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Abstract. The unitary relativistic model of quantum field theory with rapidly
increasing spectral function (i.e. it grows faster than any finite power of momentum)
is investigated. It is shown that there exist nontrivial Lagrangians, leading to this
kind of spectral functions and allowing to construct the local theory without the
ultraviolet divergences on their basis. In this theory the /S'-matrix is unitary and not
e qual identically to unity.

1. Introduction

The problem arising through the attempts to construct finite un-
renormalizable theory, as well as through ascertaining the connection
among the nonlocal theories and the unrenormalizable theories have
attracted the attention of many authors [1 — 13,20]. Some years ago
one supposed that the unrenormalizable theories were nonlocal. But
recently one discovered that there exist some region where the field
theories with rapidly increasing spectral functions were local [12 — 13].
Also at the same time construction of the finite unrenormalizable field
theories was attempted at [1, 6, 7, 9]. At present there are yet many
uncertainties in these questions.

Due to the big complication of these problems it is interesting to
consider a simple model in order to explain some general properties of
the unrenormalizable theories.

We investigate here a model of the quantum field theory with the
Lagrangian [14—16]

L(x) = L0(x) + L-ml(x) , (1.1)

where Lo (x) is the Lagrangian of the free fields and

Ant0*0 = -gm'ψ(^)r1γvψ(x)dvφ(x): - Am:ψ(x)τ3ψ(x): . (1.2)

Here τλ and τ 3 are the isotopic spin matrices, γv are the Dirac matrices,

ψ(x) is the spinor field operator, and φ(x) is the scalar field operator.
The Lagrangian (1.1) has the following remarkable property: when

/i m = 0, it is reduced to the diagonal form

LAm = 0(x) = L0(ψ'(x),φ(x)) (1.3)

by means of the unitary transformation

ψ'(x) - ψ(x) exp^Ti φ(χ)} . (1.4)
20*
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The part of the Lagrangian containing Δ m takes on the form of the
essentially non-linear interaction in the field φ{x) after the trans-
formation (1.4). Thus,

Ant 0*0 = Δm:ψ(x)τz&κ^{-i2gτ1 φ(x)}ψ'(x): (1.5)

The sign of the normal product is not ascribed to the operators φ(x).
So we get the theory with non-polynomial interaction in the field φ(x).
As a result, there appears a rapidly increasing spectral function.

As the Green functions and the scattering amplitudes in that theory
have essential singularity, so the principial problem concentrates on
the construction of the Fourier transforms of these functions and on the
definition of the integrals of their products in higher orders of the per-
turbation theory.

It will be shown that the ultraviolet divergences are absent in the
model and the unitarity, locality and causality conditions are fulfilled.

2. Scalar Particles Scattering Amplitude

(Second Order of the Perturbation Theory)

To avoid the appearance of infinite factors in calculation of the
physical quantities, we shall suppose that the sign of the normal product
is ascribed to all operators in (1.5). The scalar particles scattering ampli-
tude is obtained by the functional integration method [14, 15]

ί(v'A\VΛ)

^Π(s)^Π{t)^Π{u) + Π^)-Π{p2)-Π{q2)-Π{p'η-Π{qf2)

where

{2g)2Δc(x)} (2.2)

)φ(x')))0 (2.3)

and s = (p + q)2, t = (p - p')2, u = (p - q')2.
In the case of massless particles, we have

Π(p2) = -8(4:κΔm)2F(pη (2.4)
where

e x P - ^ 5 -

κ = (if—) and the contour E is shown in Fig. 1. Notice that if we define

(2.5) with the help of its power series expansion in κ we get the usual
perturbation theory with simple pole singularities in each term of the
series. That is why we will operate with (2.5) as a whole.
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Let us introduce an intermediate regularization in (2.5). We will
define F (p2) as a limit of the following expression

= Km

oc+β=l and

(2.6)

(2.7)

o= \χ\

Fig. 1

The second equation in (2.7) is the unitarity condition. Taking into
account (2.7) we have

F(p2) - -1 lim {F^ (p2) -f- F^(p2) + ίa [F^{p2) - F{p(p2)]} (2.8)
2 δ~>0

C)
where a is some arbitrary real constant. F$ (p2) is as follows

Here δ is smaller than the radii of the semicircles in the contour B.
Let us calculate these integrals in an unphysical domain p2 < 0. The

result can be easily analytically continued on the whole domain p. In the
unphysical domain we choose the coordinate system p — {0, p}. In that
coordinate system we turn the contour B through the angle — π]2 so that
it completely coincides with the imaginary axis. In the obtained Eucli-
dean space we can easily calculate the integrals over angles. Then we get

exp
{4^J- (2.10)

where p = γ— £>2 = ]/p2 and J1(pγλ) is the Bessel function. Making use

of the Mellin-Barnes integral representation ίoΐ Jx(pγλ) [17]

— α + i co

d%~:

— α — i co
sinπzΓ(l + z) Γ{2 + z)

( 0 < α < l ) (2.11)
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(here Γ(z) is the gamma-function) and taking into account the absolute
convergence of the integrals, we can rewrite (2.10) in the following form

_ . π1 r j (p2)^ r
~~lΊΓ J C Z sinπzΓ(l + z) Γ(2 + z) J

P

sinπzΓ(l + z) Γ(2 + z) J (t =f iό)8

— α + i oo 0

— α — i co

dz χ,{z) f?> (z). (ί = A) (2.12)

— « + i co

The function f$2' (z) corresponds to the integral over variable i, and is
defined in the region — 2 < Re 2 < 1

e^^l. (2.13)
0

The integrand has a cut along the negative real axis, an essential
singularity on the negative imaginary axis and tends to zero when
\t\ —> 00. Therefore, we can perform rotation of the integration contour
so that the minus sign appears in the exponential of the integrand
(turned through the angle -fπ) and then we put δ to zero. The resulting
integral is easily calculated:

<5->0
- z) - /<2> (z). (2.14)

0The function fP(z) can be analytically continued throughout the
whole right half s-plane, with the exception of the positive real axis,
where it possesses poles. In that region also we can apply the above
method of taking the limit δ -> 0 and obtain always the same function

/<2>(s)
So we obtain the following prescription to find a limit of i^ 2 ) (p2) at

δ -> oo. Defining jψ (z) as an analytic function on the whole right half
z-plane, with the exception of the positive real axis, we deform the con-
tour in (2.12) so that it passes around real positive axis (see Fig. 2). After
that we can put δ to zero.

— α — i oo

10 (pi) = lim / dzXv (z) fP (z) = lim / dz %υ(a) fP(z)
(2.15)

Substituting (2.14) in that expression and making analytic continuation
of Fψ^ 0 (p2) throughout the whole region p we get

(2.16)
1,0,-1),
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where G^(κ(p2 + iε) ( 1, 0, - 1) is the Meijer's β-function [17]. Also the

expression for F$L o iP2) is

iε) 1, 0, - (2.17)

-x-x-x-x—x-x—x-

Fig. 2

Substituting (2.17), (2.16), (2.8) into (2.4) and using the representation of
the Meijer's G-ίunction as power series, we get

Π(p2) = -2(±πκΔm)2 {p* + iε)
n\(n + 1)! {n + 2)!

(2.18)

• {In [cκ(p2 -f iε) e~iπ] - ψ{n + 1) - ψ(n + 2) - ψ (rc + 3)} - 2κ{±πΔm)2.

where ^J(W) is the Euler function and c is arbitrary dimensionless con-
stant connected with a (see (2.8)).

This result is more simply obtained with the help of analytic con-
tinuation procedure for the quantity (2.5) over the value κ'', where
κ' = — κ > 0. The function FK> (p2) exists and is perfectly well behaved

Fκ>(p) = —-j-T GH{κ' {p2 + iε) e~iπ | 1, 0, — 1) . (2.19)

To analytically continue to the region κ' < 0 one notice that
@oϊ(κ' (P2 + iε) e~i7t \ 1,0, —ϊ) has a cut along the negative real axis in
the κ'-plane. So the analytically continued quantity is as follows

= ^ {«β§g(«(ί>a + iε) I 1, 0, - 1)

+ βGlHκW + iε) e-»» | 1, 0, - 1)}
(2.20)

where α + β = 1 and where, from the unitary condition, Re(oc — β) = 0.
As a result we arrive again at (2.18).

The scalar particles scattering amplitude is written as

f {&><!' |2>>! (2.21)
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where

Σ^^+ψ (2.22)

• [ln(cκse~i7t) — ψ(n -f 1) — ψ(n + 2) — ψ(n -f 3)] .

3. Unitary, Causality and Locality of the Theory

(Second Order of the Perturbation Theory)

The expression (2.22) satisfies the unitarity condition. Really from
the unitarity condition SS+ = 1 one easily obtains in the second order

of the perturbation theory in Am 18 = Σ (Am)nSn\ the following:
\ o /

δW(p' + q' -p-q)lmf(s)

CO

- 2π2γωPΌJ(ί>ω2)ojafΣ <>Λ i Si I nbr'bt) (bιbrn I sΐ ! aja£) ί3-1)

Λvhere a+ (a^) is the production (annihilation) operator of a scalar par-
ticle b+ (br) is the production (annihilation) operator of a spinor particle
ωp is the energy of a scalar particle.

The right hand side of (3.1) contains the sum of invariant phase
volumes of particles Ωn + 2(k) (w-parfcicles are scalar and two-particles
are spinor)

^ CO

J Σ (ai>% I Si I nb+ b+) (btbrn a+a+

q) Σ ^~~ Ωn + 2(p + q)

where

Comparing (3.2) with the imaginary part of (2.22) we see that the
Eq. (3.1) is valid. Thus, we have proved that in the second order of
perturbation expansion in Am the theory is unitary.

Let us investigate the asymptotic behaviour of the scattering ampli-
tude, at s -> oo, in order to show that f(s) obeys also the locality and
causality conditions of field theory.

It turns out that, at s -> oo, it grows as follows [15]

,- 0 ( ^ ) ) . (3.4)

Here B is the dimenionless constant. This behaviour of the scattering
amplitude satisfies the condition arising from the generalized causality
and locality principle of the theory [12, 13].
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4. Spectral Representation of the Functions Ψ(p) and Φ (p)

In order to investigate the higher orders of perturbation expansion,
in addition to the function Π(p2) studied in 2, 3, two more functions are
needed, which we denote by Ψ{p) and Φ{p). In this section we shall
obtain for them the necessary integral and spectral representations. The
function Π{p2) has similar representations, but they are not written
down here.

f — x — x

Fig. 3

Let us consider, first of all, the spinor Green function Ψ(p)

= / dιx 8°{x) expifpx - (2<?)2 Ac(x)] . (4.1)

Using the method developed in the second section it is easy to obtain
the following integral representation for the regularized function Ψβ{p)

(4.2)

u
ΊάnπzΓ(z) Γ(z

where the contour U is shown in Fig. 3, p — pv γv and fβ{z) in the range
0 ίg Res < 2 has the representation

exp exp
'-^f^ + i1 ~ i a ) - (4.3)

and can be analytically continued throughout the whole right half
2-plane, for the exception of the real positive axis. Then the function
Ψ(p) is a limit of Ψβ(p) at β ~> 0. In this case, in (4.3) it is necessary to
perform beforehand rotations of the integration contours so that the
minus sign appears in the exponential of the integrand.

Instead of (4.3) we can introduce the function

= — πκz

sin (I -f- δ) πz Γ(z —
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Put δ > 1, 5. Then in the integral (4.2) the integration contour may be
straightened so that it will be parallel to the imaginary axis (Fig. 4). In in-
vestigating higher perturbation orders we use the Green function repre-
sentations of the type of (4.2) with the straightened integration contour C.
Then in order to go over to the limit δ -> 0 we should firstly integrate over
all the momenta and after that return again to the contour Lr.

x—x—x—x—

Fig. 4

To Eq. (4.1) there may correspond another parametrized function
ψδ{p). It is obtained from Ψβ{p) if we shift the integration contour to
the right by unity, single out from (4.2) a term corresponding to the
first order pole of the integrand at z — 1 and let β tend to zero. In the
remaining integral we straighten the integration contour, introducing the
parameter δ. Thus

Noticing that in the region 0 < Re 2 < 1 we have the integral equation
00

m2(z-l)p—iπz p

-πipz-riεy-1-. = /
v/^ ' smπz J

0

we can rewrite (4.4) in the form

Ψ ( ) - - 1 κ r fδ{z

m2 — p 2 — iε (4.5)

(4.6)

Eq. (4.6) may be considered as a spectral representation of the function

Now we consider the scalar function Φ (p)

•px+(2g)*A»(x)]. (4.7)
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Similar procedures lead to the following spectral representation of the
parametrized function corresponding to Φ (p)

(4.8)

κ Γ

J d m

m a(—i

- _ p* _ i £

^ * ) = - i E ( Γ + ^ Γ r f n Γ ϊ ) - («><>,β) (4.9)

We give also another type of the parametrized function Φδ (p) similar to
(4.2) for Ψ{p)

Φδ(p) = i(2n l ψδ(z) (4.10)

The most essential difference of the function Φ{p) from Ψ(p) and
Π(p2) consists in that the scalar particle propagator in the exponential
has opposite sign. Due to this fact, it is unnecessary in the integral (4.7)
to introduce an intermediate regularization as we have to do in finding
the functions Ψ{p) and Π(p2). The parametrization is here necessary
only for straightening the integration contour in the 2-plane from L' to C.

Using the obtained representations for the two-point Green functions
it is easy to prove the unitarity of the $-matrix and the absence of ultra-
violet divergences in the model studied.

5. Unitarity and Absence of the Ultraviolet Divergences

(Higher Orders of the Perturbation Theory)

a) We consider the matrix element of interaction of spinor particle
with vacuum in the third perturbation order in Am (Fig. 5). The uni-
tarity condition gives the equation for the matrix elements

(5.1)

Fig. 5. ww - Φ(p - &) VVV - Ψ(k)
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The left-hand side of Eq. (5.1) is expressed in terms of the well known
functions Ψδ (p) and Φδ (p)

== To
i i m Re / Λ** Ψl (k) Φδ (p - k)
o » ϋ{'Δπ)ύ v - μ — δ_^0

where v%~ΐ~ (p) and v%~ (p) are the orthonormalized spinors. We write (5.2)
as an integral of the product of the real and imaginary parts of the
functions Ψ(p) and Φ{p) and the corresponding functions θ(p°)

I Q / o\ — o' o 3- o) * ^ o r ^ s ^ ^s convenient, using the spectral representa-

tions of the two-point Green functions derived in the previous section,

to divide them into parts corresponding to Gτet(p) and G+(p), namely
σo

ΨΛ(p) = φfdrn? ρ6(m») Γ . _ J_ ,,̂ —0- +i2πδ(m* - p*) θ(p»)l (5.3)
0

and Λve do the same for Φs(p). Using the property

/ dϊJcίΨ^ik))2 Φτ

δ

Qt(k -p) = 0 (5.4)

it is easy to write (5.2) in the form (p° > 0)

Urn B*fd*kΨ%{k)Φδ(p-k)
δ—xx>

= ~-2(2π)*~ReΨ{p)lmΨ(p) (5.5)

-4:fd*k ReΨ(k) lmψ(k) lm'Φ{p - k) Θ(P) θ(p° - P) .
where

fΦ(p) = Φ(y) - i(2π) 4 ό<4)(2)) . (5.6)

Introducing the intermediate states between S2 and 8^ we get for the
right-hand side of (5.1)

K \S.\n) {n | 8+ \ b+) = r 3 2 ^ «JW (p - p') ΐ£+ (p) wf," (p)

*
/

where Ωn+1(k) and Ωm(p — k) are the phase volumes of particles (in
ύn+1 (k) ̂ -particles are scalar and one is spinor in Ωm (p — k) all particles
are scalar). Inserting the expressions for the imaginary parts of the
functions Ψ(p) and Φ(p — k) into (5.5) and for the phase volumes into
(5.7) [16] it is easy to see that Eq. (5.1) is valid. Thus, we have proved
that in the third perturbation order in Am the theory is unitary. The
author expects that the obtained spectral representations for the two-
point Green functions would provide the validity of the unitarity in
higher order in Am as well.
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b) Consider the integral contained in the right-hand side of (5.2) and
calculate it using the integral representations of the functions ΨQ (p) and
Φδ(p - k) (see (4.2) and (4.10))

J Jf dzλ dz2 dz3

L Q \
cx c2 c3

-f g8)] /a fa) /a fa)
τzλ ήnπz2 sinπz3Γfa) Γfa) Γfa) Γfa -f 1) Γfa + 1) Γfa -f 1)

- is)1^*2 ό [(p — k)2 -f- ^ε]^ 3 z .

The requirement that the integral over k must be free of ultraviolet
divergences imposes the following restrictions on the variables zt

Since the contours c2- lie in the range 0 < Έ.ezt < 1, this requirement is
fulfilled. The integral over k is:

J d*le(kz -r iε)Zί + z*--~s [(p - k)2 -f ί ε p - 2 (5.10)

Inserting (5.10) into (5.8) and rotating the contours (7̂  so that they pass
around the real positive axes in the appropriate 2Γplanes and using the
residues at the poles we can explicitly calculate all the integrals.

Let us prove that ultraviolet divergences are absent in the n-th
perturbation order in Am too. To this end we consider a diagram with
n vertices, two external spinor lines and an arbitrary number of external
scalar lines (Fig. 6). All the vertices are connected in pair by lines each

Fig. 6. external scalar line, external spinor line, n-number of vertices

of which corresponds to one of the Green functions considered by us and
having the integral representation like (4.2) or (4.10). We consider the
case when all the vertices are connected by a continuous spinor line
corresponding to the n — 1 functions Ψ{k^). Then, in addition to these
functions, (n— 1) (n—2)/2 scalar functions like Φ (kό) will correspond to the
diagram. The product of all these functions will have the sign of
2(n — 1) (n — 2) fold integral over kv Then the requirement of the ab-
sence of ultraviolet divergences is written as

-l) + 2 Σ ^ < 0 5 (5 π )
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hence, it follows that

Re"^1 Zi<γ(n-1). (5.12)
1

Assuming all zt to be equal, {zt = z) we get
3

Res< — . (5.13)

Since the contour G in the integral representations of our Green functions
may exactly coincide with the imaginary axis, the condition (5.13) is
well satisfied.

We prove in a similar manner the absence of ultraviolet divergences
in higher orders in Δ m in terms somewhat different. To this end, following
the Λvork by N. N. BOGOLTTBOV and D. V. SHIRKOV [18], we introduce

the notion of maximum vertex index and calculate it in the framework
of our model:

ωfa x = ~Σ (h + 2zt) - 4 = - 3 . (5.14)

Here the summation is made over internal lines, rι is unity for spinor
lines and zero for scalar lines and zt = Rezj are assumed to be zero. From
the inequality ω™ax < 0 it follows that if ultraviolet divergences are
absent in lower perturbation orders then they can not appear in higher
orders too.

Thus, it is proved that in the considered model ultraviolet divergences
are absent in any perturbation order in Am.

6. Generalization of the Model to Case of Massive Spinor Particles

In the previous sections the finite two-point Green functions were
found, in terms of which all physical quantities of field theory are
expressed. The spectral representation for these functions were con-
structed and the integrals of their products were determined. I t was
shown that our model of field theory was unitary and free of ultraviolet
divergences.

A particular case was investigated: the rest masses of all particles
were assumed to be zero. This case is the most convenient for investiga-
tion since the propagators have a very simple form. However as far as
the interaction Lagrangian includes the mass difference of nucleons in
two different states it is interesting to generalize the model to the case
of spinor non-zero masses. This section is just devoted to this problem.
Let us discuss the spinor Green function ψm (p)

Ψmip) = I &xSc

m{x) ex$i[px - (2g)*Δc{x)] (6.1)

where Sc

m(x) and Δc(x) are the propagators of the spinor and scalar
fields, respectively. The rest mass of a scalar particle is zero, while that
of a spinor one differs from zero.
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In order to illustrate our model by simpler example we consider,
instead of Eq. (6.1), the function D(p)

D(p) = / d*xΔ'm(c) exVi[px - (2g)* A°(x)] (6.2)

where Δc

m(x) is a scalar propagator with non-zero rest mass. The calcula-
tion for Eq. (6.2) is easily extended to the integral (6.1).

We consider Eq. (6.2) in a physical domain p2 > 0. This integral
reduces to an integral in the momentum space of the product of two
functions Δm{p — k) and Φδ(k)

D (p) = 7^-τr f d*k -, Jf' ( }

 2 , . (6.3)
κr' (2π)4 J (p — k)2 — m 2 + l ε v ;

where
α + i oo

Φδ(k) = i(2π)*δW(k) + ί8(πκ)* f dz ^Z'r(z)+Γ^+\) Mz^ <6 4)
α — % oo

κ — (gβ τr)2,0 ^ α < 1, Γ(z) is the gamma function, fδ (z) is the parametrized
function (see (4.3)'). Inserting Eq. (6.4) into Eq. (6.3) we obtain

cc i

/J - , — Γ, v p 7 , Ί, d(z,p) (6.5)&mπzΓ(z) Γ(z + 1) v ' ΓJ v 7

α + i oo

where

Λ(25, p) == f d*k(k2 + iε)z~2[{p - kf - m2 + i s ] - 1 . (6.6)

In the region 0 ^ p2 < m2 d(z, p) is as follows:

\ m j w ! ( r ι + l ) ι Γ { z _ n)Γ(z~ n -

and in the region p2 > m2

-l Γ(n

n!Γ(n+2z)

Substitute it into Eq. (6.5) and rotate the integration contour so that it
passes around the real positive axis. Then we may go to the limit
<5->-0 and calculate Eq. (6.5) as the sum of the residues at the poles. The
result has the form of a well convergent double series.
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In the region 0 < p2 < m2, D (p) may be written as

2 ^ (κ + 2 ) ! ^ w!(w- + 1)! (k — n)l(k — n + 1)!

• {π2 + y'(& + 3) + ψ'(k - 7i + 2) + y'(i; - n + 1)

- w 4- I)]2} (6.9)

I'm1"/
(n-h)\(n —

7 I m / W!(Λ + 1)!

Here we put a = 0 (in (4.3)) for simplicity.

For p2 > m2 we give only lmD{p). (Here D(p) is complex).

- m2) -f κ&

From the unitarity condition it follows that the imaginary part must be

-ff-!ββn+1(ί>) (6.11)

where βn+χ(2>) is the phase volume of n + 1 particles. One particle has
non-zero rest mass and ̂ -particles have zero rest masses. Such phase
volumes are calculated in ref. [19]. Substituting their values into (6.11)
we make sure of the validity of Eq. (6.10). Thus, the function obtained
by us obeys the unitarity condition.

The functions D(p) obeys also the locality and causality conditions
of the field theory [12, 13].

In conclusion we note that the integral (6.2) may be calculated not
going to the momentum representation but simply using the following
integral representation for the propagator A%(x)

[
™ = W J - i
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7. Conclusion

Thus, on the basis of the model with unrenormalizable interaction,
we have constructed the local unitary quantum field theory free of the
ultraviolet divergences. The scattering amplitudes and the Green
functions in this theory are nonanalytical in the coupling constant g.
This fact forbids utilization of the ordinary perturbation theory with
expansion in this constant. The investigation of the asymptotic behaviour
of the scattering amplitude at higher energy shows that one has an
essential singularity at infinity. But the model belongs to the class of
the local and causal theories defined in the axiomatic method [12, 13].

From the spectral Green function representation it follows the
unitarity and the causality of our model. The Green function representa-
tions in the Mellin-Barnes integral forms permit to generalize the notion
of the maximum vertex index so that our model can be described by a
method close to the renormalizable theory, and the ultraviolet divergence
absence in any perturbation order in Am can be proved.

The dimensionless parameter c in (2.18) and (2.22) is a consequence
of the fact that the scattering amplitude is not defined at the origin of
the light cone x == 0.

Similar situations often take place, when we work with the time-
ordered operator functions (see e.g. [7]). But our method gives only one
arbitrary parameter, whereas the usual methods in the unrenormalizable
theories give infinite number of them.

The method demonstrated here on the basis of field theoretic model
can be applied to some real unrenormalizable interactions. For instance,
the Bethe-Salpeter amplitude R(x — y) = (0 | TψA(x)ψΛ(y) | A A} for
the scattering A + A -> A + A (A is the spinor particle) obeys, in the
ladder approximation, the equation [7]

(Ant (x) = 9)Λ (x) JB (x)> JA (x) = : ψA (x) ysψA (x) :> mA = mB =~~ 0>

P = Pi + P2 = 0) (7.1)

This equation has the following solution

R (x) = a exp

This function is easily described by our method.
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