
Commun. math. Phys. 9, 81—117 (1968)

Structure of the Algebras of Some Free Systems

G. F . D E L L ' A N T O N I O

Istituto di Fisica Teorica, Universita di Napoli
Istituto Nazionale di Fisica Nucleare Sezione di Napoli

Received November 14, 1967

Abstract. We give a detailed analysis of the structure of some Von Neumann
algebras which describe free relativistic fields or infinite systems of free particles
with finite density.

1. Introduction

We intend to give the explicit structure of Von Neumann algebras
which have been used in the description of some physical systems.

Some of these algebras are associated to an infinite free Bose or Fermi
gas at any temperature [1, 2]; others to relativistic free fields described
in terms of observables associated to each space-type region [3, 4].

The purpose of the analysis we are going to make, is twofold. One
will gain a better understanding of some (formal) properties of infinite
free systems with finite density, and will be able to give a completely
algebraic description of a free field.

Also, one may hope that part of the structure exhibited for the
particular cases at hand, has a general character (i.e. is shared by less
trivial systems) and may be used as a first step in the construction of
more realistic models.

We shall follow the good practice of going from the simpler to the
more complicated, and shall therefore begin with a simple example, i.e.
the free Fermi gas at finite temperature.

2. Free Fermi Gas at Finite Temperature

The general properties of this system have been analyzed in ref. (2).
It is shown there that an infinite free Fermi gas can be described in
terms of a suitable representation of the canonical anti-commutation
relation (c.a.r.). By representation of the c.a.r. on a Hubert space 2^
we mean a set a{ of operators on Jίf such that

[ai9 α,]+ = 0, [ai9 af]+ = δiS

where [c, d]+ — cd + do and c* denotes the adjoint of c. A representation
is called irreducible if the smallest Von Neumann algebra [5] "which
containes all the ai9 af (i.e. the Von Neumann algebra generated by the
α/s) is &{3tf?), the set of all bounded operators on «2f\
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Two representations on JtffW, ^f^> are equivalent if there exists an
isometry of 34? ̂  onto M^W such that the induced isomorphism of
^ p Q on SSWύ carries aψ to aψ> for all i.

A representation is of Fock type iff there exists in $? a vector β with
the properties

0,^ = 0 V i .

Let {»(/); / ζ J2P?(Rn)} define o n ^ a Fermi system [6] on &2{Hn). This
is a linear mapping Jδ?2 (Rn) ^ f -> Q (f) ζ & {^) which satisfies

where (/, g) is the scalar product in j£?2(Rn). If this representation of the
c.a.r. is of Fock type, we shall write 3^ ΞΞ 2tf%. Let {b (/)} define another
such system and se t 1

/ >** F -
There are canonical isomorphic maps φa, resp. φb, of ^(^ίf^), resp.
gS{3tf^)9 on 9S{pf) with the properties

[y(α(/)), φ(Q*(g))]+ = (f, g), [<p(b(f))> φ(b*(g))]+ = (/, g)

all other anti-commutators vanish.
This isomorphism can be explicitly given through

Here N(a) = Σ ^*(fk) ®{fk)> with {fk} an orthonormal basis of
k

N(a) exists and is independent of the basis used in its definition [6].
We shall write a(f) ^ φ(a(f)), b(f) = φ(b{f)) .
It is clear that {&(/)}, resp. {&(/)} define 2f a representation of the

Fermi system which is a multiple of the Fock one. We shall use the
notation J f ~ ffla^h. With these preliminaries out of way, we can state
the results of ref. (2) as follows :

A Fermi gas at finite temperature (in an w-dimensional space), with
no condensation and with density distribution ρ(h), k ξ Rw (in "momen-
tum" space), can be described by the Von Neumann algebra on ^a^b

generated by the representation of the c.a.r. given by operators α, α*
of the form

α(/)= a()/V~Qt) - b*(γρf)
oc*(f) = a*(γT~ρf)-b(fρf)

(one has 0 5j ρ ^ 1).
1 For definitions and basic properties of tensor product of Hubert spaces and of

the Von Neumann algebras associated with them we shall refer to [7].
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By definition, there exists in ^^b a vector Ωo such that

α(/)β 0 = &(/)£„ = 0 V/£J? 2 (R") (2)

The representation given by (1) is not in general of Fock type. We shall
denote by stf the Von Neumann algebra it generates 2. Another representa-
tion of the c.a.r. which will be of interest is the one given on tff0^ by the
operators

j (3)

jS*(/)= a(YQf)+b*(fΓηif).
The corresponding algebra will be denoted by 08.

One easily checks that

[«(/), j8(βr)]+=[«(/), β*(9)]+ = 0 Vf,gζ &*(&). (4)

It is shown in ref. (2) that 3$ is unitarily equivalent to stf and that
stf r\ £$ = {c 1} (the multiples of the identity operator on $Γajh)\ it is
also shown that stf is a factor, i.e. that &0 r\ s&' = {c 1} where *β/' is the
commutant of s/. We shall re-obtain these results as a by-product of
our structure analysis; we shall also give the connection between stf'
and <%.

3. Preliminary Results

To study the structure of the algebras si and £% we shall use the
following:

Lemma 1 [8]3. Let Abe a self-adjoint operator on a separable Hilbert
space J^. One can find on 3F two self-adjoint operators D and T, where
D has totally discrete spectrum and T is a Hilbert-Schmidt operator (i.e.
trace T* T < oo), such that

A=D+T.

Moreover, D can be so chosen that D = A on the subspace associated to
the discrete spectrum of A and that the spectrum of D is dense in the con-
tinuous part of the spectrum of A.

We shall use this lemma in the following way. Let JV be the sub-
space of Rn on which ρ takes the value 1, ££%{Jf) the corresponding
subspace of Jίf2(Rn). If Jί has Lebesque measure zero, J£2{JV) is empty.

We take for A the null operator on ^(JV) and, on &2(Rn) Q <e%(Jf)

the operator defined by multiplication by V -y-^—. Let f{ £ ££2 (Rw), λt ζ R1,

i ζ I (I the positive integers) be the eigenvalues and eigenvectors of D.
2 If condensation is present, the algebra of interest is not si but sf ® β,

where β is a type I factor.
3 We include for completeness in an appendix the proof of this lemma.
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The lemma states that A — D is Hubert-Schmidt, i.e.

- > Σ (t<> (A - D)Ίi) = Σ\ (f<> (A -

= Y'

where JΓ" is the sum extended to all i's for which fi

|/l — ρ is a bounded operator, one has from (5)

Zl(/e--M/i~^/<|»<oo.

Recall that si, £% are generated by operators of the form

and define

1

(5)

. Since

(6)

+
[α(|/i - A, \FΓ- Q U -

(7)

- [α (-

For notational compactness we have taken l/^ = 0 (i.e. A{ = α(/^)) if
/̂  ξ o^f2(^). One can easily convince oneself that the Ai9 B{ define on
Jί?^ an irreducible representation of a Fermi system over

We claim that this representation is of Fock type this is equivalent
to saying that there exists in £Pa^h a cyclic vector with the properties

AtΩ = BjΩ = 0 Viζl. (8)

I n fact, let

\Λt, i £ N

fρ)U)

[α((-j/ρ + λjj/l - ρ)/i) - b((λiγρ + j/l - ,

< > N

(9)

J/l +

For each iV", {-4̂ , ί5^} define on Jf^,b an irreducible representation of
the c.a.r. of Fock type. Indeed, A\N)Ω0 = B\N)ΩQ = 0 ίor i > N (see
eq. (2)) and all representations of a Fermi system over a finite-dimen-
sional space are equivalent. There exists therefore ΩN ξ ^ ^ δ , with the
properties

AfΩN - BfΩN - 0, V i . (10)
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One now checks that inequality (6) guarantees the convergence of the
sequence ΩN, N -> oo.

In fact,

lim \ΩN -

N> M

= 21im (l - exp | | ^ ^ l o g (l - w ^ ) \{λt ψΓ^> - )/ρ)/ ]̂ ) = 0 .

Let Ω be the limit vector. For every ί ζ I, one has

BiΩ = AiΩ = ti. (11)
Indeed, e.g.

\B^\ = lim \B^N\ = lim \BfΩN\ = Q
N-^ oo N—>oo

where the first equality follows from \Bt\ = 1, the second from Eq. (9),
and the third from Eq. (10).

Since the representation defined by A{, Bt on 3^a^b is of Γock type,
one can write4

^Ϋ ^^A,B^^ ^Ai 3 tfψ) ( 1 2 )
i

where Ω = (>ζ)(Ωf <8> Ω?), and there are canonical isomorphisms

such that A&f = B,Ωf = 0.
Notice that Jtfjj* Θ Jtfψ j s a four-dimensional space. From Eqs. (7), (3)
one obtains

^ '

4. Structure Analysis

All finite-dimensional representations of the c.a.r. being unitarily
equivalent, one has

where Ωi = Ωf ® Ω$.
One can now find a canonical isomorphism

4 See Ref. [7] or [9] for the definition and properties of a separable Hubert
space 3f, infinite direct tensor product of Hubert spaces 2tf% relative to a direct
product vector Ω = 0 Ω{, Ω{: £ ̂ f 2 . We shall only recall that, roughly speaking,
3tf is the closure of the set of those vectors, in the infinite tensor product space, which
have ith component 4= β< o n ly for a finite set of values of the index ί.
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where OL{ give a representation of the c.a.r. on 3^^ and 1̂  is the identity

The algebra si generated by the α* can be identified with si, the
algebra generated by the α ;̂ indeed, the isomorphism can be written

and the double inclusion si C^f' C&& is evident from Eq. (15) and

α * α ί — af αz . Since OL[ acts irreducibly on 2tf?* for each i, the algebra
(si and therefore) si has the form

where [-#]" indicates the Von Neumann algebra generated by the set Jί
of operators, si is therefore [7] simple (it has no two-sided ideals).

It also follows [10] from (16) that si is a factor and that si is unitarily
equivalent to its commutants si'. The factor si' is given explicitely by

The type of the factor si is determined by the sequence {dk} where

di= m£ \Ω-ξi®ηi\, ξiζ^l' ηiζ^J, l&l = |ί7, | = 1 .

One verifies without difficulty that in our case

d{ = 2 (l - sup \^=L=-, τJ==\\ (18)

(notice that ί f ^ |/2(|/2 - l) and ^ = |/2(|/2 - l) iff λ{ = 1).
The type of the factor jaf is now determined by the following well

known
Lemma 2 [7, 11]. Let {d^ be an infinite sequence of positive numbers

with exactly one accumulation point d^. Then the factor si as defined
in (16) is

1) of type IifΣ ^ <^, dΰO = 0,

2) of type II if Σ ||/2(j/2 - l) - d,\ < 00, d^ = ̂ 2 ( / 2 - l ) ,
i

3) 0/ type III otherwise.
We shall need two more results:
If si and 8$ are factors, one proves [5] that si ® ̂  is type II if ja/

is type II and 08 is type I or II, and that si ® ̂  is type I I I if ^ is
type III .

Finally, if ̂ ^ are Von Neumann algebras, one proves [10] that

[li Θ ® ̂  Θ I f + 1 ® , i ζ / ] "

iί K r\ H = 0, K + H = I (I, a, denumerable index set).
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As we have already remarked, j£?2(D4 ) is either zero or infinite-
dimensional, where Όi is defined by Di\ {k : ρ (k) = ΛJ . We can now
collect all the information we have obtained so far on the structure of si,
in the following

Proposition 1. a) The factor si associated to the description of a Fermi
gas at finite temperature is
— of type I if the density function ρ(k) takes values different from 0,1
only on a set of (Lebesgue) measure zero,
— of type II if ρ(k) takes values different from 0,1, 1/2 only on a set of
measure zero, and the value 1/2 is taken on a set of non-zero measure,
— of type III otherwise.

b) Moreover, two algebras siλ and si2 relative to distribution functions
ρλ and ρ2 are unitarily equivalent (i.e. spatially isomorphic) if they are
algebraically isomorphic.

c) siτ and si2 are isomorphic if ρt and ρ2 have the same continuous
spectrum independently of multiplicity and their discrete isolated eigen-
values ρψ, ρψ, coincide (again discarding multiplicity). Here

Qjc = inί[ρjc, 1 - ρk], Jc= 1,2.
Part C of proposition 1 requires some comments.
The isomorphism between siΎ and si2, when it holds, is independent

of the multiplicity of the spectra of ρly ρ2. For the isolated point spectrum
this follows because, as we have seen, the multiplicity is always infinite
there. For the continouum part of the spectrum, independence from
multiplicity is guaranteed by the following facts: the corresponding
algebra si c is always of type I I I ; si c <g> έ%(34?N) is algebraically iso-
morphic to si c (N — 1, 2, . . .; Jffc an iV-dimensional Hubert space);
algebraic isomorphism implies spatial isomorphism for type III factors
on a separable Hubert space [5] (the latter result is also used in statement
b) of the Proposition). The conditions for isomorphism given in c) are
sufficient for the discrete isolated part of the spectrum this follows from
the construction explicitely given for si (Eq. 16). The same arguments
can be used for the continuous part of the spectrum, if one remarks that,
when Σ (£i) = Σ (£2) (Σ (θ) *S ^ n e continuous part of the spectrum

c c \ c

of ρ\ , one can choose in Lemma 1 the same spectrum for D1 and D 2

5

Notice also that the points of the discrete spectrum which are not
isolated from the continuous part, do not enter in the conditions for the
isomorphism between ^ 1 and s/2- I n fact, if a0 is a discrete non-isolated
point in the spectrum of A, one can find a sequence of points {a{}, which
belong to the continuous part of the spectrum of A and to the spectrum

5 It seems quite probable that the conditions stated in c) be also necessary.
One would need for the proof a refinement of recent results by R. POWERS [12];
we hope to come back in the future on this point.



88 G. F. DELL'ANTONIO:

of D (Lemma 1) such that 2J \ao ~ ai\ < °° Since for the continuous
i

part of the spectrum of A the isomorphism is independent of multi-
plicity, the statement follows.

This implies in particular that, if ρv ρ2 are continuous functions, and
if they have the same range, the two factors s/v and <£/2 are spatially
isomorphic (and the corresponding representations of the c.a.r. are
equivalent).

We come back now to the factors s/, έ% associated to an infinite
Fermi system with density function ρ{k).

We have already seen the structure of s$.
The algebra 38 is spatially isomorphic to j / ; this can be seen using

Proposition 1, or also directly as follows.
The algebraic automorphism φ of \srf \j 38]= (the smallest 0* algebra

which contains J / and 0$) defined by
Φ o o Φ

exchanges s/ and 3$ and leaves Ω invariant (as a state of [&/ \j 0S~\=).
The isomorphism φ can therefore [6] be implemented by a unitary
operator F and extends to the weak closure to give

VstfV-1 = @. (19)

We end this section proving that there exists a unitary operator U with
the property

U^1 ϋ-1 = 38 . (20)
Ω

Consider, on (x) (J^p Θ 3?^) the unitary operators

ϋt = exp tiπΣ (4 a* + βt βic) βt
I

One checks easily that

(with obvious notations), and therefore

Therefore the limit
lim JJi

i—>oo

exists in the weak sense [10], and defines a unitary operator U. One
easily verifies that U has the property indicated in (20). Combining
Eq. (19) and (20) one also obtains

-1 (21)

(weak duality) where W = V'1!/.
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5. Free Bose Gas at Finite Temperature

We shall now consider the structure of the algebra associated [1] to a
free bose gas at finite temperature.

The analysis will parallel very closely the one we have given for the
free Fermi gas; we shall therefore give only a brief sketch, omitting
many details. Also for the Bose gas we shall treat only the case in which
there is no condensation in the ground state (physically, temperatures
above the critical one). The generalization to include a system with a
condensed phase is trivial and leads to no essential change in the structure
of the algebra of interest. To fix our notation, we recall that a representa-
tion on a Hubert space ^f of the canonical commutation relations
(c.c.r.) (a Weyl system) over a Hubert space h (in what follows, h = <£?% (Rn))
is a mapping from h to pairs of unitary operators on Jf such that

^*M (22)

lϋ(f1),U{ft)]-=[V{f1),V{ft)]- = O

V (λf) and U(λf) are, for each / ζ h, weakly continuous in λ at zero.
One can define closed operators α(/), a*(f) on a dense set of «#*, by

(f) + (f)
(23)

L
The α, resp. α* are called destruction, resp. creation operators. They
satisfy the commutation relations (always on a dense set of vectors)

ί:ί2:ΓT: f f rt *''ί : ί2:Γ ω T:. *'•'<*<""•
An irreducible representation of a Weyl systems is called of Fock type if
there exists a vector Ω ζ J^ in the domain of all a (/) such that

a{f)Ω = 0 V / 6 A . (25)
Equivalently, Ω is characterized by

If the representation is of Fock type, we shall write

sr = *n> ϋ(f) = uuf), v(f) = Ff (/).
With these notations, a free Bose gas at finite temperature, in absence of
condensation and with density ρ{k), ρ > 0, K ^ n (interpreted as
momentum space), is described [1] by the following representation of the
Weyl system over J2?(Rn), on &% Θ 3tf\ =

(26)
U'(f) = Uf((l + )V»/) ® UUV*J)
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The corresponding creation and destruction operators are written

where, e.g.
a(g) =

a(g) ζ £?($?%) (linear operators on

The similarity with (1) is obvious; the analysis of the structure of the
algebra j / ' 'generated" by the α(/), /ζJ2?2(Rn) will parallel the one
given for the Fermi system, with the simplifying features that all
injections (e.g. a(g) ~> a(g), b(g) -> b(g)) will be trivial since

[α(/),δ(0)]_ = O Vf,g.

Define (this parallels (3))

γβ{f) = v%{-Qvη) ® FM(i + QY'Ί)
i.e.

= &*(eV2f) +• δ ( d
One checks easily

= 0 (29)
i.e.

lβ(f), α(ff)] - [^(/), α (g)] = 0 V/, gf ζ ̂ ?(E«) .

Apply now Lemma 1, with 4̂ = 1/yτ;— Since A has spectrum in 0 H 1,

also D can be chosen to have spectrum in the same interval. Let Xt be the
eigenvalues of D, 0 < λι ̂  1, {/̂ } the corresponding (orthonormal
complete) set of eigenvectors.

UAi= (U**)* (Uβi)8i

^ {jjtψ{jj«ιγι (30)

i.e.

Repeating the arguments which led from (7) to (11), one proves that the
representation given by the Aiy B^ = 1, 2, . . . is of Fock type, i.e. there
exists β ( J f ^ δ such that AtΩ = BiΩ= 0. One can therefore write

, where ^.(/i) = Ax. For the algebra 4̂ one has again an
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expression like (16)

^ EEE [I, ® ® (Λpί**) 0 If) ® I , + 1 . . ., i= 1, 2, . . . ] " (31)

where α^= a(/?) and ^ J ^ is an infinite-dimensional separable Hubert
space.

As in the Fermi case (compare Eqs. (19), (20), (21) one can show that
there exists a unitary operator V on f̂-̂  B such that

j/^FJ'F-1 (32)

where £§, the Von Neumann algebra generated by the representation

/?(/)> β*(f) o f t n e c c r > n a s t i i e f o r m

* = [I, ® (I* ® ^ ( ^ ) ) ® i . + l . . ., ί = 1, 2, . . . ]- .

One has also the "duality theorem" (notice the simplification as com-
pared to (20))

J / = &' . (33)

6. Structure Analysis, Bose Case

We can now determine the type of the factor J / . As in the previous
case, it depends on the numerical sequence {^}, 0 ^ dι ^ 2, defined by

dt = inf \Ω - ξt ® ηt\*, ξ ζjfp, %£*>§: 11,1 = 1̂ 1 = 1.

lί Σ di < oo a straightforward application of Lemma 2 shows that the
i

algebra s/ is a multiple of the Fock representation and is therefore of
type 1^. In all other cases, stf is of type III . Indeed, one has the following

Lemma 3. // Σ ^ = oo, j ^ , as defined in (31), is a factor of type III.
i

The proof of this lemma can be found in ref. (11), see also ref. (4).
One can also give a shorter proof, using the results of refs. [14, 15].

It remains to be seen under which conditions two algebras, s/1 and J / 2

associated to densities ρ1 and ρ2 are unitarily equivalent (i.e. spatially
isomorphic).

Since s^λ and J / 2 are either type III or type 1^ with 1^ commutant,
stfλ and J / 2 will be unitarily equivalent if (and only if) they are iso-
morphic [5]. One can easily verify that in the case we are examining,
one has

^ - 2(1 - ]/Γ-If) . (34)

The presence of a continuous part in the spectrum of the operator V —-?—

is incompatible with Σ Λ* < °° ( s e e Lemma 1); moreover, all the eigen-
i

spaces of j/———to the eigenvalue c, 0 5j c ^ 1, are infinite-dimensional.

We have therefore
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Proposition 2. a) The Von Neumann algebra stf associated to the
description of a Bose gas at finite temperature, with density ρ, is of type I if
and only if ρ is different from zero only on a set of Lebesgue measure zero.
In all other cases, stf is a factor of type III.

b) Two algebras s$x and s$r

2 associated with densities ρv ρ2 are unitarily
equivalent if and only if they are isomorphic.

c) Two algebras s$Ύ and s$2 are isomorphic if6 the ranges of the two
corresponding density functions ρl5 ρ2 contain the same open intervals and
the same isolated points.

7. Relativistic Neutral Free Field, Spin Zero

A relativistic neutral free field φ with spin zero and mass m is [16]
a distribution with values (unbounded) operators on a space #f, and
satisfying the Klein-Gordon equation. In other words, if g, f ζ ί
one has

φ (f) is an unbounded operator on ffl

φ{λΐ) = λφ{ϊ); φ{ίx + f2) = φiϊj + ^(f2)

m2*) ϊ) = o v f π = y1

and all the φ(ϊ) have a common dense domain of definition. For all f,
is essentially self-adjoint.

It is further assumed that there exists a vector Ω ζ Jf such that

o if

Clearly φ(f1) = φ(ϊ2) ^ h(P)\p2=m2 — h(p)\p2=m*'> this allows an alter-
native description of the field, at αa fixed time", using canonical fields
φ0 and π0, at t = 0, considered now as distributions on ^ 2(R 3). The
connection is given by

π0(h) = φ(ih) φQ(h) = φ(ϊh), h £ 3f (R3), fh t

where ΪA (p)\Po== j / ^ - ^ r = h{p) = ϊh {p)\Po e _ γ^r^ .
The vector Ω satisfies

r / / / Γ~7O i O \ 7 \ i / 7 \ Π /*~\ f\ \-J 7 ŷ " ST),

IΦQ\\—V + mz)h) + ιπQ{h)\U = 0 V h ξ 2o
3 d2

where P 2 = Σ ~^~J
ί = l *

It can be shown that the field acts irreducibly on 2tf βd^βtf) is there-
fore the smallest Von Neumann algebra ,β/(R3) affiliated with φo(h),
ττo(h) (in the sense that it contains all the elements of the spectral
families of the essentially self-adjoint operators φQ{h), πo(h)).

6 These conditions are likely to be also necessary. One would need for the proof
the extension to the c.c.r. of results recently obtained by R. POWERS [12] for the
c.a.r.

7 Space of real infinitely differentiable functions with compact support.
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The free field can be alternatively described (c'equal time" formula-
tion, see e.g. [6]) as a representation of the canonical commutation
relations (i.e. as a Bose system) over <j£?2(R3). The vector Ω will play
the role of "no particle" state and the representation of the c.c.r. at
hand will therefore be Fock. To every fζ <9%.(R3) one associates a pair
U(f), V(f) of unitary operators on Jf, according to:

f-+U(f),V(f),

ϋ(f) =

V(f) =

where ω = ( - F 2 + mψ2 and UF(ξ), VF(ξ), ξ ζ <^V(R3) define the Fock
representation of the Bose system over J^(R 3 ) , with Ω as no-particle
vector. The mapping defined in (35) realizes a representation of the c.c.r.
over if,2(R3). Indeed, with f,gζ ^ r ( R 3 ) (dense in ^ ( R 3 ) ) one has

ϋ(f) V(g) = V(g) ϋ(f) eiπ{ ωXnf>ωUZ^ = V(g) ϋ(f) eίπ«>g) .

The choise of the representation (35) is, as well known dictated by
"covariance" conditions (under the action of the Lorentz group) (see
e.g. ref. [19]). Indeed, for this representation the following is true; let

r ϋ(λf) - 1 . / , A r V(λf) - 1 . / Ah m _ i - i | = ιφo{f), km.—K-J± = t π o ( / ) .

Denoting by f ξ ^ r ( R 4 ) any function such that /

= ΐ(p)\Po=-γtfΓ+^ί=f(p) a unique field ^(f), satisfying φ((Π + m2)f)
= 0 Vf ζ ^ ( R 4 ) is defined over <^r(R*) by ^(f) = φQ(f); φ(ϊ) = πo(f).
The field φ (which can be identified with the one introduced at the
beginning of this section) is real, satisfies the Klein-Gordon equation
and the "covariance" condition

U(Λ) φ(g) U-i(A) = φ(Λg), g ζ ^ r ( R 4 ) ,

where (Λg) (x) = g{Λ~λx) and U(Λ) is the representation of the Lorentz
group which is defined on J^ through (35) [5] from the unitary mapping

One could have chosen instead of (35), the representation

f->UF(f),Vp(f). (35')

This would correspond, in the physicist's terminology, to define the
field using the Newton-Wigner localization [20], i.e. labelling the points
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in space-time using the Newton-Wigner position operator. One would
then loose covariance of the field (and locality, i.e. commutativity at
space-like points, whether associated to the same time or not).

8. Local Rings, "Equal Time" Formulation8

Here, we are interested in the structure of the algebras associated
to open regions ΘC.W (local rings at fixed time). The algebra s/(Θ) is
defined as the Von Neumann algebra generated by all the U(f), V(f),
f ζ QJr{Φ). Alternatively one can define it as the smallest Von Neumann
algebra affiliated to all φo(f), πo(f), f ζ 3fr{β). Notice that tf = J^F(W)
- JfF(Θ)® <^F(®L) where (Θ Θ 01-) = R3 and JfF(D) is the Fock
space of the Bose system over D. The Von Neumann algebra generated
by all UF(f), VF(f), f^2r{0) is therefore £(S?*{0)) 0 I, a type /„
factor (with /<*, commutant). This in particular determines the structure
of the local rings, when local is understood "a la Newton-Wigner". They
are all type 1^ factors, with 1^ commutant. We already know [3] that
this is not the case for the algebras s/(Θ) defined above. To determine
the structure of stf (Θ) we proceed as follows, paralleling the analysis
given for the free Bose gas at finite temperature. The step of passing
from the ocr

s to the A's, Br

s (Eq. 30) will correspond to writing the U(f),
V(f); fζ@r(Φ) as a function of some UF(ξi), VF(ξi), where the ξ{ will
be an orthonormal complete set in some Hubert space h. The UF{ξi),
VF{ξi) form the Fock representation of a Bose system over h, and this
representation is of infinite-direct product type. Such will also be then
the representation given by U(f), V(f) if the choice of the ξt will have
been judicious enough. It seems appropriate (we are looking for the
analogous of ocit βi9 A{, B{, in Eq. (30)) to focus our attention on four
(not orthogonal) subsets of ϋ? r(R3), J(\, i = 1, 2, 3, 4, defined by

(36)

Here ω is the operator which acts as multiplication by j/jp2 + m2 on the
3 02

Fourier transformed of / formally ω — }/— t7 2 -f m 2 , P 2 = Σ ~^f ( m i s

i = 1 *

the "mass" of the field).
8 We shall study here only the "equal time" formulation. The covariant for-

mulation, in which local rings are associated to open-regions in R4 (with the Min-
kowsky metric), can be treated in much the same way. We plan to come back at
some other time to the structure of the local rings in the covariant formulation.
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We shall denote by Jlt the closure of Jί\ in the topology of j£f;? (R3).
If the boundary of 0 is sufficiently regular, one has

2 4 [ ]
With out choice of ω, all sets Jί\ are mutually disjoint, since

(— F 2 + m2)1/2 is an "antiloeal" operator [17] in the sense that
(_ [72 + m2)l/2/ = ^ ffg(l@r(&)

implies / = g = 0 for any open region Θ with non empty open complement

Θ1-. Also, since ω is closed and >πι, *Jί\ = ejf2, <^s = "^V We shall not

use for the time being the explicit form of ω nor its antilocality. This

will allow us to have the structure of jrf(Θ) also for more general situa-

tions and for the case in which ω is local (e.g. for the non-relativistic free

field theory, where ω = — -K—land is local, in that ωfζ@r(Θ) if

The vectors in Jί^ determine10 a linear operator φ (unbounded, in
general) from a subset of cjf̂  to Jί\; (= ^f2(R3) Θ ~#L). Indeed, every
vector η ζ Jί2 admits a unique decomposition:

We want to define φ by

η = ξ+ψ'ξ, φ ξζ^t, ηζ^2θ(^2ΓΛ^t)' (37)

This mapping is certainly linear to show its existence we have to prove

that, if η" = ξ + ζ', η' ζ ̂ 2 θ (JK2 Γ\ ̂ i), then ζ' = φ f.
One has η - ζ' = η - ζ i.e. η' - η = ζ' - φ - ξ. But u^f 5 Γ

— φ ξ, therefore £' — 99 f = 0. The operator 99 is not necessarily
densely defined on ^# x . Indeed, one can check that the closure of its
domain of definition is Jίλ θ (-^1 Γ\ Jί%) (in other words, if £0 ξ ̂ j r\ <Jt%,
it cannot be approximated by a sequence of ξn which can appear in (37)
with a suitable choice of η^).

Also, the null space of φ is ^#α r\ J£2 indeed, if φ ξ = 0, one has
^ 2 ^ η = ξ ς. ̂ gv One should notice here that, when ω is anti-local,
^ J A <Jt% — 0, but one can have ^# x A ̂ # 2 Φ 0 The operator φ is
closed indeed, let ξn -> | , φ - ξn-> ζ. Then ξn — φ ξn converges and its
limit, ?y, is in ^ # 2 (since Jί2 is closed).

9 Since J^^CJ^t, the problem is to show that J(γ = ̂ 3 i.e. that every
cr £ 3?2(Θ) A ^ 2 c a n ̂ e approximated by a sequence of functions σn, σn ζ ̂ ( ^ ) ,
such that ω1/2(cτn — σ) -> 0 (in the topology of JSf2(<ί?)). This can be proved at
least for open regions Φ C -R3, such that d Θ (the boundary of Θ) is piecewise differen-
tiable (see e.g. [3]).

The structure of <z/(Θ) which we shall exhibit holds actually independently
of this restriction only the duality relation and the fact that J / is a factor depend
on it.

10 This analysis can be found in Ref. [3], We give it here for completeness.
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Therefore η = ξ -f ζ for some η ζ ^ # 2 , and ζ = φ ξ q.e.d. One can
also check without difficulty that the closure of the range of φ is

θ ((-#2 n )

To semplify the discussion, we introduce now the notation

(38)

θ

In what follows we shall be mainly interested in φ0, the restriction of φ
to Λ^5. The operator <£>0 is closed, linear, densely defined (on yΓ5) with
densely defined inverse (φ0 has no proper eigenvalue zero!) and with
dense range (in uVB). I t admits therefore an adjoint [18], denoted by
φ*, a densely defined closed linear operator from JΓ§ to Jίh.

Moreover, the properties of φ0 guarantee [18] the existence of the
polar decomposition

(39)

where Uo is a unitary operator which intertwines Jίb with JΓ§.

9. The Structure of the Local Rings

We are now in position to discuss the explicit form of the algebras
associated to a given open region Θ ζ RA We assume of course that (9L

(the interior of the complement of Θ in R3) is not empty. Otherwise
sf{Φ) = ^ ( R 3 ) = 38{3tf) since the field φ is assumed to act irreducibly
on j r .

Corresponding to the decomposition

one has a decomposition of the Fock representation

U*(f),VF(f) /€^(R3)

in the direct product of the six representations

W > ) , F , ( / « ) , t^ίJfi i = l . . . β
6

the ith acting on jty, where ^f = (g) 3tf%. The ring sύ (β) is generated,
i
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we recall, by the representation of the c.c.r. defined by

{ϋ(f),V(g)} f,g

U(t)=UF(ω~vη); V(f) =

Equivalently, j?/(Φ) can be considered as generated by

{UA&, VF(η)}, ξί^i, η£Λ2. (41)

Indeed, {ω'^f; f ζ Sf(Θ)} is dense in Jί^ (for the j£?2(R3) norm),

{ω1/2/; / ζ &{Θ)} is dense in ̂ £2, and, for the Fock representation

{ϋF(x)9 x ζ X}- = {UF(xf), xf ζ X'}~

(and the same for VF) where X and Xr are both dense in (a subspace of)

h, the space over which the representation is taken. The algebra

factors therefore in the direct product [7]

= [ (g) s/W(Φ) )®^Q(Θ) (42)
\ ΐ = 1 . . . 4 /

where s/0 (Φ) acts on J^F <

It is immediately seen that J ^ 1 ) (Φ) and J?/W (Θ) are maximal abelian

algebras in J^(

F\ fflψ* respectively. We sketch the proof for ĵ /ΐ1) (Φ). One

has VF(0) = I and ~//2 n (^#2 n ^#2") = 0. Therefore stf^ (Θ) is generated

by {UF(ζ) f ζ ̂ # ! ΓΛ -#2"}, and this is a maximal abelian algebra. The

algebra s/W (Φ) is composed of the multiples of the identity in 2/fψ, i.e.

{c - I4}. Indeed, (Jί^ r\ *Jt%) r\ <Jίx — 0 = (Jί^ r\ ̂ 2) n ^2 5 therefore

,s/(4)(^) is generated by ET^O), F^(0), i.e. by I(4). The algebra s^^{(9)

is associated to the Fock representation of the c.c.r. in 3^ψ, therefore

j^/(3) (β} = ̂ (fflψ1). To see this, it is enough to notice that, if ζi is an

orthonormal complete basis in Jίx r\ - # 2 , s/(Φ) is generated by {UF(ζi)>

VF(d)}, i.e. by {UF(ζi)9 VF(ζi)} V*.

One can therefore write

where ^ j , ^ 2 are maximal abelian.

It remains to be determined the structure of j</0(Φ). From (41) one

sees that J?/Q{Φ) is generated by

Consider now the algebra &(Φ) defined in the same way as s/(Φ) (see

Eq. (41)) but now with ξ ζ -#2"? V ί ^\ \ i e &{@) is generated by

{UF(ξ)> VF(η)}, ξ ζ Jίi, η ζ Jίi . (41')

One checks without difficulty that 3§(Φ) decomposes according to

^ ) ® ̂ 0((P) . (43')

7 Commun. math. Phys., Vol. 9
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The algebra &0(Θ) satisfies ^Ό(0D^Ί(0)> where 3Sx{β) is generated by

{UF(η - <pU)> VF(η)}> ηt^*r\Dφ*. (44')

To see this one has only to recall that

η - φ*V € ̂ k θ ((^2 r\ Jίt) Φ {Jίk r\ uί^)). (45)

One could show at this point that

{η- φtη ηζ Dφ*}- = JCk θ ( ( ^ n uTj1) φ (uT£ n Uί^))

and therefore ^ o ( 0 ) = ^((P).
We shall see this more directly in a moment.
The next step is to construct a new representation of the c.c.r. on

ϊtfψ <g> Jtfψ and to show that it is of Γock type.
We shall use, in most of what follows, the notation $? = 3tfψ ® 3tfψ.

Apply Lemma 1 to the self-adjoint operator (φ* ψo)1/2 on Jfh. Let D be
the corresponding operator with discrete spectrum; let ξi9 di be the
corresponding eigenvectors and eigenvalues. The operator Uo is unitary,
and therefore the set Uoξi is orthonormal complete in Jf§.

The algebras */0(Θ) and ^λ(Θ) are given by

s**Ψ) = {ϋΐ>V*\ it I},

VF(ϊi+φti),

V? = VF(Uoξi) ϋξ = ^ ( F o f , - ^ CΓof,)

(notice that ξi ζ D(φ*φoγ'* Q DJ.

In terms of creation and destruction operators, one can say that
stfQ(Θ) is "affiliated" to the operators

ξή *{ ξ)

and &0(Θ) to the operators

One checks without difficulty that

all other pairs commute.
Define now:

Ψo ξi -hU0- ξ^ ,

f j P f + λ f )
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One checks again without difficulty that the {ϋf, Vf} and {F?, F?}
define two representations of the c.c.r.

We set ρ ί Ξ Ξ φo ξ t - λ.U^ = U0((φ*φ0)V* - λ^ξ,.

From Lemma 1 we have

Σ \Qi? < oo
i

and the argument given in § 3 can be used to conclude that the represen-
tations defined by the {Uf, Vf} and {17?, F?} are of Fock type.

We can then write

and we have
Uf = I <g> Θ (UAi <g> I) <g) F + 1 0 (48)

and similar expressions for Vf, Uf, Vf.
Inverting (47), one notices that Uf, U?, Vf, V? are functions of

U£, U^, Vf, Vf (same index i\). For a finite number of degrees of free-
dom, every representation is of Fock type. Therefore one can write

Relative to the latter decomposition, Ωi is no longer a product vector.
Its minimal distance dt from a (normalized) product vector is seen to be

(49)

Since {U*<, Fαi} and {Όβi, Vβi} act irreducibly on Jf|', JfβJ respectively,
we can finally write the expression for s/0(&), ί%0(Θ) on Jίh ® Jί^ as
follows

where

= { i ® φκ&p)® i ) ® i ί + 1 . . . . » = l , 2 , . . . } - ,

I i + 1 . . ., i = 1, 2, . . . } -

inf | β - ξ\ ® If I = 2 /l -

One has then ^ ( 0 ) = rf'Q{0) 5 @0{Φ) 3 ^Ί(0), and therefore

From (50), (43), (43') one sees [10] that s/(Θ) is of type I if

<oo ,
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of type III otherwise. This means that s/(Θ) is of type I iff φ* φ is in
trace class or, equivalently, iff Λήp Θ {dίψ* Γ\ <J£\) is compact.n

We specialize now to the case of interest, namely ω = (— F 2 + m2)1/2,
m ^ 0, and consider only open regions Θ C R3 with piecewise differenti-
able boundaries.

In this case, as we have already remarked, one proves [14] that

{fax; χ t ® (&)}->

This has the consequence (see (41), (4Γ)) that st(Θ±) = OS(Θ). From
(43), (43'), (50) and the fact that ^ 1 ? ^ 2 are maximal abelian, one derives
the duality relation

From the explicit form of stf (Θ) one also sees that there exists a unitary
operator V such that s/(Θ) = V^{Θ1-)V~1. Moreover, if m > 0, the
algebra stf (Θ) is a factor. This amount to say that Jί\; r\ ^ # 2

 = 0

To ^M^ r\ ^ # 2

 = ^ : notice that ω ^ m > 0 and that ω is closed.
Therefore, if ξ ζ Jί^ r\ Jt^ there exist / ζ ^ 2 ( ^ ) , / ζ ^ 2 (^^-) such that
ξ = |/co/ = |/ω^. Multiplying by the (bounded) operator ω"1/2 one has
/ = χ which implies / = 0, ξ = 0.

To eJ?1 Γ\ Jί^r = 0; this is equivalent to (^#3 \j Jί^~ = o^2(Ii3).
Since {ω1^/, / ζ >(R3)} i s d e n s e i n jgf2(Rs) (where ^ ( R 3 ) is the Schwartz
space of infinitely differ-functions on R3), one has to prove that, for
every g ζ ^ ( R 3 ) , one can find εn ζ ^ ( ^ ) , δn ^Q){Θ^) such that

||/ω(l - εn- δn)g\-^z^O

(the norm being the j£?2(R3) norm).
One can prove that, if the boundary of Θ is piece-wise differentiate,

such sequences {εn}, {δn} always exist.
Since εng ζ ^{0), δng ζ ^(βL) one concludes that ^ # 3 r\ ^ # 2 i

s dense

One can also prove that <Jί^ Γ\ <Jl^ = 0 = Jίx r\ Jiv Therefore

Finally from the Lemma 3 one concludes that stf (Θ) is of type III
indeed, φ* φ0 cannot be of trace class since the operator φ0 is unbounded
[14]. We summarize the result of this analysis in

Proposition 3. The local ring jtf(Θ) associated, in the fixed-time de-
scription of the neutral scalar field, to each region Θ C R3 with piece-wise
differentiable boundaries, is a hyperfinite type III factor, isomorphic to its

1 1 In the topology induced by the use, as norm, of the orthogonal distance of
7/ G Jί^Q {Jl$> r\ ^i) from Jlx. Here Jlψ is the unit ball of uTa.
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commutant, and obtained as direct product of type 1^ factors. Moreover
stfψ±) = stf'ψ) and the factors ^(Θλ), J/(Θ2) are isomorphic if the cor-
responding operators φ* φx and φ* φ% (Eq. (37)) have the same essential
spectrum (i.e. the closures of the two spectra coincide).

10. Relativistic Free 1/2 Field, Mass Zero
Equal Time Formulation

A relativistic free Fermi field of spin 1/2 and mass zero in the Fock
representation is conveniently described at fixed time (see e.g., ref. [19])
by a representation on a Hubert space Jtf* of the canonical anti-commuta-
tion relations over a four-fold copy of ^ ( R 3 ) . In our notations, this will
correspond to have four types of creation and destruction operators which
are distributions on ^ ( R 3 ) , and can be physically associated to particle
and antiparticle, each existing in one of the two possible (orthogonal)
helicity states. More precisely, the field we are considering associates
to each function / ζ S?(W) ® C4 (four-folf copy; /== (/1; /2, /3, /4)) four
creation operators defined by

b- {wtrt))

and the corresponding destruction operators.
The notation used in (51) is:

and e.g. the suffix + in α+ indicates that a+ "destroys" a particle of
helicity -f 1.

It should be noted that, in (51), all operators acting on /, are bounded.
One checks without difficulty that

Ev*(/). fM]+ =M/,ί?)

all other anti-commutators vanish.
The algebra j / (Θ) associated to the region Θ C R3 is now defined by

Eq. (5) when fζ@(@) (infinitely differentiate functions with support
in Θ). It should be remarked, as was already done for the relativistic
free spin zero field, that this definition of the local field (and of the cor-
responding local algebra) is the only one compatible with covariance;
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other choices are of course possible, but perhaps less justifiable here,
since there exists no "position operator" for a system of mass zero and
spin 1/2. As seen from (51), the study of the structure of J</(Θ) decouples
in the study of the (obviously isomorphic) algebras generated by ψ1(f),
ψ2{f) and by ^ 3(/), ψ^if) respectively. This is a simplifying feature of the
zero-mass case, and justifies treating this particular case first.

We shall denote by s/0(Θ) the local ring generated by ψ1(f), ^2(/)ί
one has then, modulo spatial isomorphisms,

«^(0) = jafo(0)<8> jafo(0). (52)

It will be expedient to introduce a suitable operator φ from J£?2 {Φ) <g> C2

to Jg?2(0-L) Θ C2. We shall use the following notation.
Two (bounded) operators E, F are defined from i?2(R3) <g> C2 to

by

(53)
+ *»2

The operator ψ is then defined by

E - [ = E φ- f . (54)

It will be checked now that (54) does indeed define an (unbounded)
operator φ on a dense subset of J£2(Θ) ® C2. One has to make sure
first that

E g = 09 gζ^(Θί)® C2

implies g = 0. Now,

, /1 +
" ^ "" 1/2(1 + w8) ^2 '

and this can never vanish, due to the anti-locality of \iV\. The proof of
this statement is easily obtained using the techniques of ref. [17], and
is given explicitely in an appendix. To see that φ is densely defined, one
notices that, again due to the anti-locality of the ni, for a dense set
{/} in J£2(Θ) one can find a solution (see appendix) to the equation

and for another dense set one can find a solution to

fti + in2 J 1 + nz

 ni + ίn2

^) ' = Γ 2 ξ ~ 1/2(1 + 3̂

Therefore (54) admits a (unique) solution for a dense set in J£2(Θ) (8) C2.
The operator φ is closed this follows from the uniqueness of φ as defined
in (54) and from the fact that E is bounded.
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Again uniqueness of (54) implies that φ has no null vector and has
dense range; φ~x exists and is densely defined on ^(Θ1-) 0 C2 .

Let 99* be the adjoint of φ. We want to prove that, on its domain of
definition, φ* satisfies the equation

F χ=-Fφ*χ (55)

where χζ ^(Θ^)® C2.

Notice that , for f, g £ j£?2(R3) <g> C2 one h a s 1 2

(56)

Using (56) one can see that, for every χ ζ Dφ* and ϊζ Dφ

(F(l + φ*)χ,F(l-φ)i) = 0.

The proof of (55) is now reduced to showing that {F(l — φ)t f ζ Dψ} is
dense in i? 2(R 3). Let (σ, F(l - φ)f) = 0 V f £ Dφ. Using the definition
of φ one obtains

) VϊζDφ.

The set {/2 - (φ f̂ ; f ζ D J coincides with I>(i_Mi)-i/.. As (1 - ^s)-1/2

has dense range, it follows σ = 0 q.e.d.
Since φ is densily defined, closed and with a densely defined inverse,

one has [18] the polar decomposition

where ϋ is unitary from £*{Θ) % C2 to ^{(P1) 0 C2.

11. Structure of the Local Algebras

Once again, we shall make use of Lemma 1 to approximate (φ*
in the Hubert-Schmidt norm with an operator D with discrete spectrum.
Let ξ{, λι be the eigenfunctions, resp. eigenvalues of D. Let η{ = ϋξ{.
It is seen from (51), (52) that the algebra stfo(Θ) is generated by the
operators oci9 ocf, where we have chosen

oct^a-iE-ξJ + bKF'ξi) (57)

and the algebra ^/Q{ΘL) by the operators β{, with

βt^b+iF ηJ + aUE ηt). (57')

(Recall that the ξί from an orthonormal complete basis in J£2(Θ) <g> C2

and the ηt from an orthonormal complete basis in J^f2(6)1) <g> C2; and
that the weak closure of the Fock representation of a Fermi system does
not depend on the particular basis chosen).

12 (x, y) always stands for the scalar product in the Hubert space to which
xy y belong.
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Introduce now another representation of the c.a.r., defined by the
operators

'' 7" " (58)

One has clearly [A^ A*]+ = δi:j = [Bit B*]+, all other anticommutators
vanish. In terms of α_, b+ one has

A i = - t 4 = j a-{λtE ξ{ + E V i ) + -=L=- b% (λtF -ξt + F % ) ,
\ί 1 -7- Λf [/1 + Aj

B, fL^a_(λ{Eηi Eξt) +=L=i

1/1 + Λ̂  }/1 + Ai

Notice that

Therefore
Σ \λtF 'ξt + F Vi\* ^ \\F\\* T r ( ( y * (p)^ - D ) 2 < ex) ,

2 ; iλiEηi-E ξil*^ | | ^ | ! 2 T r ( ( ^ φ ) V 2 _ i ) ) 2 < o o .

This shows that the representation of the c.a.r. defined on M" by the
Ai9 B{, is of Fock type.

One can therefore write the space Jti? as an infinite (incomplete) direct
Ω

product (χ)(Jf^ 0 ^p) relative to Ω, the "vacuum" of the representa-
tion given by Ai} B^

From (58) one sees that <xi} βi are functions of Ait Bi (same index i\).
On 2^-y Θ $?ψ the operators oci} βi define an irreducible finite-dimen-
sional representation of the c.a.r. One has therefore Jtif'p Θ ^ 5 *
= ^ | / Θ ^p and the oc{ (resp. /3Z ) generate a (type /2) factor isomorphic
to&(H%) (resp. ^(HβJ)).

The same arguments as given for the free Fermi gas13, lead here to the
following conclusion, if one recalls the connection between j / 0 and s& as
given by (52): <$/(Θ) can be written as

stψ) = {T ® ® {β{^ψ) ® Ii) ® ί = 1, 2 . . .}- (59)

(g)(^ υ ® ^i
i

spatially isomorphic to

on Jf7 = ( g ) ( ^ υ ® ^ i 2 ) ) , Ω = (g)Ωi9 Ωi ζ ^f{p ® ^ ( 2 ) and j^(Φ-L) is

, i = 1, 2, . . .}- (60)

on the same space.
1 8 And the fact that 3S(3P) <g> ̂ (J f ) = ^ ( J f ® Jf).
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The algebras s#(Θ) and stf(ΘL) satisfy a weak duality, in the sense
that there exists a unitary operator V on J^ such that

Θ)V~1. (61)

As for the type of &/{Θ), it is of type I if Σ &% < °°> a n d °̂  tyP6 HI
i

otherwise.
Indeed, type II 1 ? which could be possible for an hyperfinite algebra

of the type given by Eq. (60), is excluded here by the fact that a local
ring can never be of finite type [21].

12. Relativistie Free Fermi Field, Spin 1/2, Any (Real) Mass

This slightly more general situation is treated along the lines of the
zero-mass case, with some additional technical complications. We shall
therefore not bore the reader with detailed computations and shall limit
ourselves to a brief sketch.

Let E, F be defined as in (53)14 and let A, B be the operators from
Jf (R3) = i?2(R3) <g> C4 to i?2(R3) ® C2 defined by

i

ω — m

2ω

ω — m

2ω

E

F

y
1

ω -\- m
2ω

ω -j- m
2ω

E

F

B=\ , I A =

where ω = (p2 + m2)1/2, 9̂2 = — P72 .
The field relative to spin 1/2, mass m (m > 0) is then defined [29]

at equal times associating to each function / ζ JΓ φ C/lf an operator

ψ(f) = a(Af) + b*(Bf) (63)

where α, 6 give two Fock representations over Jf(R3) on a Hubert
space Jf.

One has [a(f),b(g)]+= [a(f),b*(g)]+ = 0 V/,gζJf(R 3 ); Λ ( ^ ) is
the smallest Von Neumann Algebra generated by the ψ(f), f ζ ^ ( R 3 ) .
If Θ C R3, the local ring associated to G is the algebra generated by all
ψ(f), as defined in (63), when / has support in Θ (i.e. / ζ Jf(Θ)).

We define now an (unbounded) operator φ from a subset of J^Γ(Θ) to a
subset of X(Θ±) by

A f = A φ f, f£X-(Φ). (64)

It should be noted that ( l/ΪTn, , - % + ^ a ) and fl/Γ^^i , ^ +

\ 1/ \ ]
(l/ΪTn, , - % + ^ a )
\ 1/1 + ns )
i | | ( ) λ

1 j
are the solutions to the equations |^|~1(o r ' p)x = λx to the "eigenvalues" λ =
and A = — 1 .
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The reader will have no difficulty in convincing himself that, when
m = 0, the φ defined by (64) has the same spectrum as the one intro-
duced using (54).

Again, to show that (64) defines an operator φ one has to make sure
that Ag = 0 implies g = 0 if g ζ J f (0-1). We shall see that this is indeed
the case for any region Θv and, setting Θx = Θ, we will also have shown
that φ~1 is defined on the range of φ.

Let g ζ X(Θ^)\ without loss of generality we shall take g twice
differentiable (otherwise we shall consider instead g' — ε * g, where ε
is ^°° and with sufficiently small support and ε is chosen so that ε * g = 0
=ϊg = 0 and support g' C ®Ί, R3 Θ Θ[ Φ 0).

One checks then that A g = 0 implies

(ω + m)^3 (65a)

+ (ft + ^2)^4 = (ω - m ) ^ (65b)

where g = (^, gr2, gr3, gr4), ^ ζ £?*{Θ), pk = i -j^- Ίc = 1, 2, 3. The anti-

locality of ω, combined with (65), gives ^ = 0 i — 1 . . . 4, i.e. ^ = 0

q.e.d.15.
Together with the fact that A is bounded, this guarantees also that

ψ is closed.
One proves, much in the same way as for the zero mass case, that ψ

is densely defined and has a dense range. Also, if 99* is the adjoint of 99,
one proves that

B g=-B- φ*-g, g ζ J f (0J-) n I V ( 6 6)

The proof of this equation is easily adapted from the proof of (55) when
one notices that A*AJ

ΓB*B=l and therefore (/, g) = (Af, Ag)
+ (Bf, Bg) for every pair /, g ζ J f ( R 3 ) . Since φ is densely defined,
closed and with densely defined adjoint, one has the polar decomposition

φ= U(φ*φ)V2 (67)

where U is unitary from X (G) to ^{Θ1).
The analysis of the structure of s#{Θ) parallels now the one given in

§ 11 the ξi will now be an orthonormal complete basis in JΓ(Θ) and the
Ύ\i an orthonormal complete basis in CtiΓ(ΘL). The algebra s/(Θ) is then
completely characterized by (compare Eq. (59))

st(β) = {I Θ Θ ψ(β#ψ) ® I<) ® i = 1, 2, . . . } - . (59')

We can therefore state

15 It is instructive to compare this situation with the non-relativistic one. There

( 7TT ί\\ /Γ\ 77T\

τi 0) > B — (0 ΓT) The operator 9? is then defined only on the vectors
/ £ «#* such that /3 = /4 = 0 and is zero on such vectors. This will imply that, in
this case, J&(Θ) is of type I.
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Proposition 4. The local ring stf (Θ) associated, in the fixed-time de-
scription of the free Fermi field of spin 1/2 and mass m ^ 0, to each region
Θ C R3, is a hyperfinite factor, isomorphic to its commutant, and obtained as
direct product of type I2 factors.

Moreover s/(Θ) and stf(d)1-) are spatially isomorphic, and the operator
inducing the isomorphism can be chosen hermitian. Two factors stf (Θ^) and
stf {Θ2) are spatially isomorphic if and only if the spectra Σv Σ2 of the cor-
responding operators φ* φ± and φ* φ2 have the following property: Ξ1 — Ξ2

where Ei9 ϋ^ C [0, I], is the closure of the image of Σ{ under the map

x -> x, 0 ^ x ^ 1, x -> x~x, 1 ^ x < oo .

The factor s/(Θ) is of type I if 99*99(99*99 + 1)~~2 is in trace-class; of
type III otherwise.

13. Relativistic Free Field, Any Mass, Any Half-Integer (Finite) Spin

We shall now indicate how the analysis developed so far can be
applied to determine the structure of the local algebras associated to
relativistic free fields with any (positive or zero) mass and finite half-
integer spin. In the following paragraph we shall consider the case of
any finite integer spin; similar analysis can of course be carried out for
infinite-dimensional (unitary or not unitary) representations of the
Lorentz group, but we shall not work them out explicitely here.

A relativistic free field of spin s -f 1/2, s integer ^ 0, will be described
at t = 0, associating to each J ζ j£?2(R3) 0 C2<2s + 2> an operator ψ(J)
defined by1 6

a(A - J) + b*{B- J) . (68)

Here A, B are continuous operators from J£?2(R3) 0 C 2 ( 2 s + 2> to
JS?2(R3) Θ C 2 S + 2 defined as follows.

Let J = J A , f 2 ) , / , ζ J?*(W) ® C2* + 2.
Let u^Cp) ζ J>?2(R3) <g> C2s + 2 be the normalized solution of the equa-

tion

— _ uk = kuk, k = s + Y , s ~γ, . . .—s — Y

where Σt i = 1, 2, 3 are the generators of the irreducible (25 + 2)-
dimensional representation of the rotation group.

Let

16 The field we shall introduce does not satisfy, for s > 0, any linear differential
equation, for m 4= 0. For m = 0, J must be taken in Jδf2 (R3) ® C2, independently
of 5, and the field satisfies a differential equation of the Weyl type.
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and define
„,( + ) , s + 1 / 2

, . . . , M-2 s + 2

Then A, B are defined by

In (68), {«(,/)}, {δ(/)}, fζ iP 2(R 3)® C2 s + 2 provide two Fock re-
presentations of the c.a.r.17 on a Hubert space 3tF\ they satisfy

[«(/), δ(^)]+ = [«(/), &•(#)]+ = 0 V / , ^

and the Von Neumann algebra they generate is &(&'). It follows from
(68) that ψ(3) satisfies

[ y ( J ) , V ( G ) ] + = O, [ y ( J ) , v ( G ) ] + = ( J , G ) . (70)

Indeed, one can easily verify that

A*A + B*B = 1 on ^ 2 ( R 3 ) ® C2s + 2 . (71)

At time ί, the field is defined by

(680

*»* d*p, ω=(p*+ mψ* .

With these definitions, the distribution-valued field

ψ(x, t) : / ψ(x, t)3{x) dzx = ψt(3)

satisfies the Klein-Gordon equation, and is local, in that

[ψ(x,t),ψ*(y,t')]+ = O if (χ-y)*-(t-t')*>0. (72)

Eq. (72) can be easily checked, and is due to the fact that, on ^ 2 ( R 3 ) ,

the operator Ωt = —<* eίωt + —o e~ ί ω < is "local" in the sense that

(&,Ωtf) = 0 if i(supp0,supp/)>|i|

where <i(^, (̂ r) = inf \x — x'\ and supp ̂  is the support of the function ̂ .

This "locality" also explains our choice of the operators A, B in (68).
We could have chosen instead, e.g., A', B', defined by

17 We choose here to quantize our field according to canonical anticommutation
relations. If we do not insist on having positive energy, we can substitute in (68)
6* with b and quantize according to canonical commutation relations. We would
also in this case see that the local rings are factors of type III and of infinite-
direct product type.
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Eq. (70) still holds, but the field ψ' (I) is no longer local (in R4) the rings
associated through the field ψ' to each open region (9c~Rz are of type I.

We are interested in the structure of s/{Θ), ^ ( β 3 , where stf(Θ) is
the Von Neumann algebra generated by ψ(J), J ζ &*(Θ) <g> C2<2s + 2).

The proof that s/(Φ) is of direct-tensor product type, is now straight-
forward.

Define a linear operator φ from j£f2(0) <g> C2<2s + 2> to ̂ {(P1) <g> C2<2s+2)
by

A ' J = A'ψ'J (73)
where A is defined in (69).18

One checks without difficulty that φ, as defined in (73), is densely
defined on j£?2(0) <g> C 2 ( 2 s + 2), is closed and has dense range in
f 2 ( ^ ) 0 C 2 ( 2 s + 2). Indeed, A J - 0, / ξ <$?2(Θ) <g> C2(2 s + 2), is seen to
imply J = 0, since the equation

implies β = & = 0, due to the antilocality of 1/ —ΎΓ^ - The operator 99*

is then defined from a dense subset of j£?2(0-L) Θ £2(2*+ 2) t o

^2(Θ) ® C2(2 s + 2), and, due to (71), is seen to satisfy

B χ= -B- φ* χ, χζ^ψ^)® C2(2s + 2> . (74)

Once again one considers the self-adjoint operator (99* 99)1/2, and, in the
sense of Lemma 1, an approximating operator/) with discrete spectrum.
With λi the eigenvalues of D, one checks, as in § 11, that jtf (Θ) is of the
form

0 I) ® li+1 . . ., ί = 1, 2, . . .}-

on a Hubert space ^f = (g) (Jfz(8) JΓ^) where 1^1 = 1, jf*, JΓ* are two-

dimensional Hubert spaces, and

1 \ _ ίί,

One can also see that J / ( 0 ) and ̂ (^-L) are in "weak duality", in that
there exists a unitary operator V, F 2 = 1, such that

The factor s#(Θ) is of type I if φ* φ(φ* φ + 1)~2 is in trace class. It is of
type III otherwise.

18 For m 4= 0. When m = 0, the analysis must be made some-what differently,
along the lines of § 11. We shall not repeat it here.
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14. Relativistie Free Field, Any Mass, Any Integer (Finite) Spin

As in the preceding paragraph, we shall give a brief sketch of this
general case. While for spin zero we restricted ourselves to the neutral
case, we shall consider here also charged fields. We shall describe a
relativistie "charged" free field, of any mass and spin s, s integer ^ 0, in
the following way.

We associate, to each β ζ ^ ( R 3 ) <8> R 2 s + 1 , two (unbounded) opera-
tors on 3tf19

(75)

MS) = i[a(]/ωAf)-b*ψωAf)]
where α, b are the "destruction" operators of two Fock representations
of the canonical commutation relations, which together generate ^(J^).
The (2 s + 1)-dimensional real orthogonal matrix A is defined, in analogy
with the half-integer-spin case, by

(
Here Us is the real solution of the equation

(Σic> k = 1, 2, 3 are the generators of the irreducible representation of the

rotation group with dimension 2s -f 1) and one sets, in (76), pk = i -^— ,

One extends φ, π to ̂ (W) by linearity, and to ̂ ( β 4 ) defining

\}lω I \]/ω (77)

= ίa(γωA/t)~ ib*(γωA/-t) •

One checks that

i

that φt(β) is local, since

lΦΛS),Φt(S')]- = o if
where

= _> inf
x€ supp J

X — X

and that φ(x, t) defined by φt(S) = / S(x) Φ(x> 0 dzx is a solution of
the Klein-Gordon equation to the mass m. Equivalently, one can describe

19 The notation used is α*(/) = (α(/*))*.
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the relativistic free field as a Bose system over JU>?2(R3) <g> C 2 s + 1 (i.e. a
Fock representation of the canonical commutation relations). To each
J ζ 6fR{W) ® R2*2**1) one associates a pair of unitary operators £7(J),
F(J), according to

), F(J),

ϋ(i)= Ujpiω-WA i), (78)

F ( J ) > F ^ ω ^ A J)

where ^ ( J ) , VF{3), J ζ JS?|(R3) Θ R2<2s+χ) define a Fock representation
of the Bose system over JδP^(R3) 0 R2<2 s + 1), with £? as no-particle state.

#i£&% (R3) Θ R 2 s + 1 , and 4 is defined in (76). The mapping defined
in (78) gives a representation of the canonical commutation relations;
one checks indeed that

ϋ(i) F(G) = F(G) ϋ(i) eίπ<J>G>,

U(S)U(Q)= tf(J+G), (79)

F(J)F(G) = F(J + G).

The explicit relation with the description in terms of φ(J),π (J) is given by

lim
Λ—> 0

The local algebra stf(Θ), associated to a given region ΘCR3, is defined
as the Von Neumann algebra generated by U(J), F(J), / ^ ζ ^JR(0) ® R2β+1.

The analysis of the structure of s/(Θ) is now performed along the
lines followed in § 9. The main difference consists in taking functions
from ^ ( 0 ) ® C 2 s + 1 instead of functions from 9{Θ). Let M?,
i = 1, 2, 3, 4 the four subsets of J f defined as in (36), with the sub-
stitution 2(Θ) -> 3f{(S) Θ C 2 s + 1 ; Mf the closure of M?. Then

θ (Mx n M2)) ,

M2) φ (Mf Λ M 1 ) ) ( 8 0 )

defines a closed, unbounded operator 9̂  densely defined and with densely
defined inverse. With 99* the adjoint of φ, consider the self-adjoint
operator 99* φ on Mx θ ((Mx n Mj?-) θ (Mj r\ M2)). Let D be a self-adjoint
operator with discrete spectrum, approximating (99* 99)1/2 in the sense of
Lemma 1. Let λ* be the eigenvalues of D. As in § 9, one shows that
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s/(Θ)ίs of the form

where ^ l 5 ^ 2 are maximal abelian and

sί^Θ) = {I ® <g> ( ^ ( ^ 1 } ) 0 I) 0 , ί = 1, 2,

acts on J f (5) = 0 {3tfψ <g> ^ 2 ) ) with

eδ/0(^) (and therefore stf (Θ)) is of type I if Σ Ά < °° (i e ^ 9* Φ ̂ s m

i

trace class), of type I I I otherwise. Using the explicit form of ω,
ω = (— P 2 -f- m2), and considering only open regions Θ with differentiable
boundaries, one can show, as in § 9, that s#{Φ) is a hyperfinite factor of
type III (since φ is unbounded) and that the duality relation holds

Appendix A

We shall give here, for completeness, the proof of Lemma 1 [8].

Lemma 1. Let A be a self-adjoint operator on a separable Hilbert space
J^; then there exists a self-adjoint operator Ό with discrete spectrum and a
Hilbert-Schmidt operator T such that

A=D+T.

Moreover, one can choose \\\T\\\ < 1, where \\\T\\\ is the Hilbert-Schmidt
norm of T.

One establishes first

Lemma 0. With A a self-adjoint operator on Jf, / any vector in 3%*
and ε > 0, one can find a finite-dimensional projection Pf and a Hilbert-
Schmidt self-adjoint operator Tf, such that A — Tf is reduced by Pf J^
and\(l-Pf)f\<ε,[\\Tf\\\<e.

This lemma is readily proved as follows. Let A = f λdΈJ(λ) be a
spectral decomposition of A one can find a > 0 such that

|(l-(^β-^_β))/|<β.

Divide the interval — a H + a in n disjoint subintervals At of length
2ajn, and let

^ \ i f ^ ( ^ ) / + 0 , Λ = 0 if E(Δ,)f = O.
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Let Pf1^ be the orthogonal projection on the subspace spanned by the
gi one can verify that

\(l-Pf)f\<ε, ^

Taking n0 > ^ ~ and Pf = Pf\ we have |(1 - Pf)f\ < ε, \\\Tf\\\ < ε

where Tf = (1 - Pf) A Pf + Pf A (1 - Pf). Obviously A - Tf is reduced
by Pf 3tf. q.e.d.

To prove now lemma 1, let {fk} be a Hamel basis in jtf* ({fjc} is dense
in 34?). Apply lemma 0 to fv with ε = 1/2 and let Pv Tv be the cor-
responding operators. On (1 — Pτ) Jti? apply lemma 0 to the vector
(1 - P^/a, and the operator At= (1 - Px) (4 - Tx) (1 - Px), taking
now ε = 2~2. Extending to P1«#? the resulting operators P 2 , JΓ2 ^Y
P 2 ' I = ^2 * f = 0, I ζ P x M", one has that A - Tλ - T2 is reduced by
P1J

/^> and P 2 ^ By complete induction, one obtains in this way a
sequence {P^ of orthogonal projections and a sequence {T{} of self-
adjoint Hubert-Schmidt operators such that

The series Tx + T2 -f- * * * converges in the 111 111 norm let T be its
CX)

limit. One has | | | !Γ| | | ^ 1. We prove next that Σ Ph = l L e t / € ^

|/| = 1; given <50 > 0, one can find /fc such that |/ — fk\ < δQ; then

/ oo \

Since δ0 is arbitrary, 1 - JΓ p f c / = 0, V / £ ^ q.e.d.
\ l /

To show that P]c reduces A-T, notice that (1 - (P1 -\ + PΛ-i)) ^
reduces J. — (Tx -j- + Tn) therefore Pn 3f reduces A — T9 since
PnTk=Tk=TkPn = Q for k>n.

It remains to be proved that A — T has pure point spectrum. Since
Pn£F reduces A — T and Pn^f is n-dimensional, there exist n ortho-

oo

gonal eigenvectors of A — T which form a basis in Pn $?. Since Σ Pn— 1,
w = l

the totahty of these vectors provides a complete orthonormal basis in
JT, q.e.d.

The eigenvalues of A — T form a dense set in the spectrum of A. This
follows because if A is closed and T is Hubert-Schmidt, A and ̂ 4 — T
have the same essential spectrum it can also be read off easily from the
proof, when one notices that the g[k), i = 1 . . . nk, which are obtained
8 Commun. math. Phys., Vol. 9
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applying the induction procedure outlined above, form are orthonormal
complete basis (by construction), and are "approximate eigenfunctions"
of A, in the sense that

Appendix B

We want to prove here some of the anti-locality properties of the

operators ]/l + n3, - 2 which appear in the structure of a relativistic

free Fermi field of spin 1/2 and mass zero. We shall follow very closely
the treatment in ref. [17]. We show first that, if /, g ζ J?2(Θ), Φ any open
region in Rz with non-empty open complement Φ1, then

1 2 / + 1/1 + nzg = 0 implies / = g = 0 . (B-l)
}Ί + n3

Here
3 \ 1/2 Λ

It is obviously sufficient to give the proof when ΦL is a neighborhood
of the origin and is rotationally invariant. We can also assume that /, g
are infinitely differentiable with derivatives in =£?2(0). Indeed, one could
otherwise consider the functions ε * /, ε * g, where ε is a (7°° function
with support in a neighborhood of the origin and * indicates convolution
the new functions have the desired properties and ε * g = 0, ε * / = 0
imply g = f — 0 if ε has been chosen properly.

The functions /, g, are then in the domain of \$\ and one has

and this can be written

\p\g = f g,fζ&2{Φ). (B-3)

We have to prove that (B-3) implies / = g = 0.
The proof is given first for the case g, f ζ ££2 (R1) and then extended

to /, g ζ ^ ( R 3 ) , In one dimension,

\P\ = ε(p) 'P
where

ί 1 p>0
£^=={-l p<0.

Since g(x) = 0, \x\ < δ (we take Θ± : {x, \x\ < δ}) and g ζ ^ ( R 1 ) one can
write

(\p\g) (%) = l i m ^ (a ; -f iλ) + lim J^2(^ + iλ) (B-4)
λ > 0 λ ^ 0
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where

/
dx'

— — dx', I m z > 0 ,
z — x

FJz) = / —dx', Imz < 0
2V ' J z — x '

Fτ is analytic in the half-plane Imz > 0, F2 in the half-plane Imz < 0.
Since #(#) = 0 when \x\ < δ, F1(z) and F2(z) describe a single function
F(z), analytic in the whole complex plane, with the exception of the
"cuts" Imz = 0, |Rez| > δ. Eq. (B-4) implies F(z) = 0 for Imz = 0,
|Rez| < ό. Since F(z) is analytic there, it must be F(z) Ξ 0, which in
turn implies / = g — 0 in (B-3).

We extend now the proof to the rotationally symmetric functions on
R3. Denote by #x, fz the Fourier transform mappings in e=δf2(R1),
«^f2(R3) respectively; let K be the mapping from the rotationally in-
variant functions on R3 to the symmetric functions on R1 defined by

Then one has

where

Therefore
Qf(v)=vf(v).

Ίξ

Let f(x) — \<p\ f(x) = 0, x £ ΘL, a symmetric neighborhood of the origin
inR 3 .

d
Then qKf and dq qKf are both zero on a neighborhood Γ of the

origin in R1 we have already seen that this implies

qKf = 0 i.e. Kf = 0, / = 0 .

Finally, if / is not rotationally invariant, define for each x ( R 3 a function
fx(r), on R1, symmetric, by fx(r)== J f(x + rω) dΩω, \ω\ = 1. Clearly
one can choose ε, δ > 0 such that, if \x\ < δ, fx(r) = 0 when |r| < ε. Also

dr fχ(r) = | - P%\ fx(r)\ therefore, if \x\ < δ,

\r\ < ε.
It follows then, by previous results

fκ(r) - 0, for \x\ < δ

and therefore f(x) = 0.

dr
fx(r) = 0 when
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As a corollary of these results, one obtains that the vectors of the
form

form a dense set in

Indeed, f\+.v* g= -f + σ,fζ £>*(φ), σ ζ J2P*(0-L) for all g in the
\P\ 7- ί>3

domain of ——. . The σ's so defined form a linear subset of j£?2(dH). If

1 -f- n3

v, } ,—- g) = 0 V g.
Taking g=(p1-ip2)gv (γΓ^sv,g)=0 VgrζJ*?2(0). Therefore
j/l - ?*3 v ζ JS? 2 ^), v ζ J^2(^J) i.e. v = 0 q.e.d.
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