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Abstract. A description of the quasi-free states on a Clifford algebra and their
representations is given, and we prove that the pure quasi-free states are Fock
States.

I Introduction

In this paper we complete the study of quasi-free states on a Clifford
algebra started in ref. [1], where essentially the translation invariant
states were treated. Here we use however a different method which
turned out to be more powerful to derive general properties of the set
of quasi-free states. The relation with ref. [1] is established in appendix A.

Our starting point is a O*-Clifford algebra <2l(H,s) built on an
euclidean space (H, s) (i. e. H is a real vector space on which a bilinear,
symmetric, positive definite form s is defined). Without loss of generality
we suppose that H is complete. For more details we refer to ref. [2]. Let!?
be the canonical mapping of H into 21 (H, s) such that

[B(ψ),B(φ)]+ = 28(ψ,φ) for ψ,φζH. (1)

Let T be an element of the group Θ (H, s) of orthogonal operators
on (H, s) and α(9l(-ff, sj) the group of automorphisms of %ί(H, s), then
the mapping B(ψ) ~> B(T ψ) can be extended to an automorphism ττ

of $l(H, s). Furthermore the operator τ : T ->rτ ζ α(2ί(//, s)) is a mono-
morphism. In theorem 1 we prove that any two Fock states are related by
such an automorphism. We also remark that such an automorphism
corresponds to a generalized Bogoliubov transformation (see appen-
dix A).

Furthermore we explicitly construct all representations induced
by quasi-free states and give a criterium under which they are irreducible.
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In section IV we give a more detailed treatment of translation-
invariant quasi-free states. Such states can be parametrized by pairs of
functions dv az(^L™{Rn) which permit a fruitful application in the
study of physical models.

In appendix B the Clifford algebra 2ί (H, s) is constructed as an
infinite tensor product of finite dimensional 0*-algebras.

II. Quasi Free States

Quasi-free states [1] on 01 (H, s) are completely determined by their
values on the subspace Qi2 of 01 (H, s) generated by the set {B(ψ) B(φ) | ψ,
φ £ H}. They can also be characterized as follows.

Proposition 1. Let ω be a quasi-free state on Qί(H,s); ω determines
a bounded operator A on H, defined by

ω ( l ) = l (2)

ω ( B ( ψ ) B(φ)) = s(ψ, φ) + i s ( A ψ, φ) ψ , φ ζ H (3)

satisfying A+ = — A 1 and \\A\\ < 1. Conversely every such operator A
determines by (2) and (3) a quasi-free state ωj_.

Proof. Let ω be quasi-free state, then it is determined by (2) and

ω(B(ψ) B(φ)) = s(ψ,φ)~\-i σ{ψ, φ) (4)

where a is a bilinear, antisymmetric, real form on H. A necessary
condition for the positivity is

ω([B(ψ) + iB(φ)] [B(ψ) — i B(ψ)]) ^ 0 for a l l <ψ,φζH
yielding ||σ]| ̂  1, therefore a is a continuous bilinear form on H and the
completeness of H ensures the existence of an operator A on H such that
o = s o A. The property A+ = — A follows from (1) and (4). The positivity
of the state requires ||σ|| < 1 and therefore \\A\\ ^ 1. Sufficiency follows
from theorem 2 below.

Moreover, if the operator A satisfies A+ = — A and A2 = — 1 , then A
defines a complex structure on (H, s)2 and the corresponding state ωA

is called a Fock state; A == 0 defines the central state ω0 on 21 {H, s).

Lemma l Let At (i = 1, 2) be operators on H satisfying Af = — A t

and Af = — 1 then there exists an operator T ζ Θ {H, s) such that Ax

= T+ A% T.
Proof. Let {ε|, φi} be an orthonormal basis of H such that Aiε\= cp%

and Aiφ\ = —ε% for i = 1,2 and all k; then the operator T of the
Lemma is the linear orthogonal operator on H defined by T e\ — e\
and T φl = ψ\ for any h. One verifies

T Ax = A2 T and T+ T = 1 .
1 A+ denotes the adjoint of A relative to the bilinear scalar product s.
2 Setting (ocJriβ)ψ = ocψJ

r β Aψ, oc and β being real numbers.
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Theorem 1. // ωAί and ωAz are Fock states on %{(H,s), then there
exists an element T ζ Θ{H, s) such that ωAχ = ωAo o ττ.

The proof is straightforward by remarking that T is the operator
defined in Lemma 1 and

oj2orτ(B(ψ) B(φ)) = ω2(B(T ψ) B(T φ)) = s(Tψ,Tφ)

+ is(A2Tψ,Tφ)

- s(ψ, φ) + is(T+ A2 T ψ, φ) = ω^Biψ) B(φ)) .

It follows from theorem 1 that if o)A is a Fock state, all other Fock
states are obtained by combining ωA with all elements of α(2l(//, s))
induced by Θ(H, s).

Let OJJ be a Fock state. The creation and annihilation operators are
defined as

B±(ψ) = ±{B(ψ)T ίB(Jψ)}.

One easily checks that B+(ψ) is c-linear [i. e. B+(J ψ) = i B+(ψ)] and
B~(ψ) is c-antilinear [i.e. B~(Jψ)^—iB~(ψ)]. The Fock represen-
tation, induced by ωj, is denoted as τij and the representation space
as #f j . The Fock space #fj contains the cyclic vector Ωj of the represen-
tation satisfying

πj(B~(ψ))Ωj = π-j(B+(ψ))Ω-j=:O for any ψ ζ H

where π_ j is the Fock representation induced by co_j.
From now on we choose a particular operator J such that J+ = —J,

J2 ~ — 1 . By theorem 1, for every state ωA with A2 = —1 an operator
T ζ Θ{H, s) can be found such that ωA = ωj o ττ. This proves that the
representation induced by ωA is completely described in terms of the
Fock representation induced by ωj as a consequence it is also irreducible.

III. Representations

Now we consider the general case. We look for cyclic representations
πA induced by quasi-free states ωA, satisfying A+ = — A and ||̂ L|| < 1.

We make the ansatz

πΛ(B(ψ)) - --{πjiBiT, ψ) 0 1 + θ ® π.j(B(T2 ψ))} , ψ £H (5)

on JίfA = J^j 0 J^-j with cyclic vector Ωj® Ω_j\ θ is an operator
anticommuting with any πj(B(ψ)), ψ ζ H and such that θ Ωj = Ωj\
Tx and T2 are linear operators on H. I t is easy to check that πA is a
representation induced by ωA, if and only if Tx and T2 satisfy

Tt Tx + Tt T2 - 2 , (6)

Tt J T1~ Tt J T2 = 2 A . (7)
22 Commun. math. Phys., Vol. 8
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If we can find a solution for Tx and T2 in equations (6) and (7), and
prove cyclicity, we proved our ansatz. The fact that πA in (5) induces a
quasi-free state follows from the analogous property of Fock states.

a) Construction of the Representation

First we look for a solution of the equations (β) and (7) and consider
independently the cases when the kernel 7ίA of A is even or infinite
dimensional and 71A is odd dimensional.

1°) 71A is even or infinite dimensional.
Let A— £7 |^413 be the polar decomposition of A with respect to

the real Hubert space (H, s); U is a partial isometry and 0 ^ \A\ g 1.
The operator A is normal, therefore we can choose U unitary, commuting
with \A\ and with any operator commuting with A^. If d i m 3 ^ is
even or infinite, U can furthermore be taken anti-hermitean, i. e. U+

= — U, because A+ = —A and U\A\ = \A\ U. The operator U is therefore
a particular complexification of the space (H, s) and there exists an
operator T £@(H, s) such that ϋ = T+ J T. The equations (6) and (7)
become now

T{+ T[ + T'2
+ T£ = 2 (6')

T{+ U T[— T'2
+ Ό T'2^2 ϋ\A\ (7')

where T[ = T+ Tx and T'2 - T+ T2.
Now we can write down a solution of (6;) and (7;)

and therefore

T1=T{1+

is a solution of (6) and (7).

2°) 71A is odd dimensional.
We add one dimension to 7ίΛ and consider the space (Hf, sr) where

H' — R η θ H and s' a symmetric, bilinear, real form such that:
s'(η}η) = l; s'(η,ψ) = 0 and s'(ψ, φ) — s(ψ, φ) for ψ,φζH. We
consider the algebra %l(H', s'), containing Ql(H, s) as a subalgebra, and
the quasi-free state ω'A', which is defined by

ωA,(B(ψ') B(φ')) = s'(ψ', φ') + i s'(A' ψ', φ') ψ\ φr ζ Hr

where A' satisfies: A'+ = — A\ \A'\ rg 1, A' η - 0 and A' H = AH.
The restriction of a positive form to a subalgebra remains a positive
form, here in fact \\A'\\' = \\A\\ <£ 1 and the restriction of the state
ω'A> to the subalgebra %[(H, s) is the quasi-free state ωA:

Since the spaces H' and H have the same dimension, there exists
an isomorphism T mapping E' onto H : T'+ T' = lΉ., Tr T'+ = lH,
s(T' ψ', T' ψ) = sf{ψ', φ'), s'{T'+ ψ, T'+ φ) = s{ψ, φ). The complex

3 There is a polar decomposition in any real Hubert space, because the existance
of the square root of any positive oparetor is only needed.
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structure J on H defines on H' a complex structure J ' defined by:
Jr = T'+ J Tf. The isomorphism T' defines an isomorphic mapping
xτ.: B{ψ') ~> B{T' ψf) of 21 (jff', s') onto <Ά{H,s) and we have the fol-
lowing relation between the Fock representations τij> and τij:

π'j' = πjo xτ> Ωj = β j , . (8)

Now 2Ẑ > is even dimensional and the method of 1°) can be used to get a
representation πA. on £f'j ® ^ ' _ j induced by ωA> or to find operators
T[ and ̂  satisfying the equations

T[+ T[ + T'2
+ T'2 = 2 1H,

T{+ J' T[—T'2
+ Jf T'o = 2A'

and πΛ>(B(ψ')) for ψ' ξ £?' is of the form (5) on Jfj <g> JTf_j. Using (8)
and the fact that T' induces also an isomorphism between $?rj % ffl'—j
and ^/fj^y/f^j, we can write down a representation πA> of ωA' on

{<β(Tx ψf)) ® 1 + 0 Θ π_j(B(T2 ψ')} y ' ζ £P (9)

where ίZ\ = ϊ 7 ' ίΓί and T2 = T' T'% are known to be linear mappings of Hf

into H and their restrictions Tf and Tξ to i/ map i? into H and satisfy
equations (6) and (7). Therefore the restriction

^={πj(B(T? ψ))®l + θ ® π - j ( B ( T ψ))} f o r ψζH ( 1 0 )

of the representation (9) is a representation on Jf'j <g) ^ _ j induced by

b) Cyclicity

To obtain cyclic representations with Ωj Θ β_ j as cyclic vector
we consider again the following cases

1°) $1A is even or infinite dimensional.

First remark that Tλ is always invertible; if T2 is invertible then
an argument analogous to that of ref. [4], by using the creation and
annihilation operators associated with J, shows that πA is cyclic if 9 ^
is not trivial then the representation of πA on the closure of J f j
® %l(H Θ QlTz, s) Ω~.j is cyclic.

2°) %lA is odd dimensional.

The operator Tf is always invertible on Tf H; if Tξ is invertible
on Tr H then, because of the same argument as in 1°) the subrepresenta-
tion of πA on the closure of Qi(T' H, s) Ωj <g> Qί(T' H, s) Ω-j is cyclic.
If Tf is not invertible on T' H, we must repeat once more the procedure
of 1°) to obtain a cyclic representation.
22*



320 E. BALSLEV, J. MANTJCEAU, and A. VERBEURE:

We summarize our results of a) and b) in
Theorem 2. All quasi-free states ωA induce cyclic representations or

subrepresentations πA of the form (5) on the space έ/f j <g> ffl-j with cyclic
vector Ωj 0 β_ j .

Finally we prove
Theorem 3. In order that a quasi-free state ωA with $ΪA of even or in-

finite dimension be pure it is necessary and sufficient that A satisfies
A2 = ~l.

Proof. The sufficiency follows from Theorem 1. We prove that it is
also necessary. Because άimTlA is even or infinite there exists a com-
plexification U, commuting with A (see the proof of theorem 2, a, 1°);
suppose A2 4= — 1 , then there exists a vector ψ such that

j φ O , s(ψ, ψ) = 1

and a two-dimensional projection operator E defined by

E φ = s(K ψ} ψ) K ψ + s(U K ip, φ) U K ψ for any φ ζ H .

One verifies that [E, J ] _ •= 0. We define the operators A1 and A2\
Ax = A + U E and A2 = A — U E satisfying

A+=-Ai; At=~-A2 (11)

A1 + A2 = 2A (12)

and one easily checks that

At AΎ ^ 1 At A2 ^ 1 . (13)

The properties (11) and (13) enable us to define the quasi-free states

coΛi and ωAz such that

= s{φv φ2) + is(A1 φλ, φ2)

= s(ψv ψd 4- i s(Az Ψv Ψ2)

ωAl(l) = ωΛt(l) = I .

Let {ψv ψ2}- be an orthonormal basis of the subspace E II of H then

ωAi(B(Ψl) B(ψ2)) Φ ωΛ,(B(Ψl) B(ψ2)) (14)

and it follows from (12) that

ωAχB(Ψl) B(Ψi)) + ωAχB(Ψl) B( V ϊ ) ) = 2ωΛ(B(Ψl) B(ψ2)) . (15)

Furthermore

ωAi(B(Ψl) B(φ2)) = ωΛΛ(B(Ψl) B(φ2)) = ωA(B(Ψl) B(φ2)) (16)

if φ1 or (and) φ2 belong to the orthogonal complement of E H in H.
It follows from (15) and (16) that on 2l2

1 1 ._m

(oA = Y ω i l l + Y ω^2 . (17)
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A straightforward calculation shows that (17) holds on all the elements
of the form Blψj) B(ψ2) B(φ1) . . . B(φ2n) and B(φ1) . . . B(φZn) which

form a basis of $l(H, s), and therefore (17) holds on the whole algebra.
This shows that OJA is not pure.

Remark. The condition that TίA is even or infinite dimensional is
always satisfied in the case of translation or gauge invariant states
(prop. 3).

IV. Invariant States

We take H = L2 (Rn) with the real inner product of φ = φ1 + i φ2

and ψ = \p± -f i ψ2 defined by

Let T be an orthogonal operator on (H, s). The state ωA is said to be
T-invariant, if

ωA iττ a) = ωA (a) for every a ζ $1 {II, s) .

The condition on A in order that ωA be jP-invariant is given by
Lemma 2. The quasi-free state OJA is T-invariant if and only if

[A, T]- = 0 .

Proof. The state ωA is T-invariant if and only if

OJA(B(T φ) B(T ψ)) = ωA(B(φ) B(ψ)) , φ, ψ ί H .

Or
s(T φ, T ψ) + i s(A T φ, T ψ) = s(φ, ψ) + i s{A φ, ψ) .

Since T is orthogonal, this is equivalent to

[A,T]_ = 0.

In particular, ωA is translation-invariant if and only if

[A, Tfc]_ = 0 for every h ζ Rn ,

where Tk is defined by Tkf(x) = f(x — k), i. e. if A is a translation-
invariant operator.

The state ωA is J — gauge-invariant if and only if

[A, βJα]__ = 0 , - c o < α < oo
or, equivalently

[A, J ] _ - 0 .
Let us consider

A = - γ [ ^ ] + > A2 = -Λγ[J,A]- (18)

(where A is defined in appendix A, prop. A 1), so that

A = A1-hΛA2, (19)
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and
[Av J ] _ = [A2, J ] _ = 0 .

Now we choose J = i I, which is a translation-invariant operator.
Then it follows from Lemma 2, that the state ωA is translation-

invariant if and only if Aλ and A2 are translation-invariant operators,
and ωA is gauge-invariant if and only if A2 = 0.

Let now ωA be a translation-invariant state. Then Ax and A2 are
complex-linear, translation-invariant operators, and it is well known
(cf. [8]) that there exist tempered distributions at on Rn, i = 1, 2 such
that αf 6 £°° (Ew)? and f or φ ζ H

At φ = ai*φ (20)

where the functions dt are the Fourier transforms of ai: and * denotes
convolution. Via the Fourier transformation the operators At become

liφ = άi φ. (21)

The Fourier transform of the operator A is defined by

Aφ(ξ) = d^ξ) φ(ξ) + 52(-|) ^ ( - | ) . (22)

We notice that A is a simple multiplication operator if and only if ω^
is gauge-invariant. In many problems it is an advantage to work with
A1 and A2 in the simple form (18) rather than with the operator A.
This is the case for instance in the treatment of models by variational
procedures. For this it is of interest to give the following explicit charac-
terization of the pairs of functions (dv α2) which define a quasi-free
state ωA via the operator A defined by (19), (20) and (21).

Proposition 2. The pair of functions (d1} d2) define a quasi-free state ωA

if and only if for any ξ
(i) dx(ξ) is purely imaginary,

(ϋ) at(ξ) = -at(-ξ),
(iii) IcMDf+l^) ! 2 ^ 1.
Proof. This is proved by a straightforward calculation, using (21)

and (22).
In an actual problem one can use the pairs of functions (dv d2)

satisfying (i)—(iii) as parameters for the set of quasi-free states or simple
functions of dλ and d2 (cf. [1] and appendix A).

Now we give another application of the operators Ax and A% by
proving the following simple results.

Proposition 3. For a translation-invariant state ωA the dimension of the
null space of A is equal to 0 or oo.

Proof. By (22), the Fourier transform of the equation A φ = 0 is

aΛ(-ξ)$(-ξ) = o. (23)
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We decompose the purely imaginary function d1 in to its symmetric
and antisymmetric parts dls and dla> the antisymmetric function d2

in to its real and imaginary parts d2r and i d2i, and, with the same
notations, the function φ as follows

ψ = ψrs + ψra + Hψis + ψia) '

This gives rise to the following system of equations equivalent to (23)

dla-\-d2i 0 d2i

0 1 I ψr a \

0 d
2i
 d

ls
 d

la
 - d

2ί
 / \ φ

is

\d
2i
 0 d

la
 - d

2r
 d

ls

Let Jί be the set of points ξ, where the determinant of the coefficient
matrix of (24) is equal to 0. We have the following two cases

1. Jί has measure 0. Then the solution of (24) and hence of (23) is 0
almost everywhere, and dim$lΛ = 0.

2. Jί has positive measure m. Then we can divide Jί into a sequence
of disjoint sets Jί^ i = 1,2, . . ., of measure m/2* and for each i construct
a non-trivial solution of (24) {φ^l, φfy, ψu, φfy) with support in Jίi.
Since the determinant is symmetric in ξ, the right symmetry properties
can be obtained by use of the above construction in a half-space and
reflection. Thus we have obtained a sequence of non-zero orthogonal
functions in the null space of A, hence dim91A = oo.

By means of proposition 3 we can prove
Proposition 4. For every translation-invariant, quasi-free state ωA

there exists a translation-invariant operator J satisfying J+ = —J,J2 = — 1,
and such that

[A, J]_ = 0 ,

i. e. such that A is J-gauge-invariant.
Proof. Since dimity is 0 or oo, we can use the construction of

Theorem 2, a, 1°. We need only to add, that J can be chosen translation-
invariant on 7ίA. On the complement of %l(A) this is satisfied because
A is translation-invariant, and J = A (A+ J.)"1/2 on 9Zj>

Appendix A

We establish the relation between our formalism and that of ref. [1]
Proposition A 1. For every euclidean space (H, s) and Hilbert structure

J on (H, s), there exists a closed subspace E of H and an orthogonal linear
operator A on H, satisfying H = E φ J E and A2 = 1, [A, J]+ = 0.

Proof. Let {εί: ψi \ i £ /} be an orthonormal basis of H related to J
i. e. J Si = ψi The linear operator A is defined by A ^ = ψι and A φi== εz

for alH ζ I ; A is a hermitean orthogonal operator satisfying [A, J]+ — 0.
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The projections P — —-x— and Q = — ^ — a r e orthogonal, complemen-

tary and satisfy ΛP= PΛ = P, ΛQ = QΛ = ~Q and J P = QJ,
then E = P H and H = E ® J E where J E =QH.

L e t J b e a c o m p l e x s t r u c t u r e o n (H, s). W e define t h e o p e r a t o r s R
a n d 8 (see ref. [1]) o n t h e H u b e r t s p a c e (H; (.,.) — s (.,.) + ί s(J . , . ) )
a s s o c i a t e d w i t h a quasi-free s t a t e ωA b y s e t t i n g

ωΛ(B+(ψ) B+(φ)) = (A ψ, S φ) (in ref. [1] A ψ is denoted as ψ)

where B - = ~ (B =F i B o J) .

By identification we obtain

A = J(2E-l — 2AS)
and

Remark that 8 is linear and that — A 2 = 1 is equivalent with R — R2 —
— S+ 8 = 0.

The connection between (R, 8) and (Aly A2) is given by

R = γ(ι — J Ai)'> S = — γJA2 .

The usefulness of the operators R and 8 in physical applications is
due to the fact that R and 8 are simple linear functions of Aτ and A2

commuting with J.
In this section we also formulate the result of theorem 1 in terms

which are commonly used among most physicists. If we have two pure
quasi-free states say ωj^ and ωj2 on Qi(H, s) then there exists always a
Bogoliubov transformation relating the respective creation and annihila-
tion operators.

For the convenience of the reader we write down explicitly the
Bogoliubov transformation. The creation and annihilation operators
corresponding to the states ωJi and ω J a are respectively

Bfz(Ψ)=~{B(ψ)TiB(J2ψ)},

and the Bogoliubov transformation reads



Bogolioubov Transformation 325

where

Here T is the operator defined in theorem 1.
Remark that U and V satisfy the well-known consistency equations

U+ U + V+ V - 1 and U+ V + V+ U = 0 .

Appendix B

In this appendix we construct the Clifford algebra $ί(H,s) as an
infinite tensor product of finite dimensional C*-algebras for the case
that (H, s) is separable. Another construction can be found in ref. [5]

Proposition B 1. For every space (H, s) of even dimension, there exists

an element β ^^i(H, s) antίcommuting with all B(ψ), ψζH, such that

β*=--l.
Proof. Suppose that the dimension of (H, s) is 2n and let {ψv ψ2, . . .,

ψ2n} be an orthonormal basis of (H, s) then β can be defined by

β = i«B(ψ1)B(tp2)...B(ψ2n).

Proposition B 2. For every space (H, s) where H = H1φ Hz and H1 is

of even dimension, the C*-algebra ^ί(H,s) is isomorphic with
s) (the ^ensor product of C*-algebras [6]).

Proof. The isomorphism ξ between $l(H, s) and 2l(i/1? s) <g> %1{H2, s) is
defined by the following relations.

ξ(B(ψ))= B(v)β 11 if

ξ(B(ψ))= β®B(ψ) if

λvhere β ζ 01 (HΊ, s) is defined in proposition B ] .
Proposition B 3. // the space (H, s) is separable, then the C*-algebra

, s) is isomorphic with (x) ̂  where ^ t is the C*-algebra of the 2 x 2

matrices \^^iis the infinite product of C*-algebras [7] I .

Proof. Let {ŷ , 99̂  [ i £ iV} be an orthonormal basis of (iϊ, s) and let
( i^ , 5) be the subspace of (H, s) generated by {ipi} φ^ for each ί ζN.
The C*-algebras Qi(Ht,s) are isomorphic with the (7*-algebras ^ for
each i ζN. The isomorphism η between %ί(H, s) and (x) ̂  is defined by

rj(B(w)) ~ βΛ <g) β9 0 ® i8, -i 0
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if ψ ζHj. For every k ζN the elements βk belong to $l{Hk, s) and are

defined as in proposition B 1.

Acknowledgment. We are greatly indebted to Professor D. KASTLER for fruitful
aid during the preparation of this work; two of us (E.B. and A.V.) also want to
express their thanks to Professor D. KASTLER for his kind hospitality at University
of Aix-Marseille.

E.B. and A.V. are indebted to D.G.R.S.T. for financial support.

References

1. BALSLEV, E., and A. VERBEURE: States on Clifford algebras. Commun. Math.
Physics 7, 55 (1968).

2. SHALE, D., and W. F. STINESPRING : Ann. Math. 80, 365 (1964).
3. DUNFORD, N., and J. T. SCHWARTZ: Linear operators, Part II, p. 935. New York:

Interscience Publ. 1963.
4. ARAKI, H., and W. WYSS: Helv. Phys. Acta 37, 136 (1964).
5. GUICHARDET, A.: Ann. Sci. Ecole Norm. Super. 83, 1—52 (1966).
6. TURUMARU, T.: Tόhoku Math. J. 4, 242—251 (1952).

WTJLFSOHN, A.: Bull. Sci. Math. 2erne serie, 87, 13—27 (1963).
7. TAKEDA, Z.: Tόhoku Math. J. 7, 67 (1955).
8. HORMANUER, L.: Acta Math. 104, 93 (1960).

Dr. E. BALSLEV

University of Aix-Marseille
Physique Theorigue
Place Victor-Hugo
Marseille (3°)




