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Abstract. The ICAR theorem asserts that a local relativistic Fermi field is
necessarily a free field, if it satisfies the canonical anticommutation relations,
irreducibility of the fields at a fixed time, and certain regularity conditions. The
regularity conditions are slightly stronger than the requirement that the mass
renormalization be finite. It follows that an interacting Fermi field must violate
one or more assumptions of the ICAR theorem.

I. The ICAR theorem

We prove a theorem which demonstrates the intrinsic difficulties
associated with the construction of a relativistic quantum field theory
satisfying an irreducible representation of the canonical anticommuta-
tion relations. The theorem will be called the ICAR theorem. The ICAR
theorem asserts that a local relativistic Fermi field is necessarily a free
field, if it satisfies the canonical anticommutation relations, irreducibility
of the fields at a fixed time, and certain regularity conditions. The
regularity conditions are slightly stronger than the requirement that the
mass renormalization be finite. It follows that an interacting Fermi
field must violate one or more assumptions of the ICAR theorem.

A Fermi field will violate the assumptions of the ICAR theorem if
either the mass renormalization or field strength renormalization is
infinite. It is well known that the perturbation expansion for interacting
Fermi fields implies that the mass and field strength renormalizations
are infinite. The ICAR theorem suggests that the divergence of the
renormalization constants is intrinsic to interacting Fermi fields and is
not particular to the perturbation theory approach. This contention is
similar to but weaker than KALLEN'S contention [1], that one of the
renormalization constants in quantum electrodynamics is infinite.

Even if the renormalization constants are finite, a Fermi field may
fail to satisfy the assumptions of the ICAR theorem because the fields
at a fixed time are reducible. This means there are non-trivial operators
which commute with the fields at a fixed time. In this sense the ICAR
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theorem supports KLAUDER'S contention [2] that one should use reducible
representations of the canonical variables for the construction of inter-
acting fields. It may be that the difficulties encountered in perturbation
theory are a result of trying to solve the field equations in the context
of an irreducible representation of the canonical variables, when a
reducible representation would be more appropriate.

The ICAR theorem follows from assumptions I— IV, as stated in the
next section.

II. Assumptions

(I) ψ is a local relativistic Fermi field in the sense of the WIGHTMAN
framework [3]. Briefly, this assumption means the following: ψ is an
operator valued distribution in a separable Hubert space, §. The
smeared fields transform according to a unitary representation of the
inhomogeiieous Lorentz group. There is a unique vacuum state, Ω0 ζ ίj,
invariant under inhomogeneous Lorentz transformations and cyclic in
ξ) with respect to the smeared fields. The spectrum of the translation
operator is assumed to lie in the forward light cone. The field is local, i.e.,

{wr(x}, ψΛy)}, — 0
\ , j T \ l ' j S \ i j l } - γ n i -.n Λ / 1 \

lf * - ' < 0 (1)

where (A, B}+ = A B -f BA and (x - y)2 = (y0 - τ/0)
2 - (x - y)2. ψ is

an m- component Fermi field. The components label the various types of
particles described by the field, and their spin components. We assume
the number of space-time dimensions, n + 1, is not less than three (i.e.,
n^ 2).

(II) y satisfies the canonical anticommutation relations (CAR). If
this assumption is to have meaning, one must assume that the fields
make sense when smeared with test functions at a fixed time. We denote
by -^(/, t) and ^(/, £)* the smeared field and its hermitian adjoint at a
fixed time, t. The fields, ψ(f, t) and ψ(f, £)*, are, respectively, linear and
antilinear operator functions of the test function, /. The CAR expressed
in terms of the smeared fields are

{ ψ ( f , t ) 9 ψ ( g , t ) } + = 09

m _ (2)
{ψ (f, t)*, Ψ (g, t)}+ = (/, 0) = / Σ fr (x) 9r (x) d* x .

r = 1

Because of the CAR, the smeared field operators at a fixed time are
bounded by the lAnorm of the test function [4]. The norm of the
smeared field operators is given by the expression,
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Therefore, we can assume, without loss of generality, that the smeared
fields, ψ(f, t) and ψ(f, £)*, are defined for all square integrable ra-com-
ponent test functions, / ζ $)τ. The test function space, §y, is a Hubert
space of test functions.

(III) The smeared fields at a fixed time act irreducibly on §. This
assumption implies that every bounded operator, A, on £j which com-
mutes with the field operators, ψ(f,t) and ψ(f,t)*, at time, t, for all
/ 6 §τ? is a multiple of the identity. Since the fields at time, t, are related
to the fields at time, t = 0, by a unitary transformation, (ψ (/, t)
= U (t) ψ(f, 0) U(t)~l), irreducibility of the fields at time, t — 0, implies
irreducibility of the fields at all times.

(IV) The time derivatives of the fields can be applied to the vacuum
and to single particle states. Explicitly we assume that the expressions,

Πm /V(/. l )*- y (/.0)*\ QO = a β

ί->0 \ r /

(Λ O)#ΩO = (3 (/>

converge strongly to a limit as t -> 0, provided the test functions, / and
g, are in Schwartz's space, <Γ, of infinitely differentiable functions of fast
decrease. The notation, ^(/, £)#, stands for either ψ(f, t) or ψ(f, ί)*.

The question of whether the limit (4) exists can be expressed in terms
of the two -point vacuum expectation function. We consider, for an
example, a Fermi-Dirac field which is invariant under charge conjugation.
The two-point function can be written, using the Lehmann spectral
representation, in the form [5],

f dm2 (ρ^m2) (-ίS<+> (x - y\ m)) + ρ2(m2) iΔ^(x-y\ m2)}
o

with 2mρ1(m2) ^ ρ2(^2) ̂  0 and <ψ+ = y* 7°.
The expressions, ρ1(m2)c?m2 and ρ2(m2)rfm2, are positive measures.

Since the field satisfies the CAR, the spectral measure, ρ1? satisfies the
condition,

/ ρ1(m2)αίm2= 1 .
o

A straightforward computation shows that limit (4) exists if and only

if,
00

/ m2ρ1(m2) dm2 < σo .
o

This condition is stronger than the requirement that the mass renormali-
zation be finite. The mass renormalization is finite if the first moment of
m is finite, with respect to ρ1(m2)ί^m2.
11*
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The question of the existence of limit (5) can be determined from the
properties of the four-point functions.

III. Proof of the ICAR theorem

Theorem. If ψ is a Fermi field satisfying assumptions I— IV, then ψ is
a free field in the sense that ψ satisfies the linear differential equation,

where T± and Tz are, respectively, linear and antilinear operators defined
on Z. The time derivative of the field exists in the sense of strong conver-
gence, i.e., the limit,

]im ίv(f,t + a)- v(M)\ Q = g (/> t)Ω> fζZt
h— >Q \ fl /

exists for all Ω ζ$).
The theorem will be proven in steps by the following lemmas.
It is clear that equation (6) implies the field is non-interacting. It

follows from this equation, that the fields at time, t, are related to the
fields at time, t = 0, by a Bogoliubov transformation, i.e.,

v(A 0 = vOSiW A o) + vOS W A o)* , (?)
where S^t) and S2(t) are, respectively, bounded linear and antilinear
operators defined on the test function space, ?)τ. The Bogoliubov trans-
formation defined in equation (7) propagates the fields in accordance with
the field equation (6). These Bogoliubov transformations are the one-
parameter group of transformations generated by the infinitesimal
operators T^ and T2, i.e.,

ί->o

We do not take on the problem of characterizing the form of the
operators, 2\ and T2. Clearly, this problem is equivalent to the problem
of characterizing all possible relativistic free field equations which are
consistent with the CAB. We remark that for a gauge invariant theory
of a Fermi-Dirac field, equation (6) is simply the statement of the Dirac
equation, i.e.,

Z l

1=-<(« p + / J m ) , 3Pa = 0.

We now proceed with the proof of the ICAR theorem. The heart of
the proof is contained in lemma 1. For the proof of this lemma we only
assume that the field is local and that the field satisfies the CAR.

Lemma 1. Suppose f , g , h £ $)τ are square integrable m-component
functions of x = (xl9 . . ., xn). And furthermore, suppose the functions f and
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g are bounded functions of x, so that |/r(x)| ^ C± and |gr(x)| ^ C2 for all
x and r = 1, . . . , m. Then, if γ is a local relativίstic field satisfying the
CAR, the following inequality holds:

\\[ψ(h, 0)* {^(sr, 0)*, γ(f, t)*}+]_\\ < KC.C^nhl ,

where K is a constant depending only on the integers, n and m.
Proof. We define Z(h, g, /; t) by the relation,

Z(h, g, /; 0 = [y>(λ, 0)*, {φ(g, 0)# γ(f, ί)*}+]_ .

Since the anticommutator of *ψ (h, 0)* and ψ (g, 0)* is a c-mimber (a
multiple of the identity) the expression for Z is antisymmetric under the
interchange of ψ(h, 0)* and ψ ( g ) 0)*, i.e.,

Z(h,g,f;t)=- [ψ(g, 0)# {γ(h, 0)# Ψ ( f , <)*}+]_ . (la)

We denote by supp(/; t0) (the support of / on the time, t = t0, plane)
the set of space-time points, (x, t), such that t — tQ and fr (x) φ 0 for some
r = 1, . . . , m. Since γ is assumed to be a local field, the anticommutator,
{ψ(g, 0)*, ψ(f, £)*}+> vanishes if the sets, supp(/; t) and supp(g; 0), are
space-like separated. Theref ore, Z (h, g, /; t) vanishes if the sets, supp(/; t)
and supp(gr O), are space-like separated. And from equation (la) it
follows that Z(h, g, /; t) vanishes if supp(/; t) and supp(^; 0) are space-
like separated. We will use this result to estimate the norm of Z.

Consider the time, t, occurring in the definition of Z to have a fixed
non-zero value. We consider subdividing the t = 0 plane into cells of
edge length, t. The cells are labelled by lattice vectors, k, with integer
components,

$k = {x tki ^ xi < t(ki +1); ί = 1, . . ., n} .

The points, ίk = (tkl9 . . . , tkn), lie on the corners of the cells, $k. Let E^
be the hermitian projection onto the space of functions with support in
#k, i.e.,

- 0 x ί £k .

Since Z(h, g, /; t) is linear or antilinear in each of its arguments, h, g, and
/, it follows that

r/; 0 >

The sum converges in norm because the field operators are bounded by
the L2-norm of the test function. We define the hermitian operator,
Q(h, g, /; t), as follows:

Q(*,9,f,f)= SSl*'β'ίit>+

9*
Z(h'''f&- where |«| = 1 (Ib)
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and

Q(k, 1, r) = -̂  (αZ(k, 1, r) + αZ(k, 1, r)*) .

We will estimate the norm of Q2, using the equation,

Two lattice vectors, k and 1 are said to be adjacent if |7^ — li :g 1 for
each ^ = 1, . . ., n. Every lattice vector has 3n adjacent lattice vectors,
including itself. Due to the way the cells, $k, were defined, the sets,
supp(^k/; t) and supp^gr; 0), are space-like separated if k and 1 are not
adjacent. Hence, we have

{ψ(Eίίf,t)#,Ψ(E1g,0)*}+ = Q, (Ic)

if k and 1 are not adjacent.
Therefore, ζ>(kl5 k2, k3) Φ 0 only if lq and k3 are adjacent and k2 and

k3 are adjacent. Then, the sum for Q2 can be written,

Q(h, g, /; O2 = Σ» Zΐk ΣilL Q(\, k,, r) Q&, k, β) ,

where Σ$\s* *s ̂ ne sum over a^ ̂ i an(^ ^2 adjacent to r.
It follows from relation (Ic) that Q(k1? k2 ?k3) anticommutes with

Q(lv 12, 13), if none of the k's are adjacent to any of the Γs, i.e.,

l^k,))Q(llί\2ίl,)}+ = Q ) (Id)

if k^ is not adjacent to L, ; i, j = 1, 2, 3.
Therefore, many of the ίcoίF diagonal" terms in the sum for Q2 cancel.

The terms which survive are of the form,

Q (h, g, f;t? = ΣΪ* Zΐk Σ& Q (*ι, ̂ , r) Q (li, 12, β) , (i β)

where £rs ^s ^nθ sum over a^ Γ anc^ s sucn that 1 -̂ — s{ ^2, for
i = 1, . . . , n. If \rt — ̂ | > 2 for some i, then

Zt'k, Σ& Q (kx, k2, r) g (ij, ι2) s) + Σ(&, Σ(& Q (^, k,, s) Q (k, ι2, r) = o
because of equation (Id).

It follows from the fact that the field operators are bounded by the
ZΛnorm of the test functions (equation (3)) that

\ \ Q ( h , g , f ; t ) \ \ ^ ί \ \ h \ \ \\g\\ \\f\\.

Since / and g are bounded functions of x, so that |/ r(x)| ^ C1 and
\gr (x) I ^ ^2' ̂ ne ̂ 2-norms of E^f and Eγg are bounded by the expressions,

Therefore, it follows that

|. (lί)
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Using relations (le) and (If) we estimate the norm of Q2:
2n \\Erh\\ \\EHh\\

,'|'» \\Eτh\\ ||^§A|| ̂

Since Q is hermitian we may conclude that

Recalling that Q == Q(oc) depends on α (equation (lb)) we note that
Z = Q ( l ) — iQ(i). Therefore the norm of Z is bounded by the expression,

\\Z(h,g,f;t)\\ ^S'W δ^mC^lt]" \\h\\.

Hence, the lemma is proved.

Lemma 2. Suppose ψ is a relativistic field satisfying assumptions
I—IV. Let §)Q be the linear manifold obtained by applying all polynomials
in the smeared fields at time, t = 0, to the vacuum state, Ω0, i.e.,

S>0 = {Ω; Ω = p(ψ(fv 0)# . . . , ψ ( f k , 0)*)ί30} .

Then, if f, g £ Z, the operator,

-., . . ( . _ x 4 , w(i,t)^ — w(f, 0)#)
jB(g, f; t) = { t p ( g , 0)^, 1 ,

converges strongly to a c-number on §)0 as t -> 0.

Proof. Clearly, we have ψ (/, 0)* §>0 C §>0

 ίor a11 / 6 $)τ Since tne

field operators, ψ(f, 0)*, act irreducibly on §, ®0 is dense in §.
From lemma 1 it follows that

\\[ψ(h,0)#,B(g,f;t)]4 £ C\t\«-ι \\h\\ , (2a)

where the constant, C, depends only on the functions, /, g ζ <Γ.
It follows that if P = p ( ψ ( f ι , 0)*, . . ., ^(/fc, 0)*) is a polynomial in

the smeared fields at time, t == 0, then

l[P,B(g,f,t)U£CKW\t\»-ι, (2b)

where Jί (p) is a constant depending only on the polynomial, P. Since by
assumption, n > 1, the right hand side of the above inequality converges
to zero as t -> 0. Therefore, B(g, /; ί) converges on every vector, ί2 ζ §>0,
if it converges on the vacuum, since

||PJB(9r,/;ί)β0-5(Sr,/;ί)ί>βolKθ as ί-*0.

However, assumption IV assures us that B(g, /; ί)Όo converges strongly
as ί-> 0 and, hence, B ( g , f ' , t) converges strongly on ©0. We define the
limiting operator, BQ (g, /) on §>0 with the relation,

= lim B ( g , f ; t ) Ω all fl
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Since B(g, /; t)* has the same form as B(g, /; t) (when expressed in
terms of the fields, ψ&), B ( g , f \ t } * also converges strongly on £)0 as
t -> 0. Let .#ό({7, /) be ^ne linear operator defined on §>0 by the relation,

= l i m B ( g , f ' , t ) * Ω , all fl £ $)0 .*• o

It follows immediately from the definition of BQ and BQ that

(Ωv B0 (g, /) βg) = (5; (gr, /) βj, β2), all β1; β, ζ S>

Hence, the adjoint of B 0 ( g , f ) is densely defined, (in fact,
D.B0(gr, /)) so B 0 ( g , f ) has a unique extension to a closed operator,

B 0 ( g , f ) . From inequality (2 a) it follows that B 0 ( g , f ) commutes with
the fields at time, t = 0 , on §>0, i.e.,

= ̂ , 0)# J50(sr, /)β for h ζ$τ and β ζ §>0 .

This equation can be extended to all vectors, Ω ££), which are in the

domain of B0(g, f), since B0(g, /) is closed and ψ(h, 0)# is a bounded
operator. Since the fields, ψ(f, 0)#, act irreducibly on §, it follows from

the generalized Schur lemma [6] that B 0 ( g , f ) is a c-number. On §>0,

B(g, /; £) converges strongly to B0(g, /) ,so the lemma is proved.
Lemma 3. There exist a linear operator, T19 and an antilinear operator,

T2, defined on Z such that, for all f, g £&, the operators,

A(t)^\ψ(g,Q)#,^{f't]~ψ(f'<)}')-γ(T1f,0)~γ(Tίf,0)ή+

converge strongly to zero on ®0 as t->0.
Proof. We define the operator, T15 by the relation,

From assumption IV it follows that this limit exists, provided / ζ <E, and
furthermore,

, o)*| (||â (/, o)β0| + 1]9 (̂/, o)*β0|)

Then, (g, Tλf) is, for each fixed / ζ Z, a norm continuous antilinear
functional in g. Hence, by a theorem due to F. RIESZ [7], there is a unique
vector, hζ$τ, such that (g, TJ) = (g, h), so TJ = h. Clearly, Tl9

defined in this way, is a linear operator from X into ξ>τ. The antilinear
operator, T2, is similarly defined by the relation,
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T% is an antilinear operator from Z into ξ)τ. It follows from lemma 2
that A (t) and B (t) converge strongly to a c-number on §>0 as t -> 0 (since
A (t) and J5(£) differ from B(g, /; £) by a c-number). From the definitions
of T! and T2 it follows that the expectation values, (ΩQ, A (t) Ω0) and
(Ω0, B (t)Ω0) converge to zero as t -> 0. Hence A (t) and B (t) converge
strongly to zero on §>0 as t -> 0. And the lemma is proved.

Remark. It follows from the CAR and the translation in variance of
the vacuum, Ω0, that the vacuum expectation of odd monomials in the
smeared fields vanishes [8], i.e.,

(fl0, y (fv fO# . . . ¥ > ( / „ , U* Ω0) = 0 , for n odd .

Therefore, the mapping, y(/, £)# -> — ψ(/, £)#, is a symmetry trans-
formation of the field. Since the CAR and vacuum expectation values
are preserved under this mapping, there exists a unitary operator, C7ί5

which implements this transformation. The unitary operator, Z7j, has
the properties,

ϋjΩ0 = Ω0

ϋlΨ(ί,t)*U^ = -ψ(f,t)#.

Since £7f commutes with the fields, y (/,£)#, it follows that t/f = α/.
And the fact that C7j leaves the vacuum invariant implies that α = 1.
Therefore, C7j is hermitian. We will make use of the operator, t/j, in
the following lemma.

Lemma 4. Let ̂  be the linear manifold obtained by applying all
polynomials in the smeared fields, ψ(f, 0)*, with f ζ <Γ, to the vacuum, i.e.,

$>! = {Ω; Ω = p(γ(ί1, 0)# ..... ψ(fτ> 0)*) Ω0, fv . . ., fr ζ£} .

Let T± and T2 be the operators defined in lemma 3. Then, if ψ is a field
satisfying assumptions I— IV, the operator,

converges strongly to zero on S^ as t -> 0.
Proof. Let Uχ be the unitary operator discussed in the preceeding

remarks. We will show that the operator, UχQ(f, t), converges strongly
to a c-number on %. The commutator of U I Q ( f , t) with the smeared
fields can be written in the form,

[ψ(g, 0)# UrQif, t)]_ = - U^(g, 0)#, Q(f, t)}+ .

It follows from lemma 3 that this commutator converges strongly to
zero on ξ>0 as t -> 0, provided /, g ζ <Σ, i.e.,

lψ(a,01*UιQ(f,t)Ω-UIQ(f,t)ψtg,0)#Ωl-+0 as ί - v O , (4a)

if β ζ ϋ
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By assumption IV, U I Q ( f , t ) Ω Q converges strongly to a limit as
t -> 0. It follows from equation (4a) that U I Q ( f , 1) ψ(g, 0)*β0 converges
strongly as t-> 0. Using equation (4 a) by induction, one sees that the
expression,

U z Q ( f , t) ψ(g,, 0)* ... ψ(gr, 0)#β0, Λ, . . ., βv £ £ ,

converges strongly to a limit as £->0. Hence, UjQ(f,t) converges
strongly on S>v Proceeding as in lemma 2, we define the linear operator,
A (/), on §>! by the relation,

Next we argue that the operator, ( U I Q ( f ) t ) ) ^ ^ = Q ( f , t ) ή : U I , con-
verges strongly on ^)1 as t -> 0. Clearly, we have ZTj ΦiC §V The commu-
tator of (UIQ(f, £))* with the fields at time, t = 0, can be written

ί7, 0)*, (UjQ(f, £))*]„ - {y(g, 0)* «(/, *)*}+ tfr .

By assumption IV we know that (UIQ(fί £))* A> = Q(/> 0*A> converges
strongly to a limit as t -> 0. And from lemma 3 we know that the above
commutator converges strongly to zero on §>0 as t -> 0, provided g ζ <Γ.
Therefore, by the argument used previously, the operator (Uι(Qf, ί))*,
converges strongly on §>v We define -4'(/) on ®α by the relation,

From the definition of ,4 (/) and .̂x (/) it follows that

β«) , Ωv Ω3ζ

Since the adjoint of A (/) is densely defined, A (/) can be uniquely ex-

tended to a closed operator, A(f). From relation (4 a) it follows that

A (/) commutes with the fields, ψ (/, 0)*, with / £ SL. Due to the facts that
£ is dense in §y, the fields, φ(/, 0}*, are bounded by the jL2-norm of the

test function, and A (/) is a closed operator, it follows that A (/) commutes
with the fields, ψ(f, 0)*, for all / £ f>τ. Since the fields, φ(/,0)#, act
irreducibly on ί), it follows from the generalized Schur lemma [6] that

A(f) is a c-number. On ®v U I Q ( f ί t ) converges strongly to A(f), so
UjQ(f,t) converges strongly to a c-number on ®v To evaluate this
c-number we consider the vacuum expectation,

Km (β0, UjQ(f9 t)Ω,) - lim (ββ, Q(f, t)ΩQ) = 0 .
t->0 ί->0

The limit is zero since the vacuum expectation of odd monomials in the
fields vanishes. Hence, UjQ(ftt) converges strongly to zero on S)x as
£-» 0. Since C7j is unitary, Q(f, t) converges strongly to zero on ®v And
the lemma is proved.
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Lemma 5. If y is a Fermi field satisfying assumptions I— IV, then ψ
satisfies the differential equation,

where T± and T2 are, respectively, linear and antilinear operators defined
on Z. The time derivative of the field, dtψ(f, t), exists for all f £ Z, in the
sense of strong convergence, i.e.,

lim v' -vΩ-dtψfrVΩ, for all Ω

Proof. Suppose / £ Z is an w-component function with support in the
half space, {x; x n < C, n ή= 0}. Let Q(f, t) be defined as in lemma 4.
We know from lemma 4 that

\\Q(f,t)Ω0\\-»0, as ί->0. (5a)

We will make use of the transformation law of the fields and the
invariance of the vacuum under the action of the time translation
operators, U(t);

U(t)Ω0 = ΩQ, for all ί. (5c)

It follows from relation (5 a) that

as

Using equations (5b) and (5c) and the definition of Q(f,h), we can
rewrite this relation in the form,

-+ as - * .

Since U (t) is strongly continuous in t, we obtain in the limit of h -> 0 the
equation,

(v (A y - v(/, y - fdt^^f, t) + Ψ(τ2f, o*))β0 = AΩO = o .
<1

Clearly, ^4 is a bounded operator associated with a space-time region,
O. By assumption, the function, /, has support in the half -space,
{x; x n < C}. The range of integration is finite. Therefore, the set O'
of space-time points which are space-like separated from every point of
O, is non-empty. Since A annihilates the vacuum, it follows from a
theorem due to REEH and SCHLIEDER [9], that A = 0. Hence, we have
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for all / ζ Z with support in a half-space. This equation can be extended
to all / £ <Γ, due to the linearity of this equation in the test function, /.
The right-hand side of the above equation converges strongly to
γ ( T 1 f , t) -f ψ ( T 2 f , t)*9 as h -> 0. Hence, the lemma is proved.
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