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Abstract. The truncated Wightman functions cannot decrease arbitrarily fast
for large space-like separation of the arguments. For certain configurations they
can fall off at most exponentially.

Upper bounds on the decrease of truncated Wightman functions were
established a long time ago [1—5]. For instance, for a relativistic quan-
tum field theory of a self-interacting neutral, scalar field A(x) H. ARAKI
[2] (compare the footnote in [5]) proved the following theorem: Under
the assumptions of a) Lorentz invarianee, b) temperedness of the Wight-
man functions, c) the existence of a lowest non-zero mass, the truncated
vacuum expectation value (TVEV)

vanishes at least exponentially for xi_1 — xi = ξ{ -+- λξ[ i = 1, . . ., n
where ξ{ + λξ\ should be a Jost point for sufficiently large λ and
λ -> + oo, ξi} ξ[ fixed (with at least one |J Φ 0).

Here we want to point out that a lower bound on the decrease of the
TVEV for similar configurations can be obtained as well. We do not
assume locality or the existence of a lowest non-zero mass.

To begin with, let us consider the 2-point function. Lorentz invari-
ance, temperedness and positive definiteness imply the well-known
Kallen-Lehmann representation

oo

{A (.r0) A (xx)Y = (A (x0) A (xj) = i f dρ(μ) A + (x0 - xx) ,
0

ρ (μ) a positive tempered measure
const

~ -, :ττ

( ,/

or ~ — • — ; = = — - r ~ expί— ml/— (xn — xΊ)
2} in case of the exist-

ence of a lowest non-zero mass m in the theory I .
Next, we turn to the 3-point function. It is analytic in the "extended

tube" ^"0,1,2 t n e boundaries of which are explicitly known in terms of
the invariants [6]. Consider

Wξ(xOi xv x2) = (A (x0) A (Xl) A (x2)y
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for xi_1 — xi = ξt + λξ\ i — 1, 2 with x0, xτ, x2 totally space-like in the
order 0, 1, 2 for sufficiently large positive λ, ξi9 ξ[ i — 1,2 fixed, not
both ξ[ = 0.

Define

Wz (λ; ξi9 ξ'ι) is real-analytic for sufficiently large positive λ and can be
analytically continued in λ into a wedge-shaped region with the following
angle:

π - arc tg | / ^ ! ^ | j ^ l if £ £ < 0 i, 7= 1,2, ξ? ξ? >{ξ[

π * if £ I,' < 0 i, j = 1, 2, U*£2 < (|ί

arc tg j / i ί f c l ^ ϋ * - if ^2 < 0, f̂ 2 < 0, lί | ^ 0

l ί = 0, ξ? < 0, |x ξ'% < 0
' or fί2 < 0, fέ = 0, lί f2 < 0

2 arc tg ]/?lξ^.%/— ^ f ί = 0, ξ'f < 0, f, ξ!2 > 0

2 arc tg j / i ^ l | L ί » ) L i f |ί2 < 0, ^ = 0 |( | 2 > 0 .

In particular, wζ(λ\ ξi} ξ[) can be analytically continued in λ into a
half-plane for all (ξl9 ξ2, ξ{, ξ%) ζ ^ 2 :

$2 = {(̂ i> ^2' fi' ^2)/^!' I2 ί a p l a n e tlmt contains a time-like vector,

I M ; < O * , / = I , 2 }

u { ( ^ f25 fί, fέ)/fί2 < 0, ίέ = 0, l | < 0 , fί f a < 0 } .
This analyticity domain together with the temperedness impUes ac-

cording to theorem 5.1.12 [7] that wξ{λ; ξiy | ) for (ξv | 2 , ξ[9 ξ'2) £S2

can decrease at most (linearly) exponentially, i.e.

lim s u p M
λ-

unless iv^iλ; ξi9 ξ[) = 0.
It is not difficult now to treat the general truncated w-point function

by the same method. One considers

for Xi_x — Xi = ξι + λξ[ i = 1, . . ., n with x0, . . ., xn totally space-like
in the order 0,1, . . ., n — l,n for sufficiently large positive λ, ξι and ξ[
fixed, not all ξ = 0.

ιv%(λ; ξi, ξ'i) = Wn(xQ, . . ., xn) is real-analytic for sufficiently large
positive λ and can be analytically continued in λ into a half-plane for all
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(!{;_, n, ξ'ii_1 J/ίί € a plane that contains a time-like vector,

ξ'rξ'} '< 0 for all i,j ζ (1, . . . , n ) }

(£,.., „ £,_, J/& = - = ί i = o t < » - i )

| [ ( a plane that contains a time-like vector, not all of the

ξ[. . on a space-like line, ξ^ ξj < 0 for all i, j <£ (iv . . ., it),

ξ, % < 0 for all i ζ (iv . . ., i,), ? ί (*i> , h), (fj (ϊύ ξ'ι)

— ζ'ι(ζi> l ? ))2 > ^ f ° r a u * 6 (*i> •? ̂ ΐ) a n d f ° r a ^ least two linearly

independent ξ'j9 ξ[ j , I $ {iv . . ., ̂ ) , ξf < 0 for all i ζ ( 1̂? . . ., it)} ,

{(f^ ^IL, J/f^ ' — f^O t<n,
with fί ί ( { ) on a space-like line, fj £3 < 0 for all

*, / $ (i l 5 . . ., it), ξt - ξ] < 0 for all i ζ (ί1 ? . . ., i f), j $ (*x,. . ., ^ ) ,

there exists a time-like vector η,η®>0 such t h a t

) 8 + £?(»7> l ί ) 2 > 0 for all i ζ & , . ..,»,),?•$(»!

Again we may invoke the theorem 5.1.12 of [7] and conclude t h a t for all

(li ί = s l H> fί ί = sL..J ζ ^ n ^ ( ^ fi, fί) can decrease αί mosί (linearly)

exponentially

h m s u p h ] nv >g»>g»;ι = _ j | f n ( | : . , | . ) > _ σo
λ-»+co Λ

unless ^ ( λ ; ft , | ) = 0.

More detailed information about the decrease of w%(λ; ξi9 ξ'ι) for

(ξif ξ[) ζSn is given by the following theorem 10.4.1 of [7]: For each

positive ε and δ there is a sequence {λn}, λn -> oo and a positive ?y such

that the subset oί (λn, λn-\~ δ λn) in which

a , it, £)\ >&»&,&)-e
has measure ^ ^ λn.
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