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Abstract. It is shown that theories of relativistic Lie fields cannot lead to scatter-
ing or reactions, even if an infinite number of Lie fields is present.

1. Introduction

Generalized free fields can be considered to be the lowest order case of
models of fields whose commutator can be expanded in products of
Heisenberg fields containing up to a given number of factors. The next
more complicated case, in which the commutator is a linear functional
of the field, shares with the case of generalized free fields the property of
being a soluble model, but has a more complicated structure, which might
lead to scattering and reactions. For this reason, we suggested study of
this case, now called Lie fields, and pointed out that the vacuum ex-
pectation values are determined by recursion in terms of the distributions
introduced in the ansatz for the commutator and thus determine the
field. At the same time, we pointed out that translation invariance,
Lorentz invariance, locality, and positive energy spectrum can easily be
satisfied by themselves, but that the Jacobi identity for the commutator
and the positive definiteness conditions for the vacuum expectation
values, both of which are essential for a consistent model of field theory,
seemed to be difficult to fulfill [1], Recently, LOWENSTEIN [2] has
shown that the case of Lie fields is not empty by giving non-trivial exam-
ples of scalar Lie fields. These examples make it worthwhile to study
further the possibility that Lie field theories give rise to scattering and
reactions. GLASER [3] has shown that a Lie field theory with a finite number
of fields gives an elastic scattering amplitude whose absorptive part has
only a finite number of partial waves in the s-channel. Such an absorp-
tive part is a polynomial in z = cos θ and fails to have the singularities
in z which are required by unitarity and crossing [4]. In this article we
will show that no scattering or reactions can occur in a Lie field theory,
even if an infinite number of Lie fields is present. Our argument is based
on unitarity, as expressed by the commutation relations of the in and out
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fields, together with a study of the contradiction between the necessity

of principal value mass-shell singularities to obtain scattering and

reactions1 and the restrictions on such singularities imposed by the

stability of the one-particle states. We assume Poincare invariance,

but we do not make explicit use of local commutativity2.

We write the commutation relations in momentum space as3

[Φ.(P), Φ/>(2)] = e ( p ) 6«β(p*) δ(p + q) + ffxβγ(p, q) Φγ(p 4- q) , (1)

where α, β, γ stand for both internal and space-time indices and can take

infinitely many values, and γ is summed. For simplicity, we consider

only systems of hermitian Bose-like fields with the linear ansatz for the

commutators. (Non-hermitian fields can be decomposed into pairs of

hermitian fields.) Arguments similar to those below show that our re-

sults also hold for the cases in which Fermi-like fields, with the linear

ansatz for the anti-commutator, are included. We assume that (Φα (£>)}0=0.

2. Proof that Lie Field Theories Cannot Lead to Scattering or Reactions

The essential idea of the proof that Lie field theories cannot lead to

scattering or reactions is that scattering or reactions require the in and

out fields to differ, which requires principal value mass-shell singularities

in the matrix elements of the Lie fields. The positive-definiteness con-

ditions imply that ρxβ(p*) is a positive matrix. Hermiticity implies that

ρ is an hermitian matrix, and can be diagonalized. If we choose fields

which diagonalize ρ, then the non-zero elements of ρ must be positive

measures and cannot have principal value singularities. Thus such singu-

larities can occur only in the function gaβγ(p, q) which is the coefficient

of the term in the commutator which is linear in the field4. Since g

does not know the position, in a vacuum expectation value, of the fields

whose momenta occur in its arguments, principal value singularities will

occur in the momenta of fields standing next to the vacuum, in viola-

tion of the stability of the one-particle states, if such singularities are

present in g. Therefore g cannot have such singularities and no scattering

or reactions can occur.
1 Such singularities are necessary for scattering and reactions in hoth the

Lehmann-Symanzik-Zimmermann and Haag-Buelle formulations of scattering
theory.

2 Local commutativity is used implicitly to the extent that the existence of
asymptotic fields depends on it.

3 Replacing the field ΦΛ(x) by sources ja(x) = (π + wfy Φα(#) does not lead
to a more general form, since in momentum space jκ(k) — (m\ — k2) Φα(&), and
the Φx(k) obey commutation relations of the form of Eq. (1) with a different

4 This holds only for particles created hy a linear functional of the Lie field.
We treat the general case, where polynomials in the fields create the particles,
below.
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To carry out this demonstration in detail, we note that stability of the
vacuum implies {0(h'*)0 = <ϊ(Hi)0, where 0 and ί stand for out and in
fields, respectively. We will show that (ί Qϋyo = (i i iiyo> so that the elastic
scattering amplitude vanishes for all energy and momentum transfer,
and, by the optical theorem, the processes 2 -> n do not occur.

We can see that {iOϋ)0 = (iiίiyo in a Lie field theory by inspection
of the four -point function. Of course these vacuum expectation values of
in and out fields will have support on the respective mass shells.5 In
addition, the difference D = {fc'0u}0 — (iiii^Q will receive contributions
only from terms in g with mass-shell principal value in at least one ar-
gument, and, since [in, in] and [out, out] must be c-numbers, only from
those terms in g in which one argument is the momentum of an out field
and the other argument is the momentum of an in field. The terms which
can contribute are all quadratic in g. In order to have momenta correspond-
ing to both in and out fields in each g, two out fields would be required.
Since only one is present, D = 0, and there is no scattering or reactions.

In detail, the recursive evaluation [1] gives

(Φ«(P) Φβ(q) Φγ(r) Φ*(*)\ = θ(p) [θ(q) ρκδ(p*) qβγ(f) δ (p +

+ θ(p) (θ(q) θ(r) gaδμ(p, s) gβμv(q, p + e) ρy,(ra)

+ θ(q) θ (-s) gcίγμ(p, r) gβμv(q, p + r) ρvδ(s*) (2)

+ θ(p + q) θ(r) gκβμ(p, q) gμδv(p + q, s) ργr(r*)

+ θ(p + q) θ(-s) gκβμ(p, q) gμγv(p + q, r) ρvδ(s*)

+ θ(q) θ(q -f r) g«δμ(p, s) gβγv(q, r) ρvμ((q + f)2)

+ 0(ϊ) θ(p + r) gκγμ(p, r) gβδv(q, s} ρμv((p + r)2)} δ(p + q + r + s) ,

where repeated indices are summed. The terms quadratic in ρ in the
first curly bracket do not contribute to D because they do not have
principal values. The first four terms quadratic in g in the second curly

5 We use the recipes όα(p) -><5α (£>),£-> ± oo,andP — — - — -^ -> =F ί π ε ( p ) d κ ( p ) ,

ί -> ± oo, where α is short for mx, and δ x ( p ) =Ξ δ(p2 — α2), to read off the vacuum
expectation values of the asymptotic fields from the vacuum expectation values
of the Heisenberg fields. These recipes follow, among other ways, from the LSZ
asymptotic limit in momentum space,

&ί(P)= lίm ε(p)δΛ(P) f dq° Φ(q°,p) (q° + p°) χ(p° + q°) exp[-ΐ(2° - p°) t] ,
ί->± °°

where χ ζ & and χ(0) = 1, and the limit is weak. The LSZ asymptotic limit has
been shown to hold in Wightman's framework between states in at least one of
which no pair of asymptotic particles moves with the same velocity and the mo-
mentum-space single-particle wave functions are in ̂ 5 6.
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bracket do not contribute to D because of the stability of one particle
states (they correspond to (s, δ) -> (p, oc) -f (g, β) + (r, δ), for example).
The final two terms in the curly bracket give vanishing contributions,
because in both terms there is a g factor both of whose arguments are
momenta belonging to in fields after the asymptotic limit is applied and
D is formed. Since

[ out out I

ΦΪ(p),Φjf(2)J = o-no. (3)

the contribution of the term with g in the commutator, Eq. (1), to the
[in, in] asymptotic limit must vanish6.

Now we consider the case of particles created by quasi-local poly-
nomials in the Lie fields and, again, show that no scattering or reactions
can occur. It suffices to consider a quasi-local homogeneous polynomial
Aτ in the Lie fields :

Aτ(p)=fdp1....dpnδ(p-ΣΪpj)F^ ..... ^(2W ,2»»)Φ«Λft) Φ,.(2θ,W

where τ stands for all the internal indices of A, the α's are summed on,
and we have used Poincare invariance to write this form. For scattering
or reactions to occur, it is necessary that [A™\ Φ1*] φ [A*, Φ«]
or, more generally, [A™\ A'σ

ϊn] Φ [A*, A'*]. The commutator, Eq. (1),
leads to

[Aτ(p),ΦΛq)] = fdp1...dpnδ(p~Σ%pj)F^~ ««^Pl,...,pJ (5)

n

' Σ [Φt)Q^Λ(^)S(pi+q)ΦΛl(p1) Φ^(pi-1)Φ^ί(pi+1) '"Φan(pn)
i = l

+ £« ία/?fe,g)Φ«M) φα^^

Again, vacuum expectation values of Aτ must have mass-shell principal
value singularities in order to have A°ut Φ A™. The only place where p2

occurs as an independent variable on the right hand of Eq. (5), and there-
fore the only place where mass-shell principal values can occur, is in F,
which can have such a singularity in the sum of its arguments. Again,
however, such singularities cannot occur in the functions F because then
these singularities would occur in momenta belonging to fields standing
next to the vacuum, and violate the stability of one-particle states.

6 This condition, together with the analogous condition for the [out, out]
asymptotic limit requires the form

δa(p) Pγβϊ ~ P Γ ^ e ( q ) δp(q) gγ(P,

for the part of g which has mass-shell singularities in both arguments.
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Therefore [A^ - A™, Φ^11] = 0. A similar argument shows that

[A°ttt - Af, A'™] = 0, andKthus A°u* = A™, and no scattering or re-

actions occur for particles created by polynomials in the Lie fields.
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