self-adjoint operator (@ ¢,)/2 on A";. Let D be
the corresponding operator with discrete spectrum; let &;, d; be the
corresponding eigenvectors and eigenvalues. The operator U is unitary,
and therefore the set U &, is orthonormal complete in A7.

The algebras o7,(0) and %, (0) are given by

Ao(0) = {Ug, Vi ie 1},
B,(0)={UL, VP ic Iy,
Uz = Up(&); Vi= Vg + @&),
Vf= Ve(Uoéa); Uf: Up(Uoés — 9§ Uo&))
(notice that &; € D(gf ¢o)* € Dy,)-

(46)

In terms of creation and destruction operators, one can say that
&(0) is “affiliated” to the operators
1 1
= a(é + 3P0 &) — 30490 £)
and %,(0) to the operators

1 1
Bi=a(Uy &~ 5ot Up- &) —3a* (93 UE)
One checks without difficulty that
(o, 0‘?‘]— = 0;; = [P, ﬁ;k]*
all other pairs commute.
Define now:
Uf = Ui‘ )
VA= VeV = Vpli+ @0 & — AUy &),
Ul =UNU = Up(Uy - & — g5 Upls + 2:&)
VE= V.

(47)
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One checks again without difficulty that the {U#, V#} and {VE, VB}
define two representations of the c.c.r.
We set 0,= @+ & — L Uo&i = Up((95 9o)/2 — 4;) &
From Lemma 1 we have
%‘ logf* < o0

and the argument given in § 3 can be used to conclude that the represen-
tations defined by the {U#, V#} and {UF, VB} are of Fock type.
We can then write

2
«%:@%“ .Q=®Q“ fizfg,i@e%gi, Qi:QA‘-®QB‘
i T

and we have
Ud=1@: @ (U4 litlg: - (48)
and similar expressions for V4, UB, VB.

Inverting (47), one notices that U?, Uf, V%, V? are functions of
U4, UB, VA, VB (same index ¢!). For a finite number of degrees of free-
dom, every representation is of Fock type. Therefore one can write

A B; _ i i
HGQ Hpi=H5e A
Relative to the latter decomposition, £2; is no longer a product vector.
Its minimal distance d; from a (normalized) product vector is seen to be

1
di:2(l_m)' (49)
Since {U*, V*¢} and {U%, V#} act irreducibly on #°%, #% respectively,
we can finally write the expression for 7,(0), %#,(0) on Ny ® N as
follows
Ay O)={0@ - (BANOD®L4y...,i=12,..},

By(0)={I® (I BAPN@Liyy...,1=1,2,...}
where

(50)

W@ Ny = QAW @ HD),
D=0, QcH#VeF?,
i
f.!‘eﬂglﬁsf‘l =1 2-fe =2 (1 B W}F—Z) ’
One has then %,(0) = ;(0) > B,(0) > %,(0), and therefore %B,(0)
- %11(3121 (50), (43), (43") one sees [10] that 27 (0) is of type I if
2 (1 - —1—) <o,

7 V1 + %
7*
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of type III otherwise. This means that 7 (0) is of type I iff ¢* ¢ is in
trace class or, equivalently, iff .#L © (ML N M) is compact. 1t

We specialize now to the case of interest, namely w = (— V2 + m?)1/2,
m = 0, and consider only open regions @ C R® with piecewise differenti-
able boundaries.

In this case, as we have already remarked, one proves [14] that

M=oy €20},

it ={ a0
This has the consequence (sce (41), (41')) that o/ (0L) = %(0). From
(43), (43"), (50) and the fact that %, €, are maximal abelian, one derives
the duality relation

' (O) = o/ (0L) .

From the explicit form of .&Z (€) one also sees that there exists a unitary
operator V such that o7 (0) = V.o/(0L)V-1. Moreover, if m > 0, the
algebra o7 (0) is a factor. This amount to say that 4N #y=0
= M5 N M.

To M{ N My= 0: notice that o = m > 0 and that o is closed.
Therefore, if & € 45~ N My, there exist f € F2(0), y € L2(0L) such that
&= }/&;f = [/2[) x. Multiplying by the (bounded) operator w—!/% one has
f =y which implies f = 0, £ = 0.

To M, N M+ =@; this is equivalent to (M, .H,)~ = L2(R3).
Since {w'/2f, f € & (R?)} is dense in L2 (R3) (where ¥ (R3) is the Schwartz
space of infinitely differ-functions on R?®), one has to prove that, for
every g € & (R3), one can find ¢, ¢ Z(0), 6, € Z(0+) such that

(the norm being the £2(R3) norm).

One can prove that, if the boundary of ¢ is piece-wise differentiable,
such sequences {¢,}, {J,} always exist.

Since ¢,9 € Z(0), d,9 € Z(0+) one concludes that .4, N A, is dense
in Z%(R3).

One can also prove that #i N My =0 = M, M, Therefore
L (O) = o (0).

Finally from the Lemma 3 one concludes that o/ (0) is of type IIIL;
indeed, @ @, cannot be of trace class since the operator ¢, is unbounded
[14]. We summarize the result of this analysis in

Proposition 3. The local ring o (0) associated, in the fixed-time de-
scription of the neutral scalar field, to each region O CR3 with piece-wise
differentiable boundaries, is a hyperfinite type 111 factor, isomorphic to its

1 In the topology induced by the use, as norm, of the orthogonal distance of
7 & MPO (MP N M) from ;. Here 45 is the unit ball of #,.
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commutant, and obtained as direct product of type I, factors. Moreover
o (O+) = o' (O) and the factors o (0,), o (0,) are isomorphic if the cor-
responding operators ¢f @, and @F @, (Eq. (37)) have the same essential
spectrum (i.e. the closures of the two spectra coincide).

10. Relativistic Free 1/2 Field, Mass Zero
Equal Time Formulation

A relativistic free Fermi field of spin 1/2 and mass zero in the Fock
representation is conveniently described at fixed time (see e.g., ref. [19])
by a representation on a Hilbert space # of the canonical anti-commuta-
tion relations over a four-fold copy of % (R?). In our notations, this will
correspond to have four types of creation and destruction operators which
are distributions on % (R3), and can be physically associated to particle
and antiparticle, each existing in one of the two possible (orthogonal)
helicity states. More precisely, the field we are considering associates
to each function f¢ ¥ (R%) ® €* (four-folf copy; f= (f, fa s f4)) four
creation operators defined by B

vl =2 (Vl_ﬁf‘f) b (Vﬁl —ng f)

and the corresponding destruction operators.
The notation used in (51) is:
. 2 \~12
() = #)) —i =y L
b= @O m=i (=X )
and e.g. the suffix 4 in a, indicates that a; “destroys” a particle of
helicity + 1.
It should be noted that, in (51), all operators acting on f, are bounded.
One checks without difficulty that

[wEW, v ()]s = 0:5(f, 9)

all other anti-commutators vanish.

The algebra o7 (0) associated to the region ¢ C R? is now defined by
Eq. (5) when ¢ 2(0) (infinitely differentiable functions with support
in 0). 1t should be remarked, as was already done for the relativistic
free spin zero field, that this definition of the local field (and of the cor-
responding local algebra) is the only one compatible with covariance;
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other choices are of course possible, but perhaps less justifiable here,
since there exists no “position operator” for a system of mass zero and
spin 1/2. As seen from (51), the study of the structure of .« (¢) decouples
in the study of the (obviously isomorphic) algebras generated by v, (f),
wo(f) and by p;(f), p,(f) respectively. This is a simplifying feature of the
zero-mass case, and justifies treating this particular case first.

We shall denote by 27,(0) the local ring generated by v, (f), vs(f);
one has then, modulo spatial isomorphisms,

oL (0) = Ly (0) ® £,(0) . (52)

It will be expedient to introduce a suitable operator ¢ from £2(0) ® C?
to £2(01) @ (2 We shall use the following notation.
Two (bounded) operators E, F are defined from #2%(R%) @ (? to

Z*(R3) by L
14 ny L S
E-f= l/“—*“fl 120 T ng) fas

T ny A+ ing
F'f:‘/ 5 h TR g 2
The operator ¢ is then defined by
E-f=E-¢-f. (54)

It will be checked now that (54) does indeed define an (unbounded)
operator @ on a dense subset of £%(0)® €? One has to make sure
first that

(53)

E-g=0, gcZ%0')® (C?
implies g = 0. Now,
1+n LY + Ny
E-g :V CR T2+ ) P2

and this can never vanish, due to the antl-locahty of [¢V/|. The proof of
this statement is easily obtained using the techniques of ref. [17], and
is given explicitely in an appendix. To see that ¢ is densely defined, one
notices that, again due to the anti-locality of the n; for a dense set
{f} in £?(0) one can find a solution (see appendix) to the equation

1+4+n 14+n Ny + iny
V=) e J€2A0); & ne 220t
and for another dense set one can find a solution to
My + 17y . ‘/m mtiny
J2(1 + ny) 5 ¢~ V2 + ng) 1

Therefore (54) admits a (unique) solution for a dense set in £2(0) ® (2.
The operator g is closed ; this follows from the uniqueness of ¢ as defined
in (54) and from the fact that £ is bounded.
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Again uniqueness of (54) implies that ¢ has no null vector and has
dense range; ¢~! exists and is densely defined on #2(0+) @ C?.

Let @* be the adjoint of . We want to prove that, on its domain of
definition, ¢* satisfies the equation

F-y=—-Fo*y (55)
where y € Z%(01) @ C.
Notice that, for f, g € #?(R?% ® C? one has!?

(t,8) = (B, Eg) + (Ff, Fg) . (56)
Using (56) one can see that, for every % € D, and f € D,

FQ+ ¢¥x, F(l—@))=0.
The proof of (55) is now reduced to showing that {F (1 — ¢)f;f€ D,} is
dense in £2(R?). Let (0, F(1 — ¢)f) = 0 Y ¢ D,,. Using the definition
of ¢ one obtains

( “ i (he (<pf)1))=0 VicDg.

The set {f, — (¢ );£¢€ D¢} coincides with Dy 112, As (1 — ng)~1/2
has dense range, it follows ¢ = 0 q.e.d.

Since ¢ is densily defined, closed and with a densely defined inverse,
one has [18] the polar decomposition

P = Ulg* g
where U is unitary from £2(0) ® (2 to £2(01)® C2.

11. Structure of the Local Algebras

Once again, we shall make use of Lemma 1 to approximate (¢* @)¥2
in the Hilbert-Schmidt norm with an operator D with discrete spectrum.
Let &, A; be the eigenfunctions, resp. eigenvalues of D. Let 7, = U§&,.
It is seen from (51), (52) that the algebra .7 (0) is generated by the
operators e, of, where we have chosen

w=a-(B-&) +bL(F-&) (57)
and the algebra o7 (01) by the operators §;, with
Bi=bi(F-n)+a*(E n,). (67"

(Recall that the &; from an orthonormal complete basis in #2(0) ® €2
and the #; from an orthonormal complete basis in Z2(01)® (C?; and
that the weak closure of the Fock representation of a Fermi system does
not depend on the particular basis chosen).

2 (x,y) always stands for the scalar product in the Hilbert space to which
%, y belong.
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Introduce now another representation of the c.a.r., defined by the
operators

4=

/1 o ﬁ%

|1 2

+

(58)
b= ll+ jieg WP

One has clearly [4,, 471 = 0,; = [B;, Bj]4, all other anticommutators
vanish. In terms of a_, b; one has

1
;= ST —— E ppp—————— * F
A= i B S B ) T VLT £ F o),
- L [ ) o L& F ey — -
Bz’ - ]';1 T /.%2 a” ()‘1E771 E §1) + l/rl T Z? b+(l1F 771 F Ez) .

Notice that
F-n,=—F-qg*n=F(p*)?E&,,

E-&=Eqg-&=EBU(p*@)E;.
Therefore
2 AF - & 4 F oyl = [ PP Tr((¢* @)V — D)? < oo,
X 2By — B &P = [B]? Tr((¢* @) — D)? < co.
This shows that the representation of the c.a.r. defined on 5 by the
A;, B;, is of Fock type.
One can therefore write the space 5 as an infinite (incomplete) direct

Q
product (A4 @ H#5) relative to 2, the “vacuum” of the representa-
tion given by 4,;, B,.

From (58) one sees that «;, f; arc functions of 4,, B; (same index 7!).
On 41 @ % the operators «;, f; define an irreducible finite-dimen-
sional representation of the c.ar. One has therefore 4@ H'5:
=i H % and the o; (resp. B;) generate a (type I,) factor isomorphic
to B(H%) (resp. B(HY)).

The same arguments as given for the free Fermi gas??, lead here to the
following conclusion, if one recalls the connection between o7, and 27 as
given by (52): &/ (0) can be written as

AO)={l® @ BHRL)®  i=12..} (59)

02
on # =XRAHAVe HP), Q=R0Q, ¢ AP AP and o (0) is
) 1

K]
spatially isomorphic to
A0 ={e - @LeBHP)e - i=12..} (60
on the same space.

15 And the fact that Z(#) @ B(H) = B(H @ X).
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The algebras o7 (0) and o7 (01) satisfy a weak duality, in the sense
that there exists a unitary operator ¥ on # such that

S(OL)y=VL2'(O) VL. (61)
As for the type of <7 (0), it is of type I if 3}’ d, < oo, and of type III

otherwise.

Indeed, type II;, which could be possible for an hyperfinite algebra
of the type given by Eq. (60), is excluded here by the fact that a local
ring can never be of finite type [21].

12. Relativistic Free Fermi Field, Spin 1/2, Any (Real) Mass

This slightly more general situation is treated along the lines of the
zero-mass case, with some additional technical complications. We shall
therefore not bore the reader with detailed computations and shall limit
ourselves to a brief sketch.

Let E, F be defined as in (53)'* and let A, B be the operators from
A (R = L2(R?) ® C*to L2(R?) ® C? defined by

l/w—mE Vw+m VwLmF Vw~m

B = (A =
Vw—mF Vw+m ‘/w—{—mE, l/w—m

where @ = (p® + m2)/2, p? = — V2.
The field relative to spin 1/2, mass m (m = 0) is then defined [29]
at equal times associating to each function f € #" @ 4 an operator

p(f) = a(4]) + b*(Bf) (63)

where a, b give two Fock representations over # (R%) on a Hilbert
space .

One has [a(f), b(g)l+ = [a(f), b*(9) 1+ = 0 V], g€ A (R¥); Z(#) is
the smallest Von Neumann Algebra generated by the y(f), f € o (R3).
If @ CR3, the local ring associated to O is the algebra generated by all
p(f), as defined in (63), when f has support in 0 (i.e. f € " (0)).

We define now an (unbounded) operator ¢ from a subset of 2" (0) to a
subset of £ (0+) by

(62)

A-f=4-9-f [feA(0). (64)
14 Tt should be noted that ( 1% m, — %) and (Vl . %)
Ng — M3

are the solutions to the equations |p|~1(o - p)z = Az to the “eigenvalues” 1 = +1
and 4 = —1.
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The reader will have no difficulty in convincing himself that, when
m = 0, the ¢ defined by (64) has the same spectrum as the one intro-
duced using (54).

Again, to show that (64) defines an operator ¢ one has to make sure
that 4¢g = 0 implies g = 0 if g € " (0L). We shall see that this is indeed
the case for any region 0, and, setting @, = @, we will also have shown
that @~!is defined on the range of ¢.

Let g € A (0;); without loss of generality we shall take g twice
differentiable (otherwise we shall consider instead ¢’ = ¢ * g, where ¢
is #* and with sufficiently small support and ¢ is chosen so that ¢ x g = 0
= ¢ = 0 and support ¢’ C 0y, R? © 0] =+ 0).

One checks then that 4g = 0 implies

P31+ (P + iDa)ga = (0 + m)gsy (65a)

Ps9s + (P + iP5)9s = (0 — m) g, (65b)
where g = (91, 95, 95, 94), 9:€ L2(0), pr = za%k k=1,2,3. The anti-
locality of w, combined with (65), gives ¢g;=072=1...4, ie. g=0
q.e.d.’.

Together with the fact that 4 is bounded, this guarantees also that
@ is closed.

One proves, much in the same way as for the zero mass case, that ¢
is densely defined and has a dense range. Also, if ¢* is the adjoint of ¢,
one proves that

B-g=—B-gp*-g, gcA(OL)N Dy . (66)
The proof of this equation is easily adapted from the proof of (55) when
one notices that A*A4 + B*B =1 and therefore (f,g)=(4f, A9)
+ (Bf, Bg) for every pair f,g¢€ 2 (R®%. Since ¢ is densely defined,
closed and with densely defined adjoint, one has the polar decomposition

p=Ulp* g (67)
where U is unitary from ¢ (0) to 2" (O1).

The analysis of the structure of o7 (¢) parallels now the one given in
§ 11, the &; will now be an orthonormal complete basis in " (0) and the
7; an orthonormal complete basis in 2" (01). The algebra 7 (0) is then
completely characterized by (compare Eq. (59))

LO)={I0 @ FBHFMeL)® -+ i=12..3. (59)
We can therefore state

15 Tt is instructive to compare this situation with the non-relativistic one. There

7 —
4= ( B 8) , B= (g ?) . The operator ¢ is then defined only on the vectors
f & o such that f; = f, = 0 and is zero on such vectors. This will imply that, in

this case, & (0) is of type I.
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Proposition 4. The local ring o7 (0) associated, in the fixed-time de-
scription of the free Fermi field of spin 1/2 and mass m = 0, to each region
O C R3, is a hyperfinite factor, isomorphic to its commutant, and obtained as
direct product of type I, factors.

Moreover 7 (0) and o7 (0L) are spatially isomorphic, and the operator
inducing the isomorphism can be chosen hermitian. Two factors 7 (0;) and
A (0,) are spatially isomorphic if and only if the spectra 2y, X, of the cor-
responding operators ¢F @, and @f @, have the following property: 5, = 5,
where =,, 5, [0, 1], is the closure of the image of X; under the map

z—z, 02, z—»2, 1220 <.

The factor 7 (0) ts of typel iof ¢*@(p*@ + 1)=2 is in trace-class; of
type 111 otkerwzse

13. Relativistic Free Field, Any Mass, Any Half-Integer (Finite) Spin

We shall now indicate how the analysis developed so far can be
applied to determine the structure of the local algebras associated to
relativistic free fields with any (positive or zero) mass and finite half-
integer spin. In the following paragraph we shall consider the case of
any finite integer spin; similar analysis can of course be carried out for
infinite-dimensional (unitary or not unitary) representations of the
Lorentz group, but we shall not work them out explicitely here.

A relativistic free field of spin s -+ 1/2, s integer = 0, will be described

at t= 0, associating to each J ¢ Z2(R3) ® (?s+2 an operator y(J)
defined by?®

pd)=ad-J)+0*(B-J). (68)

Here A, B are continuous operators from £2(R3) @ C2(Gs+2 to
L2(R3) @ (2512 defined as follows.

Let § = (f1, ), Fi€ L2(R%) @ (22,

Let u*(p) € L2(R3) ® (25+2 be the normalized solution of the equa-
tion
1 1

?,...—S——?

1
= uk = ku®, k=s+5, s-—

where X; ¢=1,2,3 are the generators of the irreducible (2s + 2)-
djmensional representation of the rotation group.

- — ) 1£k>0
w, k:‘/w m wk(iV); )k = 8(k)l/w2wmuk(“7),6(k)={_1 k<0

16 The fleld we shall introduce does not satisfy, for s > 0, any linear differential
equation, for m == 0. For m = 0, J must be taken in Z?(R%) ® (2, independently
of s, and the field satisfies a differential equation of the Weyl type.
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A Y R R T
A4, =|: .
uiﬂ:),—s—lﬂ, e, u‘gia)*:éx—l/Z
Then A, B are defined by
A-T=A, Ji+ A 7y,

B-J=—A* - 7, + A% - 7,.
In (68), {a(#)}, {b( 7))}, F € ZL*R? @ (2s+2 provide two Fock re-
presentations of the c.a.r.1? on a Hilbert space 5 ; they satisfy
[a( ), b(D)s = [a(F), b* (@] =0 V 7.9

and the Von Neumann algebra they generate is & (o). It follows from
(68) that y(J) satisfies

and define

(69)

@), 9@ =0, [p@d), p*(6)]: = (I, &) . (70)
Indeed, one can easily verify that
A*A4 + B*B=1 on ZL*R3%® (?s+2. (71)
At time ¢, the field is defined by
v =), (68")

I(t) = (J1(t), Fo), Fit) = [ Folp) 6P T 700 dp, o = (p2 + m)2.
With these definitions, the distribution-valued field
P(@0): [ @, ) IE@) Pr=p,()
satisfies the Klein-Gordon equation, and is local, in that
[p(@, 1), p* (@, )]+ =0 if @—72—(—t)2>0. (72)

Eq. (72) can be easily checked, and is due to the fact that, on Z2(R3),
_'_

m . w —m . . .
Sa etot 5w e~t@tjs “local” in the sense that

(%9 7)=0 if d(supp¥,supp 7) > |f|
where d(0, ¢') = inf | — 2’| and supp % is the support of the function Z.
z e

the operator 2, = 2

Ben
This “locality” also explains our choice of the operators 4, B in (68).
We could have chosen instead, e.g., 4’, B’, defined by

A-J=A4A- g,
B -J=A-g,.

17 We choose here to quantize our field according to canonical anticommutation
relations. If we do not insist on having positive energy, we can substitute in (68)
b* with b and quantize according to canonical commutation relations. We would
also in this case see that the local rings are factors of type IIT and of infinite-
direct product type.
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Eq. (70) still holds, but the field 3’ (I) is no longer local (in R*); the rings
associated through the field ¢’ to each open region @ C R? are of type I.

We are interested in the structure of 7 (0), @ CR3, where 7 (0) is
the Von Neumann algebra generated by w(J), J € £2(0) @ C*@s+2),

The proof that 27 (0) is of direct-tensor product type, is now straight-
forward.

Define a linear operator ¢ from £2(0) ® C*#s+2 to L2(01) ® C*s+2)
by

A-J=4-¢-JF (73)

where A is defined in (69).18

One checks without difficulty that ¢, as defined in (73), is densely
defined on #2(0)® €2@s+2)  is closed and has dense range in
L2(O0L) @ €2@s+2), Indeed, A -J =0, ¢ L%0) @ (232, is seen to
imply J = 0, since the equation

l/w2—|;)mf+‘/w2—wmg:0’ f,(fEEsz(@)®Cgs+2,

w —m

implies # = & = 0, due to the antilocality of }/ - ~——"

is then defined from a dense subset of L2(0Ll)® (C*@s+2 to
L2(0) ® €*@s+2) and, due to (71), is seen to satisfy

Bey=—B-g* y x€L20L)e 2@+, (74)

Once again one considers the self-adjoint operator (p* ¢)1/2, and, in the
sense of Lemma 1, an approximating operator D with discrete spectrum.
With A; the eigenvalues of D, one checks, as in § 11, that 27 (0) is of the
form
LO)={10 @ HBH)YOD®L+;...,i=1,2,...}
® 2

. The operator ¢*

i
on a Hilbert space # = (X) (H#*® X %) where |Q,| =1, S#?, A are two-
i
dimensional Hilbert spaces, and
d; = inf - 0, =|n=1
(= jnt |£8 0 — 2, [ = ]

neK;

su _Zi _l =1- L3
p(]/1+7~? ’ V‘IH%)“ 2
One can also see that &7 (0) and <7 (0L) are in “weak duality”, in that
there exists a unitary operator V, V2 = 1, such that

L (OL)y=TVL'(O) V1.
The factor o7 (0) is of type L if ¢* ¢ (¢* ¢ + 1)~2is in trace class. It is of
type III otherwise.

18 For m == 0. When m = 0, the analysis must be made some-what differently,
along the lines of § 11. We shall not repeat it here.
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14. Relativistic Free Field, Any Mass, Any Integer (Finite) Spin

As in the preceding paragraph, we shall give a brief sketch of this
general case. While for spin zero we restricted ourselves to the neutral
case, we shall consider here also charged fields. We shall describe a
relativistic “‘charged” free field, of any mass and spin s, s integer = 0, in
the following way.

We associate, to each # € & (R3%) ® R2s+1, two (unbounded) opera-
tors on £ 19

oL (L
$(F) = “<V5 45)+b (W 47),
7(#) = ifa(f 4 £) - (/o4 5]
where a, b are the “destruction’ operators of two Fock representations
of the canonical commutation relations, which together generate % ().
The (2s + 1)-dimensional real orthogonal matrix 4 is defined, in analogy
with the half-integer-spin case, by

UL Uy
A=|": . (76)
Ut U
Here Us is the real solution of the equation

(X ) U =s[p| U
(3 k=1, 2, 3 are the generators of the irreducible representation of the

(75)

. 0
rotation group with dimension 2s + 1) and one sets, in (76), p;, = ¢ )

Ly
k=1,2,3.
One extends ¢, & to & (R?) by linearity, and to . (R*) defining
1 1
bl F) =a( A por (o AS),
Jeo Ve (77)

m( ) =ia(fwd g)—it*(Jod g-).
One checks that

0 () =i $u(F), FC L (RY @ 2ot
that ¢,(#) is local, since

[$:( ), 2 (F)]-=0 if (7, F)>[t—1],
d(F, f) = inf [& -7

rEsuppJ

E’esuppJ’
and that ¢ (2, t) defined by ¢,(#) = [ Z () ¢(x,t) d3z is a solution of
the Klein-Gordon equation to the mass m. Equivalently, one can describe

where

19 The notation used is a*( #) = (a(F£*))*.
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the relativistic free field as a Bose system over Z#2(R3) ® C2s+1 (ie. a
Fock representation of the canonical commutation relations). To each
J € Lp(R3) @ R2@s+D) one associates a pair of unitary operators U (J),
V (J), according to
I-U@d), V),
Ud)=Ugp(w~12A-J), (78)
V() > Vp(w?A-J)
where Up(J), Vy(J), J € £%(R3) ® R2@s+D) define a Fock representation
of the Bose system over #%(R3) ® R2@s+1), with £ as no-particle state.
In(TT)A-J=(4 #,; A 7,) where Z%(R?) ® R2@s+1) 3] J = (_7,, 7)),
.6 %% (R @ R2s+1 and 4 is defined in (76). The mapping defined
in (78) gives a representation of the canonical commutation relations;

one checks indeed that
Ud)V(6)=TV(G)UQJ) o
UHUG=UJF+6), (79)
VA V(e =V{J+6).

The explicit relation with the description in terms of ¢ (J), 7 (J) is given by

YOD =1 — a( ) + a* (o) + b (F2) + b( S

A—=0 1

. V@A)~ 1
tim YD =L _ o (g — () — b2 () +5( S,
I=(F: 79 -

The local algebra o7 (0), associated to a given region ¢ C R3, is defined

as the Von Neumann algebra generated by U (), V(J), £, € Dz (0) @ R2st1,
The analysis of the structure of .7 (0) is now performed along the

lines followed in § 9. The main difference consists in taking functions

from 2(0)® (?s+1 instead of functions from 92(0). Let M?,

1=1,2,3,4 the four subsets of 5# defined as in (36), with the sub-

stitution 2 (0) - 2(0) ® ?s+1; M, the closure of M. Then

7=§+¢-§,

ECM 0 (MynMz)® (M; N M),
@-ECM; o (Mf N My) @ (Mi N Mg)),

neM, © (M, N M{)

defines a closed, unbounded operator ¢, densely defined and with densely
defined inverse. With @* the adjoint of ¢, consider the self-adjoint
operator g* @ on M; © (M; N Mg) ® (M; N M,)). Let D be a self-adjoint
operator with discrete spectrum, approximating (¢* ¢)¥/? in the sense of
Lemma 1. Let 4; be the eigenvalues of D. As in §9, one shows that

(80)
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& (0) is of the form
A(0)=C,0 €, ® B(HD) @ {1V} @ ,(0)
where %,, ¥, are maximal abelian and
Ay(O)={1® @ (BAHAV)YID® -, i=12,..}
® 2

K2

acts on O = X (HP @ HP) with

1 )
2(1— = inf |Q— & &, =1,
( J1F z%) kel | fredl <41

2 o(0) (and therefore <7 (0)) is of type Lif Y A2 < oo (ie. if p* @ isin

i
trace class), of type ILI otherwise. Using the explicit form of w,
o = (—V? + m?), and considering only open regions ¢ with differentiable

boundaries, one can show, as in § 9, that 7 (0) is a hyperfinite factor of
type III (since @ is unbounded) and that the duality relation holds

oL (0) = o2 (01) .

Appendix A
We shall give here, for completeness, the proof of Lemma 1 [8].

Lemma 1. Let A be a self-adjoint operator on a separable Hilbert space
H; then there exists a self-adjoint operator D with discrete spectrum and a
Hilbert-Schmidt operator T' such that

A=D+ T.
Moreover, one can choose |||T'||| < 1, where |||T||| is the Hilbert-Schmidt
norm of T.
One establishes first
Lemma 0. With A a self-adjoint operator on 3, [ any vector in
and & > 0, one can find a finite-dimensional projection P; and o Hilbert-

Schmidt self-adjoint operator T, such that A — T, is reduced by P; -
and [(1 — Ppf| < e, [[|[T4]]] <&

This lemma is readily proved as follows. Let 4 = [ 1 dE(A) be a
spectral decomposition of 4 ; one can find @ > 0 such that

l(l - (Ea_ E—a)).ﬂ <ée.

Divide the interval —a i+ + @ in n disjoint subintervals A; of length
2a/n, and let

o E(4,)f

Ie =B

it BE(A)f+0,g,=0 i E)f=0.
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Let P{™ be the orthogonal projection on the subspace spanned by the
g;; one can verify that

(L= Ppfl<e  [I(1— PP AP = o

nt/2

2
Taking n, > —l—i—;‘L and P;= PP, we have |[(1 — P/)f| <e, |||T/]]| <e
where T'; = (1 — P;) A P; + P; A(1 — P;). Obviously 4 — T';is reduced
by P, H#. q.ed.

To prove now lemma 1, let {f,} be a Hamel basis in 5# ({f,} is dense
in ). Apply lemma 0 to f,, with ¢ = 1/2 and let P;, 7, be the cor-
responding operators. On (1 — P;) S apply lemma 0 to the vector
(1 — P)f,, and the operator 4,= (1 — P;) (4 — T}) (1 — P,), taking
now ¢ = 2-2. Extending to P, # the resulting operators P,, T, by
P, &=T,-(=0,&E€ P, -, one has that A — T, — T, is reduced by
P, and P, . By complete induction, one obtains in this way a
sequence {P;} of orthogonal projections and a sequence {7';} of self-
adjoint Hilbert-Schmidt operators such that

L= (Py+-+ Pyl =270 [T = 27F.
The series 7y + T + « -+ converges in the ||| - ||| norm; let 7' be its
limit. One has |||7]|| £ 1. We prove next that 20:0’ P, =1. Let f€ o7,
Ifl = 1; given d, > 0, one can find f, such that I;ilfk] << 0,; then
n
(-fn)is

n
(I—ZPk)fn+60§2*"+6o.
1

Since d, is arbitrary, (l - Pk) f=0,Vf€# qed.
1

To show that P, reduces A — 7', notice that (1 — (P, + -+ P,_,)) #
reduces A — (I + -+ T,); therefore P,s# reduces A4 — T, since
P,1,=T,=T,P,=0 for k>n.

It remains to be proved that 4 — T has pure point spectrum. Since
P, reduces A — T and P, s# is n-dimensional, there exist n ortho-

gonal eigenvectors of 4 — 7 which form a basisin P, 5. Since 3 P, =1,
n=1
the totality of these vectors provides a complete orthonormal basis in

H#, q.ed.

The eigenvalues of 4 — 7' form a dense set in the spectrum of 4. This
follows because if A4 is closed and 7' is Hilbert-Schmidt, A and 4 — T'
have the same essential spectrum; it can also be read off easily from the
proof, when one notices that the g{*’, i = 1...n,, which are obtained
8 Commun, math. Phys., Vol. 9
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applying the induction procedure outlined above, form are orthonormal
complete basis (by construction), and are ‘“‘approximate eigenfunctions”
of A, in the sense that

[(A l(k) g(k)l <

a'®

Appendix B

We want to prove here some of the anti-locality properties of the

operators /1 -+ ng, ;:111

which appear in the structure of a relativistic

free Fermi field of spin 1/2 and mass zero. We shall follow very closely
the treatment in ref. [17]. We show first that, if f, ¢ € £2%(0), 0 any open
region in R? with non-empty open complement ¢, then

1y F imy

T f+V1-|—n;g=O implies f=¢g=0. (B-1)
3

Here
3 1/2
_ P > 2 - 9
e = [ [p| = (LZ Pk) » Pr=1 3z,

It is obviously sufficient to give the proof when @1 is a neighborhood
of the origin and is rotationally invariant. We can also assume that f, ¢
are infinitely differentiable with derivatives in #2(0). Indeed, one could
otherwise consider the functions ¢ * f, & * g, where ¢ is a C® function
with support in a neighborhood of the origin and * indicates convolution
the new functions have the desired properties and e*g=10, e*f=0
imply g = f = 0 if ¢ has been chosen properly.
The functions f, g, are then in the domain of |p| and one has

(15— ) £ = Bl g + 50 (B-2)
and this can be written
Blg=1 g.1€2*0). (B-3)
We have to prove that (B-3) implies f = g = 0.
The proof is given first for the case g, f € #2(R?) and then extended
to f, g € £2(R3), In one dimension,

|p| =¢(p) - p
where
1 p>0
¢P)=1_1 p<o.

Since g (x) = 0, |z| < & (we take O+ : {x, |x| < d}) and g € L%(R!) one can
write
(plg) @ = lim Fy(@+i2)+ lim Fyw+id) (B4
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where

a
—9()
Fl(z)=f—a§7dx', Imz >0,

0
= g(&’)
F,(2) =f%—dx’, Imz<0

F, is analytic in the half-plane Imz > 0, F, in the half-plane Imz < 0.
Since g(z) = 0 when |x| < §, F,(z) and F,(z) describe a single function
F(z), analytic in the whole complex plane, with the exception of the
“cuts” Imz =0, |Rez| > . Eq. (B-4) implies F(z) =0 for Imz = 0,
|Rez| < §. Since F(z) is analytic there, it must be F(z) = 0, which in
turn implies f = g = 0 in (B-3).

We extend now the proof to the rotationally symmetric functions on
R2. Denote by _7,, /5 the Fourier transform mappings in Z2%(R%),
L2 (R3) respectively; let K be the mapping from the rotationally in-
variant functions on R® to the symmetric functions on R! defined by

Ef=F; FQ-yzmn=1@.
Then one has '
$Q= ST QK 7,
where

Qi) =vf(»).

Therefore

na - 2 = (— 722
i aqlwaV_)i:qz Bl Ipl = (— P
Let f(x) = |p| f(x) = 0, v € 0L, a symmetric neighborhood of the origin
in R3.
Then ¢ K f and ;z %‘ qKf are both zero on a neighborhood I" of the

origin in R*; we have already seen that this implies
gKf=0 ie. Kf=0,f=0.

Finally, if f is not rotationally invariant, define for each z ¢ R® a function
f=(r), on R1, symmetric, by f,(r)= [ (@ + r0) dQw, |o| = 1. Clearly
one can choose ¢, § > 0 such that, if || < J, f,(r) = 0 when |r]| < . Also
fo(r) = |— V2 fy(r); therefore, if |z| <4, ’ia—arlfx(r) =0 when
Ir| <e.
It follows then, by previous results
fo(r) =10, for |z|<§

and therefore f(x) = 0.
8*

.0
Yo
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As a corollary of these results, one obtains that the vectors of the
form
7y + i1y

f+5m 9 H9c 220 (B-5)

form a dense set in £2(01).

Indeed, II;’—_'_;_Zig — o0, [€L20), 0€ LOL) for all g in the
| 3

Ny + 1Ny

domain of m‘

. The ¢’s so defined form a linear subset of #2(0L). If

Ny 417,

it were not dense, one could find v € £2(01), (v, T—T—Tg) =0Vy.
3

Taking ¢ = (p; — D), (1/1ﬁ—73 v, g) =0 Vgc £2(0). Therefore
Y1 —ngv€ L2OL), vE L2(0+)ie. v =0 qed.
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