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Abstract. It is proved, assuming Einstein causality, that the energy-momentum
spectrum of a quantum field cannot be bounded. More is known under special
assumptions [1, 4]. Our main concern is the method and general applicability of
the result.

I. Introduction

The Haag-Araki formulation of local quantum field theory associates
with open regions Φ of Minkowski space-time J?4 von Neumann algebras
& (0} on a Hubert space ^f. The self-adjoint operators in 0t (Φ} correspond
to the bounded observables of the field localized in the region Φ of space-
time. The dynamics and relativistic in variance of the field are expressed
in terms of a (strongly-continuous) unitary representation U of the
Poincare group G on 3? in such a manner that ϋ(g}&(Φ] U(g)*1

= ^(g(Φ}\ where g(θ) denotes the transform of the region Φ by the (in-
homogeneous) Lorentz transformation g of space-time. (This is covariance
of U and .̂) Further assumptions are made — among them:

(9ί(0) : Φ open in R*} and {&(ΘS): {Φs} an open covering of R*}
both generate the same (7*-algebra 21 (the quasi-local algebra o] (1)
the system).

ι and ^2 are space-like separated. (2)

ς&(Φ) if Φ0QΦ. (3)

According to the theory of unitary representations of locally com-
pact abelian groups (generalization of Stone's theorem) [3: p. 147] the
restriction of U from G to the 4-translation group (the additive group of
R*) gives rise to a projection-valued measure E on the dual Jβ4 of E4, this
dual being identified with energy-momentum space, such that U(a)
— / exp(ία p) dE(p). Stone's theorem tells us that each of the one-

£4

parameter unitary groups £-> U(ta) has an infinitesimal generator Pa

which is a (not necessarily bounded) self-adjoint operator on ffl. If a is
space-like Pa is the momentum observable conjugate to translation in
the direction a. If a is a vector along the time axis, the generator H is
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identified with the total energy. The projection-valued measure E on
jS4 is simply a synthesis of all the spectral resolutions of the momenta
and energy observables. To speak of all the momenta and energy as
having finite spectrum is to require that E have support in a bounded
region of & — equivalently, that || ϋ (a) — I|| -> 0 as a -> 0.

It is not the unitary operators ϋ (a) which are physically relevant,
but rather the automorphisms a (a) defined by α(α) (A) — U(a) A U(—a)
which they induce on the quasi-local algebra —- so that, from the point
of view of physical relevance, we should be concerned with a representa-
tion of G by * automorphisms of 21. There is, as yet, no theory associating
a "spectrum" with such a representation: though it is clear that a
restriction such as boundedness of the "spectrum" should be equivalent
to: ||α(α) — ί|| -> 0 as α -> 0, where i is the identity automorphism of 21
and ||α(α) — ι\ is the bound of α(α) — i as an operator on the normed
space 21. We say that α is a norm-continuous representation of R^ by
automorphisms of 2ί, in this case. With this in mind, we make the:

Definition. A covariance system is a pair {̂ , α} where @k is a mapping
which assigns a (7*-algebra &(Θ) to each bounded region Θ of R^ satis-
fying (1), (2), and (3), and α is a representation of the additive group of
R* by * automorphisms of 21 satisfying α(α) (^(0)) = 3ί(Φ + a). We say
that the system has bounded energy-momentum spectrum when α is
norm-continuous.

II. The Spectrum

If 21 is a commutative (7*-algebra acting on a Hubert space 34?, it is
easy to check that {̂ , α}, with &$(&) = 21 for each bounded open Θ and
α(α) = i for each a in R^, is a covariance system. We say that such a
system is constant. Conversely, if &(Φ) = 21 for some bounded open Θ,
translating far enough in a space-like direction relative to 0, we see that
21 is isomorphic with a subalgebra commuting with 21. This subalgebra
is in the center of 21 and is abelian so that 21 (isomorphic to it) is abelian.

Theorem. A covariance system with bounded energy-momentum spectrum
is constant.

Proof. Since t -> α(ία) is a norm-continuous, one-parameter group of
* automorphisms of 21, there is a derivation δ of 21 such that oc(ta)

£2ό2

= exp£<5 = i -f tδ + -—^— -f * * (convergence in the norm topology on

bounded operators on 21) [2: Lemma 2]. Let 00 and φ be the interiors of
the spheres with center 0, radii r and 2r, respectively, in jR4. For each a
in R* and all sufficiently small £, 00 -f ta g (9 so that oc(ta) (3ί(Θ$) ζ
C^(0), from (3). With E in &(φ)' and A in ^(00), Bx(ta) (A) —
— α(*α) (A)B = Q for small t. Thus BA — AB + t(Bδ(A) — δ(A)ff) +

^) — ό2μ)-δ)-f ••• = (), for small t, so that Bδn(A) —
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— δn(A)B = 0 for n = 0, 1, . . . . Hence Boc(ta) (A)-oc(ta) (A)B = 0

for all t and each a in jft4. It follows that B commutes with & (ΦQ -f α) for

all α; and, from (1), B commutes with 2ί. Thus, with Θί the interior of a

sphere space-like separated from Φ,&(φι) ς&(Θ}' Q 21'. Since ^(^i) C

C 21, ^($1) lies in the center of 21. As each α(α) is an automorphism of

2l,α(α)(^(01))(=,0(01 + α)) lies in the center of 21; and, from (1), 21
coincides with its center, that is, 21 is abelian. From [2: Lemma 2] each

α(α) arises from a unitary operator in 21"; and, since 2Γ' is abelian,

α (α) = i for each a. For each open 02, α (α) (̂  (02)) = ̂  (^2) = ̂  (02 + α)

and from (1), ̂ (ί?2) - 21. Thus {&, α} is constant.

Since the assumptions of quantum field theory rule out a commutative

quasi-local algebra, we have:

Corollary. No quantum field has a bounded energy-momentum.

Of course the foregoing applies to covariance systems based on more

general groups than R^ (in particular, on Rn).
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