The Energy Momentum Spectrum of Quantum Fields

RICHARD V. KADISON* University of Pennsylvania Philadelphia, Pennsylvania, USA

Received October 1, 1966

Abstract. It is proved, assuming Einstein causality, that the energy-momentum spectrum of a quantum field cannot be bounded. More is known under special assumptions [1, 4]. Our main concern is the method and general applicability of the result.

I. Introduction

The Haag-Araki formulation of local quantum field theory associates with open regions \mathcal{O} of Minkowski space-time \mathbb{R}^4 von Neumann algebras $\mathscr{R}(\mathcal{O})$ on a Hilbert space \mathscr{H} . The self-adjoint operators in $\mathscr{R}(\mathcal{O})$ correspond to the bounded observables of the field localized in the region \mathcal{O} of spacetime. The dynamics and relativistic invariance of the field are expressed in terms of a (strongly-continuous) unitary representation U of the Poincaré group G on \mathscr{H} in such a manner that $U(g) \mathscr{R}(\mathcal{O}) U(g)^{-1} = \mathscr{R}(g(\mathcal{O}))$, where $g(\mathcal{O})$ denotes the transform of the region \mathcal{O} by the (inhomogeneous) Lorentz transformation g of space-time. (This is *covariance* of U and \mathscr{R} .) Further assumptions are made — among them:

 $\{\mathscr{R}(\mathcal{O}) : \mathcal{O} \text{ open in } R^4\}$ and $\{\mathscr{R}(\mathcal{O}_s) : \{\mathcal{O}_s\}\)$ an open covering of $R^4\}$ both generate the same C^* -algebra \mathfrak{A} (the quasi-local algebra of (1) the system).

$$\mathscr{R}(\mathcal{O}_1) \subseteq \mathscr{R}(\mathcal{O}_2)'$$
 if \mathcal{O}_1 and \mathcal{O}_2 are space-like separated. (2)

$$\mathscr{R}(\mathscr{O}_{0}) \subseteq \mathscr{R}(\mathscr{O}) \quad \text{if} \quad \mathscr{O}_{0} \subseteq \mathscr{O} . \tag{3}$$

According to the theory of unitary representations of locally compact abelian groups (generalization of Stone's theorem) [3: p. 147] the restriction of U from G to the 4-translation group (the additive group of R^4) gives rise to a projection-valued measure E on the dual \hat{R}^4 of R^4 , this dual being identified with energy-momentum space, such that $U(a) = \int \exp(ia \cdot p) dE(p)$. Stone's theorem tells us that each of the one- \hat{R}^4

parameter unitary groups $t \to U(ta)$ has an infinitesimal generator P_a which is a (not necessarily bounded) self-adjoint operator on \mathscr{H} . If a is space-like P_a is the momentum observable conjugate to translation in the direction a. If a is a vector along the time axis, the generator H is

^{*} Research supported by ONR and NSF.

identified with the total energy. The projection-valued measure E on \hat{R}^4 is simply a synthesis of all the spectral resolutions of the momenta and energy observables. To speak of all the momenta and energy as having finite spectrum is to require that E have support in a bounded region of \hat{R}^4 — equivalently, that $||U(a) - I|| \to 0$ as $a \to 0$.

It is not the unitary operators U(a) which are physically relevant, but rather the automorphisms $\alpha(a)$ defined by $\alpha(a)$ (A) = U(a) A U(-a)which they induce on the quasi-local algebra — so that, from the point of view of physical relevance, we should be concerned with a representation of G by * automorphisms of \mathfrak{A} . There is, as yet, no theory associating a "spectrum" with such a representation: though it is clear that a restriction such as boundedness of the "spectrum" should be equivalent to: $\|\alpha(a) - \iota\| \to 0$ as $a \to 0$, where ι is the identity automorphism of \mathfrak{A} and $\|\alpha(a) - \iota\|$ is the bound of $\alpha(a) - \iota$ as an operator on the normed space \mathfrak{A} . We say that α is a norm-continuous representation of \mathbb{R}^4 by automorphisms of \mathfrak{A} , in this case. With this in mind, we make the:

Definition. A covariance system is a pair $\{\mathscr{R}, \alpha\}$ where \mathscr{R} is a mapping which assigns a C^* -algebra $\mathscr{R}(\mathcal{O})$ to each bounded region \mathcal{O} of R^4 satisfying (1), (2), and (3), and α is a representation of the additive group of R^4 by * automorphisms of \mathfrak{A} satisfying $\alpha(a)$ ($\mathscr{R}(\mathcal{O})$) = $\mathscr{R}(\mathcal{O} + a)$. We say that the system has bounded energy-momentum spectrum when α is norm-continuous.

II. The Spectrum

If \mathfrak{A} is a commutative C^* -algebra acting on a Hilbert space \mathscr{H} , it is easy to check that $\{\mathscr{R}, \alpha\}$, with $\mathscr{R}(\mathcal{O}) = \mathfrak{A}$ for each bounded open \mathcal{O} and $\alpha(a) = \iota$ for each a in \mathbb{R}^4 , is a covariance system. We say that such a system is *constant*. Conversely, if $\mathscr{R}(\mathcal{O}) = \mathfrak{A}$ for some bounded open \mathcal{O} , translating far enough in a space-like direction relative to \mathcal{O} , we see that \mathfrak{A} is isomorphic with a subalgebra commuting with \mathfrak{A} . This subalgebra is in the center of \mathfrak{A} and is abelian so that \mathfrak{A} (isomorphic to it) is abelian.

Theorem. A covariance system with bounded energy-momentum spectrum is constant.

Proof. Since $t \to \alpha(ta)$ is a norm-continuous, one-parameter group of * automorphisms of \mathfrak{A} , there is a derivation δ of \mathfrak{A} such that $\alpha(ta)$ $= \exp t \delta = \iota + t \delta + \frac{t^2 \delta^2}{2} + \cdots$ (convergence in the norm topology on bounded operators on \mathfrak{A}) [2: Lemma 2]. Let \mathcal{O}_0 and \mathcal{O} be the interiors of the spheres with center 0, radii r and 2r, respectively, in \mathbb{R}^4 . For each ain \mathbb{R}^4 and all sufficiently small $t, \mathcal{O}_0 + ta \subseteq \mathcal{O}$ so that $\alpha(ta) (\mathscr{R}(\mathcal{O}_0)) \subseteq$ $\subseteq \mathscr{R}(\mathcal{O})$, from (3). With B in $\mathscr{R}(\mathcal{O})'$ and A in $\mathscr{R}(\mathcal{O}_0), B\alpha(ta) (A) - \alpha(ta) (A) B = 0$ for small t. Thus $BA - AB + t(B\delta(A) - \delta(A)B) + \frac{1}{2}t^2(B\delta^2(A) - \delta^2(A)B) + \cdots = 0$, for small t, so that $B\delta^n(A) -$ Since the assumptions of quantum field theory rule out a commutative quasi-local algebra, we have:

Corollary. No quantum field has a bounded energy-momentum.

Of course the foregoing applies to covariance systems based on more general groups than R^4 (in particular, on R^n).

References

- BORCHERS, H.: Local rings and the connection of spin with statistics. Commun. Math. Phys. 1, 281-307 (1965).
- [2] KADISON, R., and J. RINGROSE: Derivations of operator algebras. Commun. Math. Phys. 4, 32-63 (1966).
- [3] LOOMIS, L.: An introduction to abstract harmonic analysis. New York: Van Nostrand 1953.
- [4] WIGHTMAN, A.: Trieste lectures (1962).