
Commun. math. Phys. 8, 245—260 (1968)

Event Horizons in Static Electrovac Space-Times

WERNER ISRAEL*

Dublin Institute for Advanced Studies, Dublin

Received November 20, 1967

Abstract. The following theorem is established. Among all static, asymptotically
flat electrovac fields with closed, simply-connected equipotential surfaces gOQ

= const., the only ones which have regular event horizons gOQ = 0 are the Reiss-
ner-Nordstrδm family of spherisymmetric solutions with m ̂  6r1/2 |e|/c. In the
special case where the gravitational coupling of the electromagnetic energy density
is neglected (G= 0) all solutions are computed explicitly, thus extending an earlier
result of GINZBURG for a magnetic dipole in SCHWARZSCHILD'S space-time. Possible
implications for gravitational collapse are briefly discussed.

1. Introduction

Of central importance to the theory of gravitational collapse is the
question whether event horizons are a fairly normal characteristic of
very intense gravitational fields, or whether they are merely quirks of
the special highly symmetric solutions which have so far been studied.

If we restrict ourselves to the class of asymptotically flat, static
vacuum fields, it is already known [1] that the only regular event ho-
rizons are spherical. More precisely: among all fields in this class with
closed, simply-connected equipotential surfaces gQO = const., Schwarz-
schild's solution is the only one with a regular event horizon gQO = 0.
This means that no static asymmetric perturbation of the Schwarzschild
field which originates from sources within the critical surface gQO = 0
(r = 2m) can preserve a regular event horizon. (On the other hand, per-
turbations due to exterior sources, such as distant masses, leave the
qualitative character of the event horizon unaffected [2].)

Quite generally, in the case of an arbitrary asymptotically flat field,
it therefore seems natural to ask whether the regularity of an event
horizon is destroyed by any asymmetric perturbation due to interior
sources (e.g. mass quadrupole [3], magnetic dipole field [4], outgoing
gravitational waves an exception has to be made here for rotation — the
Kerr manifold has a regular event horizon [5]).1 If this were true, it
would force a drastic reappraisal of our current ideas on the nature of
gravitational collapse [6].

* On leave of absence from the Mathematics Department, University of Alberta,
Edmonton, Canada.

1 For instance, it might be conjectured that every vacuum field which has a
regular event horizon and which is asymptotically flat (with an outgoing radiation
condition) is algebraically special.
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The present paper represents a small step towards a definitive answer
to this question. We shall study the class of electrovac spaces — i.e.
regions which are the seat of electromagnetic fields but free of charge
and mass (all sources are assumed to be immured within the surface
UoQ — ty The main object of the paper is to prove the following result:
of all static, asymptotically flat electrovac fields with closed, simply-
connected equipotential surfaces gQO = const., the only ones which pos-
sess regular event horizons gQO — 0 are the spheri- symmetric Reissner-
Nordstrόm solutions for a charged particle. (A precise formulation is
given in Sec. 4.)

In the special case where one neglects the gravitational effect of the
electromagnetic energy density [4], it is a straightforward matter to
compute the solutions explicitly (Sec. 7).

In the general case, we proceed by reformulating the given conditions
in terms of the geometry of the surfaces g00 = const. (Sec. 2 — 4), showing
that the equipotential surfaces of the electric (or magnetic) field neces-
sarily coincide with these surfaces (Sec. 5), and finally proving that they
are spheres (Sec. 6). In the interests of mathematical simplicity we shall
confine ourselves to the situation where the field is purely electric or
purely magnetic. However, there should be no essential difficulty in
extending the proof given here to the slightly more general situation of
crossed electrostatic and magnetostatic fields.

2. Static Fields

In this section we shall deal with a general static field. Our aim is to
reformulate Einstein's static field equations as conditions on the geo-
metry of the equipotential surfaces.

The notation follows reference 1. (Signature of metric — h + ~K Cap-
italized Latin indices (range 0 — 3) refer to space -time tensors. Three-
dimensional and two-dimensional subtensors are distinguished by Greek
indices (range 1 — 3) and by lower-case Latin indices (values 2, 3).
Covariant differentiation with respect to the 4-dimensional, 3-dimeιι-
sional, and 2-dimensional metrics is denoted by V , a stroke and a semi-
colon respectively.)

A space-time is called "static" if it admits a regular vector field ξ
which satisfies Killing's equations:

0 = VAΪE + VEΪA - SGdcgAB + ̂ c^fc + ί/ci^f0 > (1)
is hypersurf ace -orthogonal :

and time -like over some domain. With V defined by

V=(-ξA ^)1/2» (3)
the identity du(V-*ξB}) = 0 (4)
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follows from (1) and (2), and shows that a simply-connected domain
which has ξA ξ

A < 0 throughout admits a scalar field t (XA) such that

V-*ξA = -dAt. (5)

In this domain, we can therefore introduce "static co-ordinates". Let the
4-scalars xx be any three independent solutions of

ξ*dAx« = Q. (6)

In the co-ordinate system XQ ΞΞ t, x* we derive ξx = 0 from (6), then
|° = 1, fα = £α0 = 0 from (3) and (5), finally dgABβt - 0 from (1). Thus
the metric is reducible (in the domain where ξA ξ

A < 0) to the standard
form

The form (7) can be decomposed further. We suppose that

e-ls(V)1/8 (8)
vanishes nowhere in the domain of interest (cf. end of Sec. 4). As in-
trinsic co-ordinates for the equipotential 2-spaces V — const., t — const.
introduce functions θl, θ2 which are constant along the orthogonal tra-
jectories: #α^(dαθα) (dβ V) — 0. Then the spatial metric reduces to

gκβdx«dχβ = gab(V, θ) dθ*dθ» + [ρ(F, θ)]2 dV* . (9)

Let 11 be the unit spatial vector normal to the equipotential surfaces,

and O(α) the tangential base-vectors associated with θa,

e(a}« = dx«(V, θ)ldθ° , e<«> ̂  gα δe ( δ ) . (11)

The triad (c(α), n} spans the 3-space at each point, and the following
decompositions are derivable from (9) (by making the special choice of
co-ordinates x1 = V, xa = θa, or otherwise [T]):

(12)

Here,

Ka^~Q~^gabldV (14)

is the extrinsic curvature of the 2-space F = const., considered as
imbedded in the 3-space ί = const. Note the related formulas

V =
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which can be deduced from (14); g is the 2x2 determinant of gab,
R~gabEab is the two-dimensional curvature invariant (the Gaussian

curvature is — -^R), anc^ ̂  Ξ 9ab ̂ ab ̂  (twice) the mean curvature. From
(13) and (12), we have

' (16)

The imbedding relations for the three-dimensional Ricci and Einstein
tensors R^β, Gaβ are [1]

G«βn*nβ = ~(Ka,K^-K*-R}, (17a)

R«βe(a)*rf = daK-KlM» (Γ7b)

^(αTW = y %α& + ρ-^ αδ + ̂  K a, + Q-igaJKlβ V . (18)

Let JL, Fα and Zα & denote the right-hand sides of (17a), (17b) and (18)
respectively. Then the identities

.a, (19a)

V] (g^Ya) = [ρ(δSZ§-Z6)].t + ρ-Mρ^).,, (19b)

are consequences of (14). The left-hand sides of (17) and (18) of course
satisfy corresponding identities, whose content is merely that of the
contracted Bianchi identities G^φ — 0. Thus, if (14) and (18) are regarded
(in a given 3-space and for given ρ) as a system of first-order equations
determining the evolution of gab and Kab as functions of V, then (17 a, b)
are "involutive constraints" : if they are satisfied on one surface V— const.
then, by virtue of (19), they are satisfied identically.

We are now ready to decompose the Einstein field equations

GA£ = -8πγTAB (20)

(y = 7.3 X 10~29 cm/gm is Newton's constant of gravitation divided by
c2). Under a change of spatial co-ordinates x*' = x*' (x), the 3 x 3 sub-
matrix Tκβ of the energy tensor TAB transforms as a 3-tensor, and T®
is invariant. The 3 + 1 split of (20) yields [1]

(2* a)

0=8πγT.0, (21 b)

Gap = -8πγTaβ-V-i(V\aβ-V^μgΛβ). (21 c)

We can immediately deduce a relativistic analogue of Poisson's equation :

F-1F'% = 4πy(Γ«-!Γ8). (22)

From (16) and (22),

Γ§). (23)
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From (18), (21) and (13),

(24)
- Sπγρ

From (17), (21) and (13),

- K* - R) = - 8πy 5Pβ/ϊ7^ + J5Γ/(ρF) , (25)

β(β)^+ (3αρ)/(ρaF) . (26)

Eqs. (14), (23) and (24) form a complete system for determining the
evolution of gal), ρ, Kb

a as functions of V. The tangential stresses
Taβe(a)*e(i)}β can ̂ e assigned arbitrarily over the 3-space the conservation
identities V B T

AB = 0 are satisfied automatically if the normal stresses
Taβn

β are determined by (25) and (26).
Finally, we record the expression [1]

(27)

for the square of the four-dimensional Rieman tensor. Evaluating the
second term with the aid of (13), we find

.-- ΐf -&ABGD __ n nμv i n-2 T7-2 Ίζ Jfab
4 -^ABCΌ^ — VΓμv™ "Γ ρ y ΆabΆ

 / Q Q N(Z&)

+ 2ρ~ 4 F- 2 ρ ; α ρ>« + ρ~6 F-2(9ρ/3F)a .

3. Static Electro vac Fields

An electromagnetic field

FBG = dBAc~-dcAB (29)

in a static space-time is itself static if the Lie -derivative of the 4-poten-
tial A vanishes :

ξGPGA
B — AcPcξ* - 0 . (30)

The field is purely electric (or, by an obvious re -interpretation, purely
magnetic) if FβC is a simple bivector of the form

F£C = 2V-iξlBEc]. (31)

The ' 'electric vector" EA, defined by (31), may be taken without loss of
generality (as long as ξsξ

B 4= 0) to be purely spatial (ξAEA = 0), and
is then given explicitly by

EA=V-iFABξ», (32)
i.e.

JBA=-V~1dAφ, φ^-AΰξB = -A0. (33)

17 Cominun. math. I'hys., Vol. 8
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It is readily verified that

PBF
AB - ξA VB(V-^Eβ] = ξA V-lEP]β (34)

so that, in the absence of charge and current, the Maxwell equations

VBF
AB = 0 can be written

^β|«=(^-V%y)|« = 0. (35)

By virtue of (9), this can also be written as

F|Γ1/2 (3/3 V) (gW F~» = - (ρ φ>«). β , (36)

with ^ defined by

dφldV=ρψ. (37)

For an electrovac field (electromagnetic field without matter) the

energy tensor is given by

, (38)
= ± A B * — A B * - * A B

More explicitly, we have

(39)

4πT^ = y

with

VE^-ψn.-e^.d.φ, (40)

W ^ ̂ αί/
α - F~2(^2 + φ ; α φ ; α ) . (41)

Hence (22) reduces to

V\*\μ=γVΈP. (42)

We substitute (39) into the basic Eqs. (23) — (26) of the previous

section. This leads to the following complete first-order system for deter-

mining the march of the variables gaj)ί φ, ψ, ρ, Kb

a as junctions of V:

Geometrical equation:

dgJdV=2ρKa». (14)

Electrostatic equations:

=ρψ, (37)

V = - (ρφ'> a) . a . (36)

Gravitational equations:

-γV- LρW + φ.aφ'a) , (43)

γ
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Involutive constraints:

-^~(KabK
ab — Kz — B) = γ F~2(^2 — φ]aφ'>a) + ρ~lV~1K , (45)

daK — K%.b = 2γV~2ψφ.a + ρ-2F-1ρ;α . (46)

That the constraints (45), (46) are respected by the equations of evolu-

tion can be verified explicitly with the aid of the identities (19).

The following result, which will be needed later, is obtained by

contracting (44) and eliminating R by means of (45):

ρΛabΛ^-~2γρV-*φ.aφ>«. (47)

Here,

Λab^Kab~^Kgab (48)

is a measure of the deviation from spherical symmetry.

Combining (28) and (43), we have finally

R R A E ™ = θG** -*-*KabK«* + 2ρ-*V-*ρ.aρ >«

A rather complicated explicit expression for the term GμvG
μv in terms of

the field variables can be obtained from (21 c), (39) and (13). For our

purposes it will be sufficient merely to note that this term is obviously

non-negative.

4. Statement of Theorem

In a static space-time, let Σ be any spatial hypersurface t = const.,

maximally extended consistent with ξ^ξA < 0. We consider the class of

static fields such that the following conditions are satisfied on Σ:

(i) Σ is an electro vac space (i.e. free of charge and matter).

(ϋ) Σ is regular, non-compact and "asymptotically Euclidean". The

last statement means that there exist co-ordinates xx in terms of which

the metric (7) has the asymptotic form

V = 1 — (m/r) -f ΎI , m — const., (r -> oo) (50)

where r ΞΞ (dxβX

(iϋ) The electro vac field is purely electrostatic (or purely magneto -

static). The asymptotic form of the electrostatic (or magnetostatic)

scalar potential is

φ = (ejr) + ζ , e = const.,
(r->oo) (51)

ί = 0(r-*), dαC = 0(r-3).

17*
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(iv) The equipotential surfaces V = const. > 0, t = const, are a regu-
lar family of simply- connected closed 2-spaces.

(v) If the greatest lo\ver bound of F on Σ is zero, then the geometry
of the equipotential surfaces V — ε approaches a limit as ε -> 0 -f, corre-
sponding to a closed regular 2 -space of finite area.

(vi) The invariant RABGD^ABGD *s bounded on Σ.

Theorem. The only static space-time which satisfies conditions (i) — (vi)
is the spherically symmetric Reissner- Nordstrom solution

ds* = F~2dr2 + rz(dθ* + sin20 dΦ*) — FW)
V. / K: Q\

F2 = 1 — 2m/r + ye2/r2 , φ = e/r , J l j

with m ^ γ^2\e .
(We here assume γ > 0. In the exceptional case γ — 0, discussed in

Sec. 7, the Theorem does not hold in quite this form.)
That the Reissner-Nordstrόm manifold with m ^ y1/2 \e\ actually does

satisfy (i) — (vi) is well-known, and can be easily verified from the explicit
formulas

gabdθadθb = r*(dθ* -f sin2(9 dΦ2) , j

ρ = V~ldr/dV =-- r 3 /(mr— ye2) , γ - — eF/f2 ,1 (53)

Ka, = Vga,/r , J

obtained by applying the definitions (8), (37) and (14) to the metric (52).

There are two major steps in the proof of the theorem. In Sec. 5 we
show, mainly with the aid of the electrostatic Eqs. (36) and (37), that
(i) — (vi) can only be satisfied if 99 is constant on the equipotential surfaces
F= const.: ψ= φ ( V ) . This simplifies the gravitational Eqs. (43) and
(44), from which it can then be deduced (Sec. 6) that the equipotential
surfaces are spherical.

There is one trivial case for which the proof can be quickly disposed
of here. Suppose that F has a positive lower bound. Then the (maximally
extended) 3-space Σ is complete. From (35) and the boundary condition
(51) we deduce φ ΞΞ 0 with the aid of Green's theorem. Eq. (42) now
reduces to Laplace's equation F'% = 0; together with the boundary
conditions (50) this yields FΞΞ 1, showing that space-time is flat and
establishing the theorem.

We may assume henceforth that F comes arbitrarily close to zero
on Σ. The 2-space F = 0-f- then forms an inner boundary of Σ and
encloses an internal "hole". By (iv), every equipotential surface is homo-
topic to F = 0 -f . It follows that the gradient of F cannot vanish at any
interior point P of Σ. If it did, then by (42) F would have a minimum
at P (unless E vanishes identically) and the equipotential surfaces near P
could be shrunk to a point. [If E = 0, P would be a point of bifurcation
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of the equipotential surfaces [1], which also contradicts (iv).] Hence ρ

remains βnite, and the metric form (8) regular, at all interior points of Σ.

The possibility that ρ -> oo as F -> 0-f is, however, not excluded.

We conclude this section by recording the exterior and interior

boundary conditions in a form convenient for later application. For the

asymptotic forms (50) and (51) we find from (8), (15) and (37)

r -> oo , ρ/ r2 -> m-1 , rK -> 2 ,

rφ->e, r2ψ-> — e as F-> 1

According to (vi) and (49), the regularity of the manifold at the inner

boundary F = 0 -f requires that

as v -> υ

Thus φ and ρ"1 are constant on the event horizon:

95(0, θ1, θ2) - φ0 - const.,

ρ-MO, θ1, θ2) - l/ρ0 - const, (possibly zero) J ( j

5. The Electrostatic Field

In this section, our interest will center on the electrostatic Eqs. (36)

and (37). A number of integral relations will be derived which enable us

to shoΛV that the electrostatic and gravitational fields must be chained

together by the condition φ a = 0 if (i)—(vi) are to be satisfied, and we

shall determine the function φ = φ ( V ) explicitly.

Let F(V, φ}, G(V, φ) be (for the moment, arbitrary) differentiable

functions. From (36), (37), (43) and (15) we readily obtain the identity

φ.aψ'a) + B(V, φ) ψ + ρ^dθβV (57 a)

-V
where

^ γG + dF/dφ , B^ V^dF/dV + dGjdφ . (57 b)

To obtain integral conservation laws from (57), let us require that

A = B = BG/dV = Q . (58)

The general solution of this (over-determined) linear system of differen-

tial equations for F, G is a linear combination of the three particular

Sθluti°nS F^I, 0 = 0, (69a)

F=;γφ, (? = — 1, (59b)

^ = = y ^ 2 _ ί _ 7 2 j G = — 2φ. (59 c)
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Taking each of these values for F, G in turn, we integrate (57 a) over Σ
— i.e. we form /// [(57 a)] g^dθ^^dθ2 dV — noting that the integral of

the last term (2-divergence) vanishes when taken over any closed 2-space
V = const. The results express the equality of the surface integrals of
the expression in square brackets over the two boundary surfaces F = 1
and V = 0 + (both have to be understood as limits) :

l

0+ = Q , (GOa)

δ+ = o, (βob)
ϊ>+ = 0. (βOc)

We have defined the element of area d8 — g1/2 dθldθ2 and

λ = ~ V-ld(V2 — γ φ*)ldV = 1 — γρψφ/V . (61)

[Eqs. (60 a, b) could also have been inferred somewhat more directly
from (35) and (42).] Evaluating the surface integrals for F = 1 by means
of (54), and taking (56) into account, we find

= — 4πe, (61 a)

(61 b)

γφl f (ψ/V)dS-2φ0S0lρ0 = -4;πe) (61 c)
v = o +

where SQ is the area of the 2-space F = 0-f [finite and non-vanishing by
(v)]. Solving (61), we find

γeφQ = m — (m2 — ye2)1/2, (62)

*-γe*)V*. (63)

(A second solution for φQ involving the opposite sign for the square root,
is unacceptable because it makes $0/ρ0 negative.) For the existence of
a regular event horizon it is thus necessary that m2 ^ ye2.

To motivate the next step, we begin by observing from (53) that the
manifestly nonnegative expression

( ρ V ) ~ l [ ρ ψ ( l — γeφjm) + eV/mγ (64)

vanishes for spherical symmetry. Now, the expression (64) resembles the
right-hand side of (57 a) in form. Accordingly, let us require

B = 2(e/m) (l
(65)
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in (57a, b). The resulting linear differential equations for F, G have the
particular solution

~γe2V*φJ

Γ~γ2e2φ3 — 2γemφ* ,
i (66)

= -^-e2 V2 — -^ γeϊφ2 -f 2emφ -f γ~lm

With F, G given by (66), we have thus the identity

) + eV/m]*

).a . (67)

Integrating over Σ, we deduce the inequality

/ (V~lFψ + ρ-1^) d S ̂  / (V~lFψ + ρ~lG) d S , (68)
Si S0

where $0, $3 are the inner and outer boundary surfaces, F — 0+ and
F = 1 (both understood as limits). Equality in (68) holds if and only if

<p ; α = o, i e φ=ψ(V)λ
ρψ(l — γ e φ/m) + e V/m = 0 j

everywhere on Σ. Now, the surface integrals in (68) can actually by
evaluated with the aid of (54), (61 a), (62) and (63). A straightforward
calculation yields the value

for both sides of (68). We conclude that (69) must be true. (This argument
clearly breaks down for the special case of zero coupling: γ = 0. This
case is dealt with separately in Sec. 7.)

From (69) and (37),

ρ Ψ = d φjd V = — eV/(m — γ e φ) . (70)

Solving the differential Eq. (70) subject to φ = φ0 [see (62)] when V = 0,

We find γeφ(V) = m- α(F) , (71)
where

α(F)= [m 2 —ye 2 ( l— F2)]1/2 . (72)

(The other boundary condition, φ -.> 0 when F -> 1, now shows that the
parameter m introduced in (50) cannot be negative.) From (61), (69) and
(71) we have the explicit formulae

λ(V) = m/oc(V), (73)

ρψ = — e F / α ( F ) . (74)

6. The Gravitational Field

The explicit formulae just obtained for the electrostatic field, when
substituted into the gravitational Eqs. (43) and (44), result in a great
simplification. We are now in a position to derive two integral relations
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from (43) and (44) which will enable us to infer that only spherical
surfaces F =-- const, are compatible with conditions (i) — (vi) of Sec. 4.
This will complete the proof of our theorem.

Remembering that φ is a function of F only, we have from (47), (43),
(36) and (37)

(3/3 F

I (75)
- '

The integration /// (75) dOldθ2d V yields

/ (λ/ρ)^(K/V) dS < f (λlρ)^(K/V) dS , (76)
a,. >SΌ

with equality if and only if

everywhere on Σ. According to (54), the left-hand side of (76) has the
value Sπra1/2. For the right-hand side we have from (55), (45) and (74)

v\im+ (KIT) = ~~ρ0R(Q, θ\ θ2) - γρ0 ^lim+ (ψ/F)2

, ' (78)
= -τρ0R(0,0\ Θη-γe*!(ρ0c%),

\vhere
a 0 =a(0) = (ma-ye2) i/a . (79)

Noting that
f R(c, θ\ θ*)dS = — 8π (80)

for any closed, simply-connected 2-space F = c (Gauss-Bonnet theorem),
we obtain the value

for the right-hand side of (76). We thus arrive at the inequality

α 0ρ 0^ ( m + α 0 ) a . (82)

(If ρ^1 = 0, (82) is properly interpreted as an inequality for lim (ρα).)
F—>0 +

We shall next derive a second inequality giving an upper bound for
α0ρ0. If /(F), h(V) are arbitrary differentiable functions, we have

(9/97) (IK + ρ-iA) = (/' + V-if-h) K-fρK +
(00)

In the term involving K2 on the right-hand side, we substitute the value

~K2 = ΛabΛ
ab~ R — 2(ρF)~1JΓ — 2rF-2^2 (84)
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obtained from (45), and we substitute for ψ2 from (74). We also note the

result (easily derived from the formulae of Sec. 3)

= 0 . (85)

We thus obtain the identity

(djd V) \gWQ-i λ(jK + ρ~^)] = λ(F) /(F) g^B

+ g1/2r^ [(/' + SV-^f-JήK + ρ^{h' + γVe*κ-*(h + 2V^f)}] (86)

- λ(F) /(F) pi/* [(lnρ) «.β + ρ-zρ,aρ '" + Λa,Λ^} ,

valid for arbitrary /(F), h(V). Let us now choose /, h so as to make the

second line of (86) vanish, i.e.

/'-[-3F- 1/ — Λ = 0 ,
(87)

h' + yFe 2 α- 2 (A + 2 F-1/) - 0.

A particular solution is

/ ( F ) = F [ α 0 + α ( F ) ] - 2 ,
(88)

.

With these values for /, h (which, it should be noted, are positive on Σ)

we form /// (86) dθldθ2dV. We find, recalling (80),
v

/ ρ~U(fK+ ρ~lh)dS

^ f ρ~Iλ(fK+ ρ-lh)dS — 8 π f f ( V ) λ ( V ) d V , (89)

s0 o

Λvith equality if and only if (77) holds every where on Σ. Evaluating the

surface integrals with the aid of the boundary conditions (54), (55) and

(63) yields

/ = 0 , / = λ(0) S0(ρ0α0)-2 = 4πmρ0-
1α0-

2 . (90)
Si So

Using the expression (73) for λ ( V ) , we obtain further

0

The inequality (89) can now be reduced to

Ooeo^ ( m + α 0 ) a . (92)

Comparing the inequalities (82) and (92), \ve infer that (77) holds

everywhere on Σ, i.e.

ρ^ρ(V), Ka,^~ga,K(V). (93)



258 W.ISRAEL:

This implies that the equipotential surfaces are spherical. Indeed, if we
introduce a function r (V) defined by φ = e/r, we can readily deduce the
formulae (53) which characterize the Reissner-Nordstrόm field. We recall
[remarks following (63) and (72)] that the parameters had to be restricted
by m ^ γl/2\e . Our proof is thus complete.

7. Zero Coupling

We now take up the exceptional case of zero coupling between the
gravitational and electromagnetic fields [γ = 0 in the Einstein field
Eq. (20)]. This had to be excluded from the previous considerations [see
the remarks after Eq. (69)]. In this case, the simplest procedure is to
exhibit the explicit solutions, which are in any case of interest in their
own right.

Our problem is to obtain solutions of the vacuum equations GA B = 0
and the electrostatic Eq. (35) which satisfy conditions (i) — (vi) of Sec. 4.
It is already known [1] that the only vacuum space-times compatible
with (i) — (vi) are the Schwarzschild solutions with m ̂  0. The problem
thus reduces to finding well-behaved electrostatic fields defined on the
Schwarzschild background :

gaβdx«dx? = (I — 2m/r)-1 dr* + r2(dθ2 -f sin2θ dΦ*) ,
(94)

V = (1 — 2m/r)1/2.

Λ

I1

The electrostatic Eq. (35), which is linear in 99, reduces to

2 m \

Separable solutions which are regular on the axis have the form

φ = R(r) P™ (cosfl) eiMf? , (96)
where R satisfies

x(l + x)d*R/dx* + 2xdRldx — n(n+ 1) R = 0 , (97)

x^(rβm} — 1. (98)

For n = 0, we have the spherically symmetric solution

φ -f const. = e/r (99)

which is regular for 2m ^ r < oo and satisfies (i) — (vi).
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For n — 1, E — x is an obvious solution of (97), and the second solu-
tion can be found by variation of parameters. We thus obtain the axially
symmetric solutions (M = 0)

φ(r, θ) = c^r— 2m) cosθ , (100 a)

φ(r, θ) = c2[— 1 + m/r— (r/2m— 1) ln(l — 2 m/r)] cosθ . (lOOb)

The first represents a uniform electrostatic or magnetostatic field. The
second is the static field of an electric or magnetic dipole its asymptotic
form is

φ ̂  c2 cosθ/r2 (r -> oo) . (101)

Results equivalent to (lOOb) have been given previously by GINZBIΓRG [4].
For general n, (97) is reducible to Legendre's equation, and has the

linearly independent solutions

R = c^xKl + α)]1/2Φi(l + 2s), B = ca[x/(l + α)]1/2Qj(l + 2x) (102)

where φj(z), €^(2) are the associated Legendre functions, normalized to
be real for real z > 1. For the electrostatic field we thus have the two
families of solutions

φ = c1 (l — ̂ )1/2<Pi (~ l) Pf (cosθ) e<«* , (103 a)

φ = c2(l-^)1/2Qi(™-l)pf(cosθ)e^*, (103 b)

Since

~ z~(n+V (z->oo , n^l), (104)

only the second solution has the correct behaviour at infinity. To examine
the behaviour of (103 b) near r = 2m, we observe from (41) that the
field strength E is given by

Now, Qi(l + 2x) - x~^ as x -> 0, so that the radial factor (102) ap-
proaches a constant non-zero limit. Hence, as r->2m, dφfdθ and
(for M φ 0) dφ/dΦ remain of order unity for n ^ 1, and .Z£ is of order
(1 — 2m/r)~1/2. We conclude that the only electrostatic field on a Schwarz-
schild background which is well-behaved for 2m ̂  r < oo is spherically
symmetric. Nevertheless, all the solutions (103b) are compatible with
(i) — (vi), since the geometry is regular at r = 2m despite the singularity
of the energy density, on account of the zero coupling.
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