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Abstract. A theorem is derived giving sufficient conditions for a factor to be
either finite or purely infinite. These conditions are:

i. In the Hubert space § exists a conjugation operator J transforming the factor
9ί into its commutant 9t'.

ϋ. There exists a one parameter abelian group of automorphisms of 91 imple-
mented by unitary operators Ut weakly continuous in t and commuting with J.

iii. There is a cyclic and separating vector Ω, which is invariant for J and which
is the only vector in ξ> invariant for Ut.

This theorem is of interest for Statistical Mechanics since representations of
thermal equilibrium states satisfy these conditions [1]. One finds that the represen-
tations of equilibrium states corresponding to one phase are factors of type III.

1. Introduction and Motivation

In this note we shall discuss and prove a theorem giving sufficient
conditions for a factor to be either finite or purely infinite (type III).
Since these conditions arise from physical considerations we shall use
this introductory section to discuss the connection between these con-
ditions and properties of the equilibrium states in quantum statistical
mechanics. Some of the consequences of the theorem will be discussed
in section 3.

Our starting point will be a C* -algebra 21 of quasi-local observables
and a one parameter group of automorphisms A £<&-> At £21 corres-
ponding to time-evolution. We shall here take the point of view that a
thermal equilibrium state ω is a positive linear form over the (7*-algebra
21 satisfying the following conditions

1. ω is invariant, i. e., ω(At) = ω(A).
2. ω(A*A) = 0 implies A = 0.
3. For fixed A and B ω (At B) is a function of t which can be continued

analytically in the strip 0 > Imί > β and is continuous on the boundaries.
Similarly the function ω(BAt) is analytical in the strip 0 < Imί < β,
and

.tt. (I)
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Here β = I/kT, where k is the Boltzmann constant and T the tem-
perature. This condition is known as the Kubo-Martin-Sch winger boundary
condition. For the connection of these three conditions on the state with
the well-know definition of the equilibrium state of finite systems by
means of Gibbs-ensembles we refer to [1].

A particular situation arises in the case of infinite temperature
(β = 0). We then have from (1) ω(A B) = ω(BA) for all A and B ζ 31,
so that ω is a finite trace over 2l+. If on the other hand ω is a finite
trace we shall show that necessarily β — 0 or T = <χ>. If ω is a trace
and β Φ 0, (1) implies that / (t) = ω(AtB) is analytical for -β < Imt < β,
and f(t) = f(t+ iβ) for all - β ̂  Imί ^ 0. Hence f(t) can be extended
to the whole complex plane and is periodic with period i β. Furthermore
f(t) is bounded since for real t ω(At B) ^ ω(e) \\A\\ \\B\\. Consequently
/ (t) is a constant. This implies that ω{(A — At) B} = 0 for all A, B and t.
Taking B = (A — At)* we get ω {(A — At) (A — At)*} = 0 and, using
condition 2, we find that A = At for all A and ί, in contradiction to our
assumptions. We conclude that β — 0.

We shall now consider the cyclic representation of 21 defined by ω
and obtained by means of the Gelfand-Naimark- Segal construction.
Let R(A) represent A as a bounded operator in the Hubert-space §,
let Ω £ ί) be the cyclic vector such that ω(A) = (Ω, R(A)Ω), and let 91
be the von Neumann algebra generated by E (21). On the basis of the
conditions 1, 2 and 3 one proves [1] that

i. There exists a conjugation operator J (an anti-unitary operator J
with J2 = 1) such that J9ί J = 9T and JΩ = β.

ii. There exists a unitary operator Ut continuous in t which imple-
ments the automorphism and has the properties

In section 2 we shall make one more assumption about the state ω.
iii. Ω is the only invariant state. This property is a direct consequence

of the fact that an equilibrium state of a system consisting of one phase
only is extremal invariant or ergodic [2], [3]. Using this property and
the K.M.S. -boundary condition one can show that 91 is a factor. This
means that the invariance for time -translation cannot be broken spon-
taneously.

2. Theorem

Let 31 be a factor and Ω a cyclic vector in the Hϊlbert-space S) satisfying
the conditions

i. There exists a conjugation operator J such that J9ΐ J = 9Γ and JΩ=Ω.
ii. There exists a one parameter abelian group of automorphisms of

9t implemented by unitary operators Ut continuous in t with the properties

UtΩ = Ω and [ϋtί J] = 0 .
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iϋ. Ω is the only invariant state in $). Then there are the following two

a. 9t is of finite type and Ω is a trace vector.
b. 91 is of type III.
To prove the theorem we assume that 91 is semi-finite and show that

possibility a) occurs. Let φ (R) be a normal semi-finite trace, $ < 9ί the
two-sided ideal of all elements κ £ 9ί such that φ(κ*κ) < oo.

Lemma 1. $ is invariant for Ut, i.e., Ut $ U^1 = $.
Proof. Consider the form φt(B) = φ(Bt), where Bt=UtBUt-

1.
φi(B*B) = φ(Bt*Bt) = φ(BtBt*) = φt(BB*). Hence φt(B) is again a
trace. Since E is a factor we find that φt(B) = λtφ(B) where λt is a
positive number. If κ £$, φ(κt*κt) = φt(κ*κ) = λtφ(κ*κ] < oo, hence
ί̂ 6 ^> which proves the lemma.

We shall now make use of condition i. The set & is a linear space.
With the scalar product (κ1} κ2) = Φ(MI> ^2) ̂  is a prehilbert space. Let
$>' be its closure. Then 9ί is isomorphic with the Von Neumann algebra
Ϊ7(9t) generated by the left representation of 91 in 93®') [4]. Like 91,
Z7(9t) is a factor, with the property that there exists a conjugation opera-
tor J' such that J' Z7(9l) J' = Z7(9t)'. Therefore 91 and Ϊ7(9t) are spatially
isomorphic [5], i.e. there exists an isometric mapping 8 of $)' onto £j
such that SU(R)S-1 = R. The dense set of vectors κ ζ §' is then mapped
onto a dense set of vectors #κ £ §. J' is mapped onto J. This leads imme-
diately to the following relations for the vectors χκ

Rχκ = XRκ
and

J%* = Xκ*

We next define the (unbounded) operator Q which transforms χκ

into ψκ = κΩ:

ψκ = Qχ*
Lemma 2. Q is symmetrical.
Proof.

(X*>> QXκz) = (χMl> Ψκ2) = (χκί, κ2Ω) = (κfχ^Ω) = (χκz*κι, Ω)
= (JΩ, Jχκ&*κι) = (fl, χκι*κz) = (fl, p^*^ ) = (^Ω, χj

Lemma 3. Q commutes with R
Proof. RQχκ = R<ψκ = ̂ Eκ = QχΛx - QBχ» .
Lemma 4. Q commutes with Ut.
Proof. It follows from lemma 1 that κt ζ ̂  if κ £ $. We define F^

by the equation Vtχκ = χκt and we shall prove that Vt = Ut. We notice
that Vt and V-t are bounded operators. If R £91, Fί-R Vt~

lχκ = VtBχκ_t

κ.t = XRtκ = RtXκ', hence FtΛ Fr1 = Λίβ We also have VtJχκ

= Xκt* = Jχκί = JVtXκ, and hence [Vt, J] = 0. As a conse-
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quence, the operator Vt Ut~
l commutes both with 91 and with 9ί', and

is thus a multiple of the identity. Therefore, Vt = μt Ut, where μt is a
complex function of t, satisfying the relation μtι μtz = μtι + ίa. We want
to prove that μt= l

An immediate consequence of our result so far is that

ϋtQ = Qϋtμt (2)
or, taking matrix elements, and using the symmetry of Q

(χκι, Ut<ψκs) = μt(<ψκι, Utχκz) . (3)

From (3) we see that μt is the ratio of two continuous functions of t.
Since there is no value of t for which either of these two functions vanishes
for all κl and κ29 we conclude that μt is continuous for all t. Using the
multiplication property we find that μt = exp(oct). Taking κ1 = κ2 in
equation (3) and taking the complex conjugate at both sides we find
that μt = μt*, so that α is real. Suppose α > 0. Since both matrix ele-
ments in (3) are bounded functions of ί, we conclude that lim (ψκι,

t—»oo

UtχM) = 0 and lim (χ Utψκ&) = 0. This is clearly in contradiction
t—>— oo

with the fact that for any φ, ψ ζ $) the mean value lim —- / dt(φ,U(t)ψ)
T-+ 00 JL J

T
exists and equals (φ, EQψ) where EQ is the projector on the space spanned
by the invariant states [6]. We conclude that α ̂  0. In the same way
one proves that α ̂  0, and hence α = 0 and Ut= Vt. Now Utχκ = χκt

and Utψκ = ψκt, so that UtQχκ= Utψκ = γκt = Qχκt = QUtχκ) which
completes the proof of lemma 4.

Since Q is symmetrical it has a closure Q.
Lemma 5. Q is a multiple of the identity.
Proof. We know that [R, Q] = 0 and [Ut, Q] = 0 for all R ζ 9ί and

all t. Since Ut and 91 are bounded operators, these equalities can be exten-
ded to the closure Q, in other words [R, Q] = 0 and [Ut, Q] = 0. We
shall now use condition iii of the theorem. An immedidate consequence
of this condition is that the von Neumann algebra generated by all
R £ 91 and Uf equals 33(§). Therefore, since Q commutes with a weakly
dense set in 93(§) one can conclude that Q commutes with 93(§) and is
therefore a multiple of the identity.

The proof of the theorem is now almost completed. We have ψκ = qχκ)

where q is a complex number. Hence φ(κ*κ) = \q\~z(Ω, κ*κΩ) for all
κ ζ ®, or φ(ρ) = \q\~*(Ω} ρΩ) for all ρ ζ 9t with finite trace. The form
at the righthand side is finite for all E ξ 9ί. We prove that it is a finite
trace. For each R £ 9? there exists a sequence ρn of relative trace-class
operators such that R = weak limit ρn. Let U ζ 9ί be unitary, then

lim(β, UρnU~lΩ) = limφ(ϋρnϋ-*)
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We conclude that φ is a finite trace and that Ω is a trace-vector, which
proves the theorem.

3. Discussion

In the case of interest for physics 9ί is the von Neumann-algebra
generated by the representation of 21. Since 21 contains more than a
finite number of independent elements, type In is excluded. We shall see
that for finite temperature T also type IIX with Ω as trace-vector, cannot
occur. Indeed, this situation implies that the state ω itself is a trace over
21. As discussed in section 1 this in turn implies that T = oo.

An example of a factor satisfying all conditions of the theorem is
provided by the equilibrium state of the free Bose-gas as discussed by
ARAKI and WOODS [7]. Since in that example it is evident that the state
ω of the algebra of the canonical commutation relations is not a trace,
it follows that one has a type III representation. A different proof that
the representation of the free Bose-gas at a temperature larger than the
Bose-Einstein-transition temperature is a factor of type III was given
some years ago by ARAKI [8].
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