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Abstract. We calculate explicitely the traces of the different types of irreducible
representations of the Poincare group. These have the form of generalized class
functions and their mathematical structure follows from a generalization to non-
compact groups of Frobenius' construction of induced characters.

ϊ. Introduction

Representation theory of the Poincare group φ plays a fundamental
role in relativistic kinematics of elementary particles [1]. Therefore it is
natural to ask which of the well-known techniques of representation
theory can be developped for this group. In this paper we study the
problem of the characters of the irreducible representations of φ.

The character χ(g) of a finite dimensional representation of a finite
or compact group G — {g} by linear transformations T (g) is defined as

χ (g) = Trace T (g) . (1.1)

Equivalent representations have the same characters. The characters
χm(g) of irreducible representations are called primitive. The set of
primitive characters {χm(g}} is called the dual space G of G.

The properties

χ(fgf-l) = χ(g) f , g ί θ (1.2)
arid

X(fft) = Xtf9) (1-3)

respectively follow immediately. Functions with property (1.2) being
constant on conjugation classes are called class functions.

In the theory of representations of finite or compact groups it is
shown [2], that the primitive characters are idempotent with respect to
convolution

/ dμ(f) T (gf-1) r (/) =

Here dμ(f) denotes the normalized Haar measure of G, the dimension of
the representation with character χm(g) is dim(m). Because every
representation of a compact group is equivalent to a unitary one, for
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which χ(g) = χ(g~^} holds, Equ. (1.4) implies the orthogonality relations .

(f)χn(f) = δmn. (1.5)

The primitive characters of such groups constitute a complete, ortho-
gonal set in the space of class functions {φ(g) \ ψ(fdf~1} = φ (&)}'•

ψ (9) = Σ_ χm (β) I d μ (/) r (/) ψ(ί) (i 6)
m € G G

The Poincare group is a non- compact group and possesses only infinite
dimensional faithful unitary representations. In general the traces of
infinite dimensional unitary transformations are not defined, and the
theory mentioned above cannot be applied. There is a theory of unitary,
infinite dimensional representations of classical groups [3], in particular
of the homogeneous Lorentz group, in which characters are given as
generalized functions. Besides φ is not a classical group, we show in the
following that we can define and calculate the primitive characters of the
Poincare group in a similar form [4]. So our discussion gives some im-
pression of what could be expected about characters of non-compact,
non-semisimple Lie groups.

A complete classification of the irreducible unitary representations
of φ was first given by E. P. \VIGNER [1], supplemented by V. BARG-
MAN [5]. There are four main classes of representations

I. PμP
μ > 0, II. PμP« = 0, III. PμP« < 0, IV. Pμ EEE 0 (1.6)

where Pμ are the operators of the infinitesimal translations, i.e. the
4-momentum operators. Only the first two classes are considered as
applicable in physics. We shall treat the complete problem, because we
know from the treatment of compact groups, that a relation should
exist between the structure of the conjugation classes of ty on the one
hand and the set of all primitive characters on the other. The complete-
ness relation reflects this connection.

G. W. MACKEY [6] generalized Frobenius' induction procedure for
the construction of unitary representations of separable, locally compact
groups and thus developped a generalized mathematical theory of
representations of such groups as φ . By considering the irreducible
representations of φ as induced representations we gain an immediate
insight into the structure of the primitive characters of φ, which cor-
responds to the induced characters of finite groups as discussed by
FROBENIUS [7].

In the following chapter II we give some notations and a complete
discussion of the classes of conjugate elements of the Poincare group.
Then we illustrate the problems involved by calculating the characters
of the most important representations with Pμ P

μ > 0, applying the
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usual non-rigorous methods of mathematical physics. In the same
chapter III we give the results for the other cases. Chapter IV contains
a mathematically more rigorous discussion of the problem.

II. Conjugation Classes of the Poincare Group

The Poincare group φ is the group of transformations {(Λ, a)}
between coordinates x, x' of inertial systems1

x' = Ax + a= (Λ,a) x . (2.1)

Here Λ denotes a Lorentz transformation which we assume to be proper
and orthochronous in the following. The group multiplication is defined
by equ. (2.1) as

(Λ, a) (Λf, a'} = (ΛΛr, a + Λa')

(Λ,α)-ι=(Λ-ι,-Λα), e = ( l , 0 ) . (2.2)

The Poincare group is a semi-direct product of the homogeneous Lorentz
group Jδ? .̂ = {(Λ, 0)} and the translation group Z = {(I, a)} with £ as
invariant sub-group and j£?^ ̂  φ/Sλ Thus φ is a non-semisimple Lie
group.

It is usual to consider, instead of φ, its universal covering group
φ - {(α, a)} with

(α, α) (α', a') = (αα', a + Λκa
f) etc. (2.2')

Here α, α' denote unimodular, 2-dimensional matrices

and Λx is the homomorphism of SL(2, C) on &ζ_. The group SL(2, C) is
a twofold covering group of JδP^. with the kernel ^ = {1, —1}. In the
spinor calculus [8] we assign to every 4- vector x a hermitean matrix

X = {XQ + xσ}
by means of the well-known Pauli matrices σ. Is X' the matrix of ΛΛx,
then Λκ is explicitely given by

X' = ocXoc+. (2.3)

Now we consider the classes of conjugate elements of φ. The element
(α, a) £ φ is conjugate to (α', α') : (α, a) ~ (α', a'} if and only if there is an
element (β, b) such that

(α',α') = (j9,δ)(«,o)(j8,δ)-1

= (0α 0-ι, (1 - Λ^-0 6 + Aβa) . (2.4)

In order that (α, a) ~ (α', a') in φ, it is necessary that α ~ α' in SL(2, C).
According to Jordan's normal form of α in SL(2, C) we may distinguish

1 Our notation: 4 — vector x = (a;^) ̂  (#0, x), invariant product rri/ = xQyQ —
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the following types of conjugation classes:

, 0 < φ < 2π , Q < \η\ < oo

II: α ~ α;k 99 = 0, 2 π, 0 < η < + oo

III: α ~ α λ ; 0 < φ< 2π ; ?? = 0 (2.5)

I V : α = ± l

V: α ~ y ± =

We want to construct a system of representatives of the conjugation

classes of φ. We remark that if α is of type I then (1 — /lα) has an
inverse and we get

(1, - (1 - Λ)-1*) («, «) (1, - (1 - Λ,)-1*)-1 = («, 0) (2.6)

In the case of α's of types II or III the matrix

E(ΛΛ) = (4 - TraceΛ)-1 (Λ - 1) UC1 - 1) - ̂  (2.7)

describes the projection on the range of (1 — /lα). Transforming with

(1, b), b = (4 - Trace/lJ-1 (/I"1 - l)α, gives

(1, 6) (α, α) (1, δ)-1 = (α, (1 - EΛ)a) . (2.8)

Further we may transform with a homogeneous Lorentz transformation
which commutes with α. We get

(β,0)(x,(l-E.)a)(β,0)-ι=(x,(l-Eβ)Λβa) for βaβ-ι=«. (2.9)

For the type IV conjugation classes it follows immediately from (2.4)
that (+1, a) - (+1, a') if and only if there is a β £ ££(2, C) such that
α = /l^α'.

In the case of α's of type V, ΛΆ has an elementary divisor. According
to E. P. WIGNEB [1] there is a base of 4-vectors {u,v,w,z} which is
uniquely characterized by

Λxu = u, Λxv = v, Λoίιv = wJ

Γv, Λxz = z -f w -f -^v

and

(z, z) = (v, v) = (z, w) = (z, u) = (w, u) = (v, u) = (v, w) = 0

(z, v) = I, (u9u) = (w,w)= -1 , z0>Q, v0 > 0 . (2.10)

We represent the translation vector a in this base

a = auii + avv + aww + azz (2.11)

and transform with (1, b), b = (aυ — ̂ aw\ τυ + awz, then we get

(1, b) (α, a) (1, - 6) = (α, αw^ + α,2) . (2.12)
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For az φ 0 we may now transform with (β, b'}, βoc β~l = oc and

QJU .

-i / \ o 1 o. au L iau\^ ,, l au

with the result

(β, b') (α, auu + azz) (β, b')-* = (oc, azz) . (2.14)

For az — 0 we can show that au is invariant under conjugation.
Now we combine these remarks in order to show that every element

of φ is conjugate to one element of the following list:

L (αA, 0)

II. (αλ, (0, «!, 0, 0)) 0 ̂  a-, < oo

III. (1) (αλ,(α0,0)) - oo < a0 < + oo

(2) (αA, (0, 0, 0, αa)) 0 < |αs| < + oo

(3) (αλ, (σ0, 0, 0, *!)) σ 0 ,σΊ = ±l (2.15)

IV. (1) (± 1, K, 0)) - oo < α0 < + oo

(2) (±l,(0,0,0,α3)) 0 < α 3 < + c χ )

(3) (±1, (±1,0,0, 1))

V. (1) (γ±y (αθ 50, 0, -α0)) - oo < α0 < + oo

(2) (γ±, (0, 0, α2, 0)) 0 < α2| < + oo .

The ocλ satisfy the restrictions of the corresponding classes of Equ. (2.5).
Two elements of this list with different parameters belong to different

conjugation classes.
In order to prove this statement we consider the most general class

function on φ. For this we introduce several functions on φ which cor-
respond to the parameters of the representatives of the conjugation
classes in the list above:

X(α) =e 1/2(η + iφ) = -1 (αι 4- α| ± J/(o^+ |̂)^4)

v*(oc, a) = ((1 - Ea)a)* denned for λ(oc) Φ ± 1

== α "~ (4 ~ Trace/Lα)2

1

^(α, α) = au defined for λ(α) = ± 1, α Φ ± 1 in Equ. (2.11)

σ1 (oc, a) = ε (w0) s (sin φ), wμ = ε/ρσ(/tα)ρσ av

σ3(α, α) = ε(au) denned for λ(oc) = ± 1, α φ ± 1 in Equ. (2.11) (2.16) .
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These functions have the following values for our representatives of
list (2.15):

λ(oc, a) = λ for classes of type I—IV

λ(γ±ί a] = ± I for classes of type V

v2 (α, a) — — a\ for classes of type II

v2(oc, a) = α§, <70(
α> a) = ε(α0) for classes of type (III) 1

^2(α, α) = — αf, σ^α, α) = — ε(α3) for classes of type III (2) (2.17)

c(α, a) — α§, σ2(α, α) = ε(α0) for classes of type V (1)

d£(α, a) = α|, σ3(α, α) = ε(α2) for classes of type V (2)

σ0 (α, α) = σ0, crjα, α) = σx for classes of type III (3) .

We note that the topological structure of the conjugation classes of φ
is quite involved. Lower dimensional sub-sets, e.g. in the λ plane, are
important. Therefore it is essential to discuss not only class functions
on φ but also generalized functions i.e. distributions on φ which are
invariant under conjugation. The generalized function of the form

JF(α, a) = F z ( λ ) + FJItl(η, v*) β(-va) δ(φ)

+ Fkι(η,v*)Θ(-v*)δ(ψ + 2π)

+ FIII,I (<P> **> ^o) Θ(v*)δ(η) + Fmt2(φ, v\ a,) Θ(-v*) δ(η)

+ Fm,s(φ>σo,<*ι)δ(v*)ό(η)

+ {Fτv.ι(<*> e(«o)) ®(^ + ^ιv,2(^2) Θ(-a*) (2.18)

+ ^rv.8(e(α0))ί(αa)}ίβ(^«- 1)

+ Σ C^v, (c, σ2J n) + Jv>2 (d^, σ3J n) δ(c)) δ (η) δ (φ - 2πn)
« = 0,1

— where λ, φ, η, v2, c, d, etc. denote the functions on 3̂ defined in
(2.17) —, is invariant under conjugations in φ. This may easily be verified
by direct calculations.

Two elements of the system of representatives (2.15) differ, according
to (2.17), in at least one of the parameters 99, η, v2, . . . on the support
of jP(α, α) in (2.18). Therefore different elements of the list (2.15) re-
present different classes. Also, in a vague sense, (2.18) gives the most
general generalized class function. We expect that the primitive charac-
ters of φ have the form (2.18).

III. Elementary Calculation of the Primitive Characters

In this chapter we calculate the traces of the unitary representations
of φ in a simple-minded and direct way.
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1. The Characters of the Representations with Time-Like Momentum Pμ

The representations of φ with mass PμP
μ = M2 > 0, spin s and

energy sign ε1 = sign P0 were given by E. P. WIGNEH [1] as unitary
transformations of the Hubert space Jtf* of vector valued functions
ψn(p}> n = —s, —s -{- I, . . ., s, on the mass hyperboloid p2 = M2,

= el5 with the norm

The representation U(a, a) is defined as

(17 (α, α)yOn(2>) = Σ <*»u&nn>(Q(*, p)} Ψn,(Λ~lp) . (3.2)
n'

The following definitions are used :

h(p) = (2M(M + | po!))-1/2 {Po + M

Λh (p) has the property

(eι tf,0). (3.4)

Dnn'(ρ) is the representation matrix of the (2s -f 1) -dimensional iιτe-
ducible representation of SU(2) [5].

In order to evaluate the trace of ?7 (α, α) we introduce in Jf7 an
improper base {Φ^,^} of eigenvectors of the infinitesimal translation
operators Pμί which transform like

U(*, a)Φ,,n = Σ eί(A«p'a) ΦΛ »,n>Ds

n>M*> Λ«VΪ) (3 5)
n'

and which are normalized according to

(ΦJ,,n,Φ1,'.. ) = 2 b o l < 5 ( P - P ' ) . (3-6)

We may consider the functions ipn(p) as the coefficients of an arbitrary
vector of ffi in this base.

Now we regard as the trace of ?7(α, a]

r •(*,.«, U(x,a)Φ,,J. (3.7)

We are aware of the shortcomings of this definition. Unitary operators
in an infinite dimensional Hubert space do not posses a trace in the usual
sense. Further one has to be careful in the use of an inproper base. Never-
theless we shall calculate (3.7) according to the usual methods of mathe-
matical physics, leaving the justification of this procedure to the following
chapter.
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With the help of Eqs. (3.5) and (3.6) we get

Trace Ϊ7(α,α) = / dp e^aχs(h(p) ah~l(p)} O3(p - Λαp) (3.8)
with

sin(2g + l) φl2 (39)
( }Sin φ/2

the character of the representation Ds

nn,(ρ] of $£7(2) [8].
From Eq. (3.8) we see that Trace £7(α, α) is only different from zero

if ΛΛ leaves an time-like vector p invariant, i.e. if α is conjugate in
SL(2, C) to an element of $£7(2); in this case h(p) transforms α into a
rotation ρ(α, p) = h(p) och~l(p). ρ(oc,p) is conjugate to ρ(α, p') in
$I/(2, C): ρ(α, p) = k(p) h~l(p') ρ(α, p'} h(p') h~l(p). But two elements
of $£7(2) which are conjugate in SL(2, C) correspond to rotations with
the same rotation angle, as we may see from the remarks on Eq. (2.5).
Therefore they are also conjugate to each other in $£7(2). Since χs(ρ)
is a class function on $£7(2), we may consider χ s ( ρ ( u , p)} in Eq. (3.8) as
independent of p. We may put it in front of the integral as a factor
χ°(φ(oή) with φ(oc) defined in Eq. (2.16).

Now we have to evaluate the integral / dy βίpa (53(p — /lαp) which is
a class function of (α, a) in SL(2, C). This follows in general from the
class function property of the trace or it may be shown directly by
substituting the integration variable pf = Λβp:

'bol <5(P -4xP) eipa

(3.10)
Γ ^P

In the integral we put α = ocλ and calculate

δ*(p - ^p) = -45^ -̂ 77 d(Pl) δ(p2] δ(η) Po= + |/Jί2 + 1̂ (3.11)

Thus expression (3.8) becomes

Trace £7(α;k, a) =

The remaining integral in (3.12) is the wellknown invariant function in
2 dimensions [9]

// dpv dp,, Θ (εpQ) δ(pl - pi - If2) e^ "'-*»*»>

= in ffψ(Jf]/ί4^j;ιffβ) (3.13)

v- (α0,α3), er0 = signα0 .

ty (2) is the Hankel function of the first kind [10] defined as an analytic
function in the complex plane with the cut at — oo < 2 < 0. The cut of
the square root runs along the positive axis, the ± sign in J/yJ. indicates
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the approach from the upper or lower half plane. We have therefore

Hp(y%) = Hp(\v\) for v*>09ε = +l\-Hg>(\v\) for v* > 0, ε = -1

-^Ko(\v\) for <;2<0, fi=± 1. (3.14)

Now we remember the class function property of Trace £7(α, a) which we
have explicitly confirmed for the improper trace by calculation (3.10)
and we get as final result the primitive characters of the unitary re-
presentations of φ with time-like momentum Pμ P

μ — M2, spin s and
energy sign ε1:

a; M\ s, ε,) = 48in"2 δ(η) (3.14)

The arguments of the different functions are defined as in eq. (2.16).
The primitive characters of type I representations of φ are indeed class
distributions of the form (2.18) with support on type III classes of con-
jugate elements.

2. The Characters of the Representations with Light-Like, Momentum Pμ

In the preceding section we have performed quite explicitly the
calculation of the traces of the in physics most important representations
of φ of class I. Since the constructions of the class I, II, III representa-
tions of φ have many features in common, we can be shorter in the
calculations of the traces of the other representations. E. P. WIGNER has
constructed all the faithful irreducible unitary representations of φ as
transformations of vector-valued functions on a "momentum hyper-
surface" 211 which have the form of Eq. (3.2). In the general case the
matrices Ds (ρ) form a representation of type s of Wigner's "Little Group"
SiC^L(2> C), i.e. the sub-group of φ which leaves a fixed pi ζ 911 in-
variant hi (p) denotes any fixed choice of Lorentz transformations which
has the property Λh.(p^p = Pi and it is ρ(α, p) = h^p) och^l(A~lp) as
in Eq. (3.3). Therefore the characters of the type I, II, III representa-
tions of φ will in general have the form of Eq. (3.8), with χs(ρ) denoting
the character of the representation D s ( ρ ) of S i} and with the integration
being performed over the momentum hypersurface 9K. In the following
we want to calculate this integral for type II representations.

The little group of the hyper-surf ace of light-like momenta p* — 0 is
formed by the matrices

( fiφlZ Uf,-iφ!2\

0? ' e - ί φ / 2 ) ζ £ y ^ £ £ > β<φ<±π. (3.15)

The corresponding Lorentz transformations leave the vector
Pi = ±(1, 0, 0, 1) invariant Λγ(φtU) Pi = pt. The group Sγ may be re-
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garded as a twofold covering group of the Euclidean group in two
dimensions [1]. This is indicated by the composition law:

γ(φ, u) γ(φ', u'} = γ (φ + φ', u + ei(Puf) . (3.16)

In order to find the conjugation classes of Sγ we calculate

γ(φ'9 u') γ(φ, u} γ-l(φ', u} = γ(φ, (1 - e*v) u' + e*v> ' u) . (3.17)

From this we see

γ(φ,u) ~ γ ( φ , ΰ ) in Sγ for φ Φ 0, 2π
(3.18)

γ(o,u) ~ γ(o, \u\), γ(2π,u) ~ γ(2π, \u\) in Sγ .

Obviously γ(φ, 0), φ φ 0, 2π, and y(0, r), γ ( 2 π , r ) , r ^ 0 form a com-
plete list of representatives of the conjugation classes of Sγ.

There are two classes of irreducible unitary representations of Sγ [1] :
A. The 1- dimensional, unfaithful representations

γ(φ,u)-*e* *9 « = 0 ± 1/2, ±1, . . . (3.19)

which are identical with their characters χ s ( γ ) =
B. The representations in the function space Jtf* = {ψ(v)} with the

norm
2π

(ϋ(γ)ψ) (v) = (- l)τ\v>*\ Gχp(iQ n&(eivu) φ(v + φ - 2π\φ, v\) (3.20)

with \φ, v\ = 0 for 0 ^ v + φ < 2π, \φ, v\ = 1 for 2π ^ 7^ -f 9^ < 4π
and [99, r| = 2 for 4π ^ v -f φ < 6π.

The parameters Q, 0 < Q < -\-oo, and T = 0, 1 distinguish different
inequivalent representations. We have calculated the improper traces of
this infinite dimensional representations in Appendix A with the result

Trace U(γ) - (δ(φ) + (- l)τ δ(φ - 2π)} 2πJQ(Q\u\) . (3.21)

We see that the characters are distributions in the parameters of the
conjugation classes of Sγ as introduced in (3.18). With the help of the
formula [10]

00

fjQ(px) Jϋ(p, x'}p dp^^δ(x~ x') (3.22)
o

we see that the characters (3.19) and (3.21) form a complete orthogonal
system of functions on the conjugation classes (3.18).

The explicit description of the class II representations of φ may be
given in the Hubert space ffi of all complex valued functions ψ (p) defined
on the light cone p2 = 0, ε (pQ) = ε2> which are square integrable with
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respect to the measure dμ(p) = -~Ί — r d^p. We use the following definitions

ρ(α, p) = t(p) oct-^Λ~lp) = γ(φ(oc, p), u(κ, p)} ζ SY (3.23)

t(p) - exp (- y σ 3j exp (- y #σ2j exp (- y ^<73J (3.24)

T = log |p I , (&, γ) the polar angles of ε2p .

t (p) has similar properties as h (p) :

Λt(ύp=ε(p0)(l,0,Q,l) (3-25)

Then the representation A (3.19) of Sγ give the following representation
o f φ :

(Z7(α, a)ψ) (p) = e^' + ̂ O*'*) ψ(Λ~lp) . (3.26)

Defining the trace in exactly the same way as in (3.7), we obtain:

Tracet/(α, α) = f e^a + ίs(p(^^ δ(p - AΛp) d*p . (3.27)

We choose α = αλ and with 99 = φ(α) according to (2.16) we get

Trace ϋ(aλ, a) = — X(9> «o «8) (3 28)

~~ e~i£sipa+

o o
The integral

CO

* - (7

o

determines a distribution only up to a constant, i.e. a distribution on a
hyperplane of test functions defined by / φ(x) dx = 0. Therefore our
simple minded calculation of the characters becomes somewhat arbitrary
in this case. We refer to our discussion in section IV. In our evaluation
we use the fact that Trace Ϊ7(α, a) must be a class-function. We get as a
result :

TVα r o TT ( -f rι\ " W/ Γ ' _. /Q /,,2±race cy ^oc, cϊj — [_ t<7^(7Qε2(:y ^v
4sin2-|-

ώ

— πσlε2Θ(—v2) sin (5 99) — 2 008(599) log

) cos \<sφ}

| v 2 | l/2_ 2(7008(5^)]

(3.29)

which defines the characters of the unitary representations of φ with
lightlike momentum PμP

μ = 0, "spin" 5 and energy sign ε2. The meaning
of the arbitrary constant C will become clear below.

We want to add a remark on the limit M2 -> 0 of the characters of
φ with timelike momentum PμPμ = -M2, spin 5 and energy sign elt We
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may compare them with the characters of lightlike momentum: For
small x, H^(x) has the expansion [10]

^ (γ + log f-) + . . . (3.30)

γ being the Euler constant.
Up to a constant, we therefore obtain approximately

= ̂  (log |̂  - ̂  eισ0Θ(v*)) (3.31)

for small M\ H^ regarded as a function of v2, εl5 σ0. Comparing (3.29)
and (3.14) we thus get the following "helicity-decomposition" [11] of the
characters with timelike momentum :

s'= s

lim Trace U(a, α; Jf2, s, εx) = Σ Trace t/(α, α; P^P" = 0, s', ε^. (3.32)
-Λί — ̂  0 s' = _ s

The representations B (3.20) of $ygive the following representations of φ

(U(*,a)ψ)(v,p)= (3.33)

(_ ιγ\φ(«,PM eχp(iQEe(eivu(oc, α)) ψ(v + <p(α, ρ) - 2π|φ, v , Λ^p]

with notations as in (3.23) . . . (3.25).
We were not able to calculate in this formal manner the characters of

those representations of φ which are given by the representations (3.20)
of Sγ. The difficulty in calculating the characters of these representations
is due to the fact that their support must be contained in the set V of
(2.15) Chap. II, and which seems to be too "small". However, we are
able to determine the character as distribution in the framework of our
mathematical theory in chapter IV.

3. The Characters of the Representations with Space-Like Momentum

The little group of the hypersurface of space -like momenta
p2* = — M* < 0 is formed by the matrices of the form

S, d e t / ? = l . (3.34)

The corresponding Lorentz transformations now leave the vector
pi = (0, 0, 0, 1) invariant. Sβ is the group of linear transformations,
which map the interior of the unit circle onto itself. Sγ is isomorphic
toSL(2, IR).

A complete list of representatives of the conjugation classes of Sβ is
given by

(3.35)

J ? > 0 0 ^ φ < 4 π l = ±l.
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We shall consider only those irreducible representations of Sβ which
appear in the Plancherel formula for Sβ = SL(2, IR). They are given,
according to BARGMANN [5], by the Main Series and the Discrete Series:

A. The Main Series
The representation is given by the unitary transformations D(β) of

+ π

the Hubert space ffl = {ψ(ψ}}> \\ψ\\2 — ~ό — / Iψίφϊl21 dφ:

with
e-ίβ-lφ = {χeiφ _ yyφ _ yeiφ}

and

μ(β> ψ) = (x + ziφy)rι % + etvyl-i-τi + to, 0 < a < oo, T! = 0, 1 . (3.36)

B. The Discrete Series
The representation space is given by the linear space of all functions,

which are analytic in the interior of the unit circle :

(z) = μ(β, β-i

b) (D(β)ψ) (z) = μ(β, β-iz)-*" ψ(β~lz)

with

z = u + v

||ψ||2 — .— — / (I — zz)2κ~2 ψ(z) ψ(z) du dv 2κ φ 1
71 J

and

2 x —> 1 71 J

We distinguish the cases a) and b) by τ2:

T2 = 1 for case a), τ2 = — 1 for case b) . (3.38)

The improper traces of these representations are [12]:

ηcosσ -~
a) TraoeD(^)=(±l^ for /? ζ Cj (3^a)

"~

= 0 for

b) TraceZ>((3) = (±l)2'< - — - for β ζ Cl

β

(3.39b)

f o r S ζ C .
2sin-|

3 Commun. math. Phys., Vol. 7
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In order to construct the type III representations of φ, consider the set

of all vector-valued functions ψ(p) on the spacelike hypersurface

p2 — — M2 < 0 where the values are taken in one of the representation

spaces of (3.36) or (3.37), such that

2 - / (Ψ(P), Ψ(P» ' (Pl + J&^^jf-dΩi < oo (3.40)

dΩy is the differential solid angle of p = j-r and (ψ(p), ψ(p)) is the

scalar product in the representation space of (3.36) or (3.37). This set

defines a complex Hubert space.

We define

r(γ, δ, ε) = (γ0

γl-γ*=dl + d* = εl~tε*=i
then the equation

(4.-I(y)ί,e)P) = (0,0,0,Jf) (3.42)

defines a correspondence r(γ, δ, ε) <-> p in a one-to-one-way, except on a

set of measure zero on the spacelike hypersurface. Setting

ρ(α, p) = τ(p) ar^(A^p) £Sβ (3.43)

we obtain an irreducible representation of φ on the Hubert space defined

above :

(Z7(α, a)ψ) (p) = e*»'.D(ρ(α, p)) ψ(Λ~lp) (3.44)

where D is given by (3.36) and (3.37).

Taking what has become the standard definition of Trace, we obtain

Trace Z7(α,α)

= / e*** TraceD(ρ(α; p)) δ(p0 - (Λxp)0} <5(ί2p - ΩΛΛV) dp, dΩζ. (3'45)

Again we notice that Trace U (α, a) is only different from zero if α

possesses a spacelike eigenvector. This is exactly the case if α ~ α^,

αλ ζ II, III, IV or V in (2.5). We calculate only the first two types II

and III. If ocλ is of type II, elements ρ(α, p) which are conjugate under

SL(2, C) are also conjugate under Sβ. In that case we may consider

TraceD(ρ(α, p)) in (3.45) as independent of p. For the Main series we

therefore obtain:

Trace C/(α, a)

cosσiΓ zπJn(V-M*v* (3.46)

For the discrete series things become a little bit more complicated, since,

for example, eiσ»φ is conjugate to e~ίσaφ in SL(29 C) but not in Sβ. The
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integration in (3.52) may, however, be split up into two parts, in each of
which TraceD(ρ(α, p)) may be considered as independent of p. Using the
same techniques as above, one obtains for the Discrete Series

Trace t7(α,α)^

X - - 5 -- 2π J0(|/-2
(3.47)

π δ(η) (—1) 2 /jr 2^( 2χ~i) jj(i)n/~T(te~&~\
-σj

If we denote that part of (3.47) which is proportional to δ ( η ) by
Trace111 Ϊ7(α, α), we have a relation similar to (3.38):

lim Trace111 t/(α, α;Λ"2,κ, τ2) = Σ (Trace £7(α,α; PμP
μ = 0,r25', +) +

M->0 β'= κ

+ Trace Z7(α, α; PμP^ - 0, -Ta^', -)) . (3.48)

Representations with Pμ ΞΞ 0

The class IV representations are those, in which the translational
subgroup of φ is trivially represented, and any irreducible unitary
representation of SL(2, C) exactly defines such an irreducible represen-
tation of φ. For convenience, we only quote the Main series of represen-
tations D(α) of SL(2, C) in the Hubert space ^f = {ψ(z,z}}, ||^||2

= / \ψ(z, z)2 du dv, z = u -f iv:

with

?Ό = 0, db Y , ± 1,...,— oo < σ < -f oo .

The different representations are parametrized by (/0, σ). Representations
belonging to (jQ) a) and ( — j Q ) ~ a) are equivalent. The characters have been
calculated by NAIMABK et al. [3]:

3*
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IV. The Mathematical Framework

1. Definition and Properties of Induced Representations
and Induced Characters

All irreducible representations of φ are induced representations in
the sense of FROBENΠJS and G. W. MACKEY. For finite groups, FROBENΠJS
has given a formula to calculate the character of an induced representa-
tion from the character of the inducing representations. We shall show
in the case of φ how this procedure may be generalized for induced
representations of locally compact groups with the help of the methods
of distribution theory. So we gain a more rigorous framework for our
preceding calculations.

The following is MACKEY'S definition of a representation U(g) of a
countable, locally compact group G induced by a continuous unitary
representation D of a closed subgroup jP :

Let D be a continuous unitary representation of F, Jti?(D) the
(separable") Hubert-space of this representation. For Φ, Ψ ζ 3? (D) let
(Φ,Ψ) be scalar product and let μ be the essentially unique quasi-
invariant measure on the right cosetspace G/F. Let 9t be the set of all
maps ψ(g) from G to J^(D) such that

1. (Ψ(g), Φ) for each Φ ζ Jj? (D) is a Borel-f unction in g ,

2. Ψ(fg) = D(f)Ψ(g), f £ F , g ζβ , (4.1)

3. f(Ψ(g),Ψ(g»dμ(g)«x>.
GIF

Thus \\Ψ(g)\\2 = (Ψ(g), Ψ(g)} is a Borel-function on G which is constant
on the right cosets of F in G. 3. defines a scalar product on 9ί, by means
of which 91 becomes a separable Hubert-space. The unitary representa-
tion U (g) of G in 9ί is then given by

>βJ(gJ g^g^β (4.2)
where

2)

is the Radon-Nikodym derivative of μ.

Now we remark that the definition of the representations of φ of
type I, II and III as given in (3.2), (3.26) and (3.44) define induced
representations in the sense of MACKEY [6]. The subgroups Ft

(i = I, II, III) are in the three cases the semi-direct products
(I) = S U ( 2 ) <Σ, (II) :Sγ <Σ} (III) :Sβ <£. The inducing representations
of these sub-groups Fί are of the form

D'(e, a) = e""« D(β), β ζ S, s F^Z = S U ( 2 ) , Sγ, Sβ
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with

pl - (M, 0, 05 0), Pll = (ea, 0, 0, εa), ftπ = (0, 0, 0, M) ΛsPί = Pi (4.3)

and the irreducible representations D(s) of Si as discussed in (3.4'),
(3.19), (3.20), (3.36) and (3.37). The Lorentz transformations ( I ) : h ( p ) ,
II: t(p), (III) : r(p) defined in (3.3), (3.24) and (3.41) form systems of
representatives of the Fi right cosets (α, α) = (ρ, α) (h(p), 0); (ρ, α) ζ -FΣ

etc. Therefore the coset spaces φ/jP; are isomorphic to the unit momen-
tum hyperboloids 92V, and the quasiinvariant measures μ are the
invariant measures on these hyperboloids:

(I) 22ΪJ =

(II) 9Zlπ =

(III) 2Zlm = (p|p2 = - 1},

Since d μ ( p ) is Lorentz invariant, the Radon-Nikodym derivative

is unity.

The functions !f(<7) ζ $ which satisfy (4.1) are uniquely determined
by their values on a system of representatives of the Fi right cosets. Let
us take, for example, representations h (p) for type I as such representa-
tives. Then we get from (4.2)

(Z7(α, a)Ψ) (h(p)) = D(ρ(α, p)} e^M

which becomes identical with (3.2) by the correspondence p <-> M p,

(h(φ)} <-> Ψ \ΎfP\ Similarly we see in the other cases II and III that

the irreducible representations of φί are induced representations.
We shape Frobenius' formula of the characters of induced representa-

tions of finite groups in a form which is a suitable analogue for the
distribution theoretic discussion of the characters of φ. Let G be a finite
group with a sub-group F and {gr \ r = 1, . . ., [G : F]} be a system of
representatives of the right cosets G/F. The group G becomes a trans-
formation group on the set I = {r } of the indices of the cosets by the
definition

9 9r = grJ 9tG,jiF. (4.6)

With this notation the character of the representation of G induced
by a representation of F with the Character χp(f) becomes [7, 13]

Since a representation of a group G : g -> D (g) defines a representation
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of the group algebra CG: Σ φ(0) ' 9 ~* D(ψ) = Σ ψ(0) &($}> we may
β 9

consider the characters as linear functional on the group algebra

χG(φ) = Trace(D(^)) = Σ 9%) Xo(g) (4-8)

The relation between the characters χa(φ] and χjf(ψ\ of the group

algebras G6r = {φ(g)} and CF = {ψ(f)}> which corresponds to Eq. (4.7)

may be expressed with the help of the following mapping of G x I x I

into CF:

Ψrr>(f)=φ(gΐlf9r>). (4-9)

It becomes

This is the form in which Frobenius' formula may be generalized to the

induced representations of ζj5. We must study suitable spaces of test

functions on Sp (section IV, 2) and on the inducing groups (section IV, 3).

The discussion of the mapping (4.9) helps to demonstrate that we may

define the characters of φ as distributions of the type (4.10).

2. The Space A of Test Functions on φ

The Poincare group φ is an analytic Lie group, and its analytic

structure is given by the direct product of the analytic structures of

SL(2, C) and <Γ. For our purpose it is useful to construct a space of test

functions A which has the properties of L. SCHWARTZ' space [14] <$?

Λvith respect to X and of his space @ with respect to SL(2,&). We use

a finite atlas 21 in φ given by the canonical coordinate system in <Γ and

a finite atlas 21 ($.£(2, C))2. Now let Aκ be the set of all complex valued

function /(α, α) on φ which are infinitely differentiable and which have

a support contained in K x £, where K is any compact set in SL(2, C).

Furthermore, we suppose that / (α, α) and all its partial derivatives

decrease faster than any inverse power of |α|2 = a% + a\ -f α| -j- α| for

]α|2 -> oo uniformly in α. Aκ is not empty; we make Aκ a locally convex

topological vector space by defining the following basis of neighbour-

hoods V of the zero in Aκ :

V(m, 7i, q\ ε, 21)

m, n, q are non-negative integers, -y^- y- r̂ denote any partial derivative

of order (n + q) in any coordinate system contained in 21. Aκ is a Montel

space, the topology is independent of the special choice of 21. We define

A — lim ind^^L^. The space A is a locally convex topological vector

space in which Aκ is a closed linear subspace. By definition, a convex

2 There is an atlas with only two coordinate systems.
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set ϋ in A is a neighbourhood of zero if and only if U r\ Aκ is a (convex)
neighbourhood of zero in Aκ. Therefore, a linear mapping F from A into
a locally convex topological vector space is continuous if and only if the
restriction Fκ of F to Aκ is continuous for each K. Then F maps bounded
sets into bounded sets. A set M in A is bounded if and only if all functions
/ ζ M belong to some Aκ and the supremum with respect to /, α and a of
the partial derivatives of any order multiplied by (1 -f \a\2)n — with n
arbitrary — is always bounded.

The space A may be regarded as a dense *-subalgebra of the group
algebra Ll(^, dμ(oc) d^a). The convolution is defined in the usual
manner:

(/ o /') (α, a) =J /((α, α) (α, α)-1) / («', α') d μ (α') d«α'

^ (4.12)

/*(α,α) = /((α,α)-1).

Since the convolution maps AR x -4^ into Aκκ> and the involution
maps Aκ into ^L^ -i it can be shown that both operations are continuous
with respect to the topology in A.

In A there exists an approximation of the unit {en} [14], such that
en ζ A and

/ en(a, a) dμ(κ) d*a = 1; lim ew o / = lim / o en = / (4.13)
ξg n->oo n-»oo

for each f ζA. We may assume that the en have compact supports ^n in
φ which satisfy Π Kn = (1, 0).

The Fourier transform with respect to the translations 5 :

/(α, p) = / /(α, α) e^α cZ4α (4.14)
s:

is a linear homeomorphism of A onto itself [14].
Now we define distributions as continuous linear functionals on A.

The set of all distributions is denoted by A'. We call χ ζA' real, if

j f(/*) = ~X(f)> positive if χ(/ o/*) > 0 and central, if χ(f o f ) = χ ( f of)
for all /, /' ζ JL The real distributions form a real vector space, the positive
distributions form a positive cone and the central distributions form a
complex vector space in A'. We expect the primitive characters of φ to
be real, positive, central distributions on A. We remark that a real,
positive central distribution χ is uniquely determined by its values on the
positive elements χ ( / o / * ) . In order to see this, we calculate χ ( f o f )
by polarization and use then the approximation of the unit to get
χ ( f ) = l i m (/oej .

»-*°° _

Let (α, α)-> C7(α, α) be any continuous homomorphisrn of φ into
the group of all unitary operators of a Hubert space 3^, then

^4« (4 15)
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defines a continuous *-homomorphism of A into the *-algebra of the

bounded operators in J f :

2>=2V+; T,.f=TtTf. (4.16)

We shall consider the properties of Tf in the following.

3. The Test Function Spaces on SU(2), Sβ and Sγ

We are dealing with induced representations, and we need therefore

the locally convex topological vector spaces of the test functions on the

little groups. Let S be any of the unimodular groups SU(2), Sβ or Sγ.

Consider the linear space Q) consisting of all complex valued infinitely

differentiable functions / on S with compact support. We furnish ® with

the topology given by L. SCHWARTZ [14]. Similar as above, we use a

finite atlas. The topology, however, is independent of the special choice

of that atlas.

Just as above, we may define a convolution and involution in Qί\

s
/*(S) = /(ί-i) (4.17)

where dμ(s] is the Haar measure on S. For any continuous homo-

morphism of 8 into the group of all unitary operators of a Hubert

space H: s -> U ( s ) , we define by

f f = f U ( a ) f ( β ) d μ ( β ) (4.18)
S

a continuous *-homomorphism of & into the * -algebra of all bounded

operators in H :

ί> = ί> + ; ί l f t f = ίlfί'f. (4.19)

Now we consider the characters of S as distributions. For the irreducible

representations of S U (2) and for the representations of the Main and

Discrete series of Sβ it is known that there are continuous linear, real,

positive and central distributions χ on @, such that χ is the trace for the

positive elements of @ [12 b]:

χ(f x /*) = Trace f/W* = Trace (Z> tf) . (4.20)

In the remaining case of S = Sγ, the one dimensional representations

(3.19) define distributions on 2

/ eίsvf(φ, u)dφdu (4.21)
o

with all the desired properties. The Equation (4.19) reads for the faithful

representations of Sγ, (3.20):

(ffψ) (v) - f * K ( f \ v , vf) Ψ(v') dvf

0

K ( f \ v , v ' ) = /exp[iQ Re(e^^)] f ( v ' - v,u)du+ (4.22)

+ (-l)τ fexp[ίQ 'Re(eivu)f(v' -v+ 2π,u)du .
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Defining
2π

jf (/) = Trace ff = -*- f K(f\v,v) dv (4.23)
0

we obtain our old distribution (3.21)

X(ί) = f{δ(ψ) + (- iYδ(φ-2π)} 2πJ0(Q\u\) f ( φ , u) dφdu, du2. (4.24)

The continuity of χ follows from the estimate we get from (4.21) and
(4.24)

\χ(f)\ <:4π sup \f(φ,u)\ f du.du, (4.25)

where K is the support of /.
Thus for all little groups St we have found real, positive central

distributions on the corresponding spaces @, which on the positive

elements agree with traces χ(f x /*) = Trace (Tf Tf ). We denote in
the following these distributions as generalized traces

χ (/) = Trace ff. (4.26)

4. The Characters of φ for Representations with Pμ φ 0

We start the discussion of this section by rewriting Formula (4.15)

TfΨ(p) =J /(α, a) D'(li(p) (α, α) l^(Λ^p)) Ψ(Λ~lp) dμ(g)
V (4.15')

h(p) = ( h ( p ) > t y , ( t ( p ) , f y , ( r ( p ) , t y for < = I, II, III.

with the help of the factorization of the measure d μ ( g ) of φ in the
measure of the inducing subgroup Fί:dμ(s)da and the invariant

measure dμ(p) on the right coset space 33lt = ty/Fί, i e d μ ( g ) = dμ(s) x
x c2α dμ(p). We get

T^ίp) = f K ( f \ p , p '} Ψ(p') d μ ( p f ) (4.27)
9R<

with the kernels

(I) K ( f \ p , p f ) = f f(h-l(p)uh(pf);h-1(p)a)eiε^M^D(u)dμ(u)da

(w) dμ(u) (4.27 a)

(II) K(f\p,p')^fJ(t^(p)γt(p');είp )D(γ) dμ(γ) (4.27b)
άr

(III) K(f p,p') = f f ( r - * ( p ) β r ( p ' ) ,]&p)D(β)dμ(β). (4.27 c)
sβ

The transformation Λ (p) is defined on 22ΪJ and depends there analytically
on p', t(p] is defined in the region p+ =j= 0, -̂ 4= 0 of 9HΠ and is analytic
there; similarly r(p) is defined for ^3 + ̂  on 9^m and is analytic there.
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For p, p' in these regions of definition 93 z of Λ-(p), ί(p) and t(p), the inte-
gration with respect to dμ (u) is performed over a compact set. Therefore,
for fixed ( p , p ' ) t J(h-1(p)uh(p')'ί ε^Mp) is a (7°° -function on SU(2)r\
Γ\ h(p) Kh~l(p'), whenever / ζAg. We have a similar situation in the
other cases. Therefore the kernels defined in (4. 27 a, b, c) exist except
on a set of measure zero and define bounded linear operators in the cor-
responding representation spaces J^(D). We have to prove several
properties of these operators.

Lemma 1. K ( f \ p , p') is continuous in (p, p') whenever defined.
Proof. Let B and B' be any compact neighbourhoods of p and p' in

93^. Then for each (p, p ' ) in B x B' ', the functions in the integrands of
(4.27) depend continuously on (p, p') and have support in the compact
sets h(B)Kh~1(Bf) r\SU(2), t ( B ) Kt~l(B') r\ Sγ, r(B) Kr~l(B') π Sβ

respectively for all / ξ Aκ. Therefore the integration in (4. 27 a, b, c) may
be extended over these sets only. The lemma follows now from a well-
known theorem in analysis [15] for all ( p , p r ) in the interior of B x B' '.

Lemma 2.

(4.28a)

P"> P'} dμ(p"). (4.28b)

Proof. Eq. (4. 28 a) follows immediately from the definitions (4.12) and
(4.27). For the proof of the second statement we shall show certain fall-
off properties which justify the following calculation

K ( f o f ' \ p , p ' )

^//(^/'((α,^)-1^^)^^

we substitute l ( p ) κ = s'l(p"), Λ^laf - Λ^^^a = b, Al(^a = b' , we
use sr Pi — Pi and we get

K ( f o f ' \ p , p ' )

x D(s') D(s'~ls) d μ ( s f ) dμ(p") dμ(s) db dbf .

According to definition (4.27) this expression agrees with (4.28 b) if we
interchange the order of integration.

Now we discuss the fall- off properties which allow this manipulations
for the different cases.

(I) The kernels K ( f \ p , p"} and K(f'\p", p') of the form (4.27 a) are
zero for fixed (p, p') and sufficiently large p", because h(p")-><χ> as
2/'->oo and SU(2) is compact. Therefore the integration in (4.28b) may
be performed.

(Ill) In order to discuss K ( f \ p , p " ) and K(f p",p') of the form
(4.27 e) we make use of the fact that the set U^ r(p) Kr~l(p") r\ Sβ is
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bounded, as we have shown in Appendix Cl. There is thus a C(K) such
that

μSp(r(p) Kr-*(p") A 8β] < C(K] (4.29)

and therefore the norm of K ( f \ p , p") as an operator in Jti? (D) satisfies

\\K(f\p, p")\\ < C(K) sup \f(r-*(p) βr(p")9 Άp}\ . (4.30)
β£Sβ

As a consequence K ( f \ p , p") goes to zero faster than any inverse power
in (14- \p\2) as p -> σo uniformly in p". Since we have K ( f \ p , p " )

=-K(f*p",p)* and \\K(f\p, p")\\ = \\K(f* \p", p)\\ the properties of
\\K(f\p, p")\\ are symmetric in p, p". From this and from corresponding
properties of K(f'\p", p) we conclude that the integral in (4.28 b) exists
also in this case.

(II) The case P2 = 0 is more complicated, because t(p)-*oo as
p -> 0. It is shown in Appendix 02 that there is a C' (K) such that

/• du du < g'(g)
/ Ul ίλJΛ (λί (Λ/n -̂  I I I / I

«ί 1 P | | P | (4.31 a)

m = {«!, tig
and therefore

μ,v(t(p) Kt-Hp') ΓΛ Sv) < 4π . |ĵ - (4.31b)

Thus K ( f \ p , p") goes to zero faster than any inverse power in (1 -f |^]2)
as p -> oo, £>" fixed. Using the symmetry argument from above, we see

that K ( f \ p , p") decreases fast also for fixed p' and p" -> oo. In Appen-
dix C 2 it is further shown that K (f \ p, p ' ) vanishes for p" -> 0 and fixed
p as well as for p ~> 0 and fixed p" ' . Therefore integration (4.28b) may be
also performed in this case also.

This finishes the proof of lemma 2.
In order to understand the structure of the induced characters, we

have to study the relation between the test functions on φ and the test
functions on the subgroups S^ For this we consider the following

mappings of A x 53 $ x 33^ -> 2\

mh-i(p)Sh(p');ειMp ) (I)

(/. P, P') -» fp,p' = /(ί-Hp) γ t ( p ' ) ; εzp} (Π) (4.32)
[f(r-i(p)βr(p');Άp) (III)

for the representations of the different types I, II, III. The test function
spaces A and & are defined in the sections 4.1 and 4.2 respectively.

Lemma 3. (/, p, p') -> fptp> is continuous in (/, p, p').
Proof. We note first that fpip> is linear in / for all (p} p'). Furthermore,

for fixed /, /^ is obviously continuous in p} p' '. It is therefore sufficient
to prove that for given (p, p') and a given convex neighbourhood U of
zero in Of there is a convex neighbourhood U of zero in A and a neigh-
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bourhood B x B' of (p, p') such that /^/ £ £/" whenever / ζ £7 and
(p, p ' ) ^ B x B'. ΛVe choose B and J5' to be compact neighbourhoods of
p and p' and we will show that / -> /^ is equicontinuous for (f>, fΓ) ξ
ζ J5 x 1?'. This will prove the lemma.

Since for fixed (p, p') the map is linear in /, we may consider its
restriction to A%. We denote by Qί^ the closed subspace of 2 which
consists of all functions of Q) with support in the compact set KcSi
Then / ζ Aκ> (p, p ' ) ζ B x B' are mapped on /^^ ζ &% with
1 = A(J5) Kh~l(B') n SE7(2), r(B] Kr-^-(B') r\ Sβ> t(B)Kt-l(B') r\ 8γ

respectively. Now let U be a convex neighbourhood of zero in £ΰ\ there
is a convex neighbourhood of zero U& C U r\ @£ of the form

®κ \ SUp

for some m and ε. Here -^ denotes any partial derivative of order n

with respect to any coordinate system of a fixed finite atlas of S. We
choose now a coordinate system ocj} j = 1, 2, . , ., 6, of 3ί(SL(2, C)) and
a constant C which is an upper bound to all kinds of products of partial

9" _ _
derivatives -~r^ otj(l~l (p) s l ( p f } } with respect to the parameters of S:

Here the index ^stands for the conditions: ( p , p f ) ζB x B'}
k

ΐ = = 1

Then for the neighbourhood ϋκ (

I sup

θkra<:w

we can easily get the statement, that f^^ ζ Ug for all / ^ ϋκ. This
completes the proof of lemma 3.

After all these preparations we can determine the primitive characters
of the Poincare group as distributions over the test-function space A.
With help of the definitions (4.18), (4.27) and (4.32) we may write

/) - ίV , (4.33)

and we get for the generalized trace in the sense of (4.26) of K ( f \ p , p')
as operator in Jj? (D)

Traced(/\p ,p ' ) = Trace f/M, = χ(/„,,) . (4.34)

This function is continuous in /, p, pf because of lemma 3 and our state-
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ment (4.26). We shall show below that

/ TraceJf(/|p, p) d μ ( p ) = / £(/„,„) d μ ( p ) = χ(f) (4.35)
971 27ΐ

is well defined and determines a distribution on A. The distribution
χ(f) is the generalized trace of the representation of the group algebra
A of φ related to the irreducible representations of type I, II, III, be-
cause for positive elements we calculate with help of Eq. (4.27) and
lemma 2

J ϊ ( / ° / * ) = / ττo^(K{ί\p,p')K(f\p,p')+)dμ(p) dμ(p'). (4.36)
WxWl

The expression (4,35) of χ(ί) is very similar to the form (4,10) of the
induced character of finite groups. It represents a distribution theoretic
generalization of this formula.
We shall give this result as a theorem.

Theorem. Let U (g) be a unitary irreducible representation of ζp induced
by a unitary representation of one of the subgroups 8t •£: S U ( 2 ) <Γ,
SL(2, 1R) £, Sγ X, of the form D(s)eίpia with the character χ^s) of
D(s). The representation of the group algebra A of φ defined by U (g) is
Tf = f U(g) f ( g ) d μ ( g ) ; /-> fPίP> denotes the family of mappings of A in
$ as defined in (4.32). Then

Xi(f) = fx(f**)dμ(p) i = ι,π,m (4.37)
23 ί

defines distributions on A in the cases i = I, III and continuous functionals
on the closed *-ideal AQ = {/ ζA |/(α, 0) = 0} in the case i = II. This
distribution is the trace on the positive elements of A resp. A0

Xi(/ o /*) = Trace(T f T}} .

Proof. Wτe have to show for the different cases that the integral in
(4.37) defines a distribution on A.

(I) In Appendix C3 we have shown for p ζ 33r and for fixed / that
fp p is a bounded family in @(S U (2)) which goes in @(S U (2)) strongly to
zero as p -> oo. This means, for a given n and a given neighbourhood U
of zero in &(S Ϊ7(2)), that there is an N such that

(1 + |p|a)"/pp ζ ϋ (4.38)
for all \p\* > N.

(Ill) In the case p £ 9KIΠ> we have seen that U^ r (p) Kr-1 (pf) r\ Sβ

is bounded. Therefore we could show in Appendix C3 that for fixed /
the family of functions f v j ) is bounded in @(Sβ) and goes strongly to
zero in &(Sβ) as \p\ -> oo.

In both these cases it follows that χ(fv!p) is bounded and strongly
decreasing and also continuous (Lemma 3) at almost all points. Hence
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Λve may integrate χ ( f v : p ) over p and get thus a functional on A. The
continuous dependence of the integral on / follows from an argument
similar to one used in the proof of lemma 1.

(II) The case p ζ 3Ίlπ makes some trouble because it is possible that
f y v is not a bounded family for fixed /. Let Ne = {p\ |p| > ε}} then the

family {/» Jp e#e n <BH is bounded and fvv goes to zero strongly in 2(SV)
as \p\ -> σo. This is proved in Appendix 03. The support of fvjt may
become arbitrary large as \p\ -> 0, but, however, its measure does not
diverge faster than |p|~2. But with the equations (4.25), (4.27b), (4.31 a)

(4.33) and dμ(p) = -y-d|p| dΩ$ in mind, we see that the limit

exists for all / with /(α, 0) = 0. On this subspace the linear functional
so obtained is continuous.

This theorem gives a justification of our formal calculations of
chapter III. There we calculated the distributions by interchanging the
order of calculating the trace and of the integration over the test func-
tions. Our exact result is particularly interesting for the representations
with P2 = 0. The restriction to A0 is the reason why the arbitrary
constant C in (3.29) does not contribute to the distribution #π(/).
Because we must restrict χu(f) to A0, our result does not contradict the
statement of E. NELSON and W. F. STINNESPRING [16] that ζJ3 is not
CCE [17].

The formula (4.37) gives also an explicite expression of the character
of the representation P2 = 0 and continuous spin :

Xιι(f) = f2πJ0(Q\u\) f ( t ~ l ( p ) y(0, u) t ( p ) , ε^p) duldu2dμ(p) +

+ (-iγ f2πJ0(Q\u\)J(t-i(p)γ(2π,u)t(p),ε2p)du,du2dμ(p). ( '3

Y. Final Remarks

In the preceding chapters we have shown that it is possible to calcu-
late the traces of the irreducible unitary representations of the Poincare
group, i.e. the primitive characters of this group, and it is possible to
give the resulting expressions a precise mathematical meaning. The
result is formulated in our theorem. This result demonstrates, for the
example of the Poincare group, the possibility to generalize Frobenius'
definition of induced characters to non- compact, non-semisimple groups
with the help of distribution theoretic methods. But the choice of the
space on which the characters may be defined as distributions is not
general. One has to take into account the special structure of the re-
presentations. This is shown by the example of the representations with
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PμP
μ = 0. In this connection it is interesting to consider also the

characters of the irreducible representations of φ with Pμ ΞΞ 0. These

unfaithful irreducible representations of ^ are faithful irreducible

representations of the factor group φ/£ ̂  SL(2, C). Their characters

[3] define distributions χSL& W on the space @(SL(2,C)') of the

infinitely often differentiable functions on SL(2, C) with compact

support. In order to define χSL('2>^ as a distribution on A we use the

mapping / which maps A -> &(SL(2C)*)

I: /(/(α,α)) = //(α, a} d*a . (5.1)

This mapping is continuous and satisfies

/ ( / ° / ' ) = /(/)o/(/ ' ) , /(/*) = (/(/))* (5.2)

where the r.h.s. refer to the convolution and involution in &(SL(2, C)).

We put

*(/) = / i(2'c)(//). (5.3)
Because of (5.1) and (5.2), χ(f) is a real, positive, central distribution on

A. In this form we may consider it as the character of the unfaithful

representations of φ. It has the general form of an induced character

corresponding to Eq. (4.37).

The primitive characters of φ which are expressable in classical

functions like Besselfunctions etc. satisfy certain completeness and

orthogonality relations on the class functions [4b, d]. Because of the

complicated structure of the conjugation classes of φ and of the different

types of irreducible representations, a complete discussion of the com-

pleteness and orthogonality relations is rather involved. We shall not

discuss this subject here.

We shall also not pursue the question of possible applications to

physics of the primitive characters of φ. There are some applications to

the statistical theory of elementary particle reactions [18] which takes

into account the fundamental conservation laws in the framework of

relativistic invariance.

We wish to thank Drs. G. FTJCHS, J. LASCOUX and P. RENOTJARD for critical
remarks and valuable discussions.

Appendix A

We calculate the characters of the two-dimensional euclidean group.

The one-dimensional unfaithful representations are identical with their

characters. The infinite dimensional irreducible representations are

defined in Eq. (3.20). An orthonormal basis in the representation space is

given by

Φn(v) = exp(inv), n = 0, ±1, ±2, . . . . (A.I)
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We put

Trace ϋ(γ)= " ~Σ °° (Φn, ϋ ( γ) Φn) (A.2)
n — — oo

and perform the following explicite calculation in which we interchange
freely integration and summation :

Trace ϋ(γ) = -̂ - f dvexp(iQ(Reeίvu)}(- l)τ l^ vl^exp(iw(<p- 2π\φ,v\)

o
2π

(-1Y δ(φ- 2π)) f exp(iQ - Re(eivu)) dv (A.3)
o

2π JQ(Q\u\) .

Appendix B

1. We shall prove that the set r(p) Kr~l(p'} r\ Sβ is bounded if p
and p' vary over 333. The following is an equivalent statement : The set
of those β ξ Sβ is bounded for which is r~l (p) β r ( p ' } C K for some (p, p'}.
For the proof it is sufficient to consider only the action of the non-
compact part aQ + &cr3 of r(p) and r(p') on Sβ. From

( a 0 \ ίx y\ la' 0 \ / aa' x aa'~ly \

0 a-1/ W »/ \0 α7-1/ = U-^'y a-ia'-lx) ^

i.e. |αα'α;| < Jf(ΛΓ), [(αα')-1^ < M (K) etc. it follows \xx\<M(K2),
\yy\ < M(K)*. This proves our statement.

2. In an analogous way we prove statement (4. 3 la). We have to
/|p' |-ι/2 0 \

consider only the non-compact part I ' , , 1 / 2 I of t(p)

/|p|1 / 2 0 \ /e'v/a e-tφi* (Ul + iu2)\ /|px |-1 / 2 0 \

I 0 Ipj-i/V I 0 e-«<P/* / I 0 Ipψ/V
( ' '

'

It follows Ippip' x/2 % + iuz < M(K] and therefore

. (4.31 a)

From the boundedness of the diagonal terms of the r.h.s. of (C.I) follows
that for fixed |p' and sufficiently large |p| or sufficiently small |p | :
t(p) Kt~l(p') r\ Sγ = β. This is also the case for fixed |p| and sufficiently
large or small p'|.

3. We prove now some estimates on derivatives of the test functions
fPΊ)(s) defined in Eq. (4.32).
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(I)

Proof. We put

sup _
g » »» σo for all m, n .

The notation is as in the proof of lemma 3. The index m stands for the
K

conditions: 0 ̂  Σ nh = n> 1 = h = ' ' ' = ?.κ: = 6. Because of the
i- i

algebraic form of h~l(p) ρh(p), the upper limit Nn(p) is bounded by a

sufficient large power of (1 -f |p|2) for large \p\. We have

and our statement follows from the behaviour of / for large \p\.

Similarly we prove in the other cases

(III) p*= -I

dn *
sup

dβ» (1 < oo for all m,

K' denotes a compact set which contains the supports of i^Ί)(β} for each

p\ U r ( p ) Kr~1(p) r\ SβCK'i K is the support of /(α, p) with respect to

α in 8L(2, CD). We have shown in Bl that such an K' exists.

(II) p2 = 0. ε(2>0) = εa.

sup ί dn ϊL|,(Ί̂ +

K' = U 8V r\
ΎI C. Λ7 '

oo for all m, n

|P |>6}.
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