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AbstΓactφ A group theoretical derivation is given of Bargmann's representation
of the boson commutation rules in an Hubert space of analytic functions. Several
interesting problems arise in the study of the global representation of the canonical
group Sp(2n, R). As a by-product we recover Laguerre-polynomials as spherical
functions on the nilpotent Weyl group.

I. Introduction

Several years ago, V. BARGMANN [1] has described a representation of
the creation and annihilation operators for bosons in a Hubert space of
analytic functions. We want to show some interesting connections between
this construction and the theory of group representations. This appears
when one attempts to find a representation of the basic commutation
rules of quantum mechanics [p, q] — — i using the device of WEYL.
Namely, one introduces a nilpotent group the Lie algebra of which is
closely related to the preceding commutation relations. It will be shown
that this leads quite naturally to the Bargmann space of entire functions.
One may then ask for the global representation of the canonical group
in this space. Again this was done by BARGMANN though not in great
detail. We observe that the representation splits into two irreducible
parts (a fact well known in the study of the harmonic oscillator) each of
which is double valued. This appears to have been noticed only recently
[2] and it is amusing to note the analogy with the fermion case. This is
somehow unexpected, since in contrast with the orthogonal real groups
the symplectic ones have an infinitely sheeted covering.

The study of the canonical transformations is made much easier by a
mapping on a second Hubert space of analytic functions in a unit disk.
It allows to compare the double valued representation to the known one-
valued ones of SL(2, B) [3].

One can easily extend these considerations to N degrees of freedom.
The analog of the unit disk is found in this case to be the set of N by N
complex symmetric matrices 8 such that the hermitian matrix / — $8
is positive definite. We shall denote the set of these matrices by &*N.
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We shall need repeatedly the following integral [1]

/ exp{- T(x) + 26 x] d^x = π»/2(det T)-W Qxp{T~l(b)} , (1)
Rn

where the notations are as follows: T(x) is a quadratic form, T~1 its
inverse the integral converges absolutely if and only if the real part of
T is positive definite. The determination of (detT)-1/2 is obtained by
the analytic continuation of (det T(α))-1/2 with Γ(α) = T' -f- iaT" ,
(T1 and T" real and imaginary parts of T) from a positive value of
(detT(O))-1/2 and 0 ̂  α ̂  1.

Many thanks are due to Dr. R. STORA for stimulating discussions on the subject.
He has pointed out that in VILENKΓN'S book "Special functions and theory of group
representations" Moscow (1965) a similar connection between the nilpotent Weyl
group and Laguerre polynomials is to be found as in section II. Also a recent
preprint by R. F. STREATER "The representations of the oscillator group" (Imperial
College preprint, March 1966) has some relation with the present work.

II. Representations of a nilpotent group

Consider the set of 3 by 3 triangular matrices

/I 0 OX

A(α, β,γ)= α 1 0

\β y V
with α, β, γ complex numbers. Clearly these matrices form a Lie group.
The multiplication law reads :

A(α, β, γ) A(α', β', γ') = A(α + α', 0 + 0' + y α', y + /) . (2)

The Lie algebra in terms of 3 by 3 matrices is spanned by :

/O 0 0\ /O 0 0\ /O 0 0\
αx = I 1 0 0 I α2 == I 0 0 0 J α3 = I 0 0 0 j (3)

\0 0 O/ \0 1 O/ \1 0 O/

[av a2] = - α3 K, α3] = 0 [α2, αs] = 0 .
Indeed

exp{ε1α1 + ε2α2 + ε3α3} = h ί ε1? -y1 + ε3, ε2 ) >

with Si three complex numbers. The Lie algebra (3) is nilpotent since in
the adjoint representation

[adj (εla1 + ε2a2 + ε3α3)]2 = 0 .

We are interested in a real form of the group considered above, namely

the case γ — — oc and β = — — ̂ — -h ΐρ, i.e.

/ I 1 0\
__^_ . __ w

7 Commun. math. Phys., Vol. 4
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where we use oc to mean the conjugate of the complex number α. That
our restrictions are compatible with the group law (2) is readily verified
since

' '= -y(α+α'

From (2) we deduce:

\g (α, ρ) g (α', ρ') = g (α + α', ρ + ρ' + *" ~^** ) (5)

[α complex, ρ real .

This group we shall call the Weyl group W. It is a 3 real parameter Lie
group. As a manifold, it is isomorphic with a 3 -dimensional real euclidian
space with an invariant measure proportional to d?ocdρ, where d?oc
stands for cZReα^Imα. In the 3 by 3 representation given by (4) the
Lie algebra is again given by the matrices αl5 α2, α3 but the restriction on
the coefficients yields ε2 = — ελ εB = — £3. It is then recognized that the
nilpotent Lie algebra of W is isomorphic with that provided by the usual

commutation rules [p, q] = —r- , [p, /] = [g, I] = 0.
1

We then proceed to build a series of unitary representations of W
using the method of induced representations. For that purpose, we select
in W a subgroup WKo C W of those g that can be written :
WXo : {g(ocQu, v) u and v real, α0 Φ 0 fixed complex number} . (6)
Clearly Wao is a two parameter abelian group since :

g(^u, v) £(α0%', v') = g(cc0(u + u'), v + vr) .

The cosets g W^ can be parametrized in terms of one real parameter w in
such a way that in each coset there is one and only one element of the
form g(ίocQw, 0). Indeed, for α and ρ arbitrary, the decomposition reads:

?(α, ρ) = g (ί α0 Im-^ , o) g (α0Re^ , ρ --^Im (̂ )2) . (7)

The abelian group WXo has one dimensional unitary representations

where μ and v real label the representation. We then introduce the set of
functions {F} defined on W with the property that :

F(gg(oc0u, v)) = e-^u + ̂ F(g) . (8)

In view of (7) and (8) F is entirely known once its value is given for the
elements g(ί(xQwί 0).

To each F we then associate a function of one variable

) ). (9)



Boson Commutation Rules 95

The group W acts on the functions F through

this can be carried over to / with the help of (9). All we need is to find
the function fflf associated to fflF. We proceed as follows. Let gί = (α, ρ),
then gϊl — (— α, — ρ) and from (5) and (7)

gϊl g(ίocQw, 0) = g(ίocQw — α, — ρ -f wReαoc0)

X g (- α0 Re -~ , - ρ + 2w Reαδc0 - -—*- Im ^-~j j .

Using this result :

(ioc0w, 0)) = .Ffcj-i g(io^w9 0))

α \
— J

The group law is easily verified.
Equation (10) gives us a set of representations of the group W on

functions of one variable. Clearly if

|««χ>, then ||̂ /|| = ||/|| ,

i.e. these representations are unitary. The case v — 0 is somewhat
singular. The representation is not faithfull. It reduces to a direct
integral. Except in that case the representation is irreducible. If / is
diίferentiable and such that its derivative is square integrable, we can
obtain the infinitesimal form of (10). Assuming α and ρ very small

)^ 1 + ίμ Re~4- ίvρ — Im— -^ — 2ivw ReαόU f(w)^

α0ά0 -

f(w) .

It will be convenient to identify this with infinitesimal generators
defined through

gi(w)g± (1 + iρB + ocA+ - oίA) f(w) . (11)
Hence, we get:

A —

B=vl°
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with

[A, A+] = B, [A, B] = [A+, B] = 0 .

In particular, if we set α0 = — —j= , μ — 0, ^ = 1, we get the usual re-

presentation of quantum mechanics on the space J^2(1R) of square
integrable functions of one variable. In the following, we stick to these
particular values :

α° = jf ' μ = 0> " = l

Then the group acts according to

α-— Imα2) ,, , /-- x (^ )2 lf(w - }/2Reα) .

We can regard equation (10') for fixed w as defining a certain function on
the group manifold. To be more precise, we restrict our attention to those
/£j£? 2 (R) which are infinitely differentiable, then for each w ζ 1R

equation (10') gives a mapping / - * f(g) = gf(w) leading to an infinitely
differentiable function on W. W itself can be considered as product of a
real line (ρ) times a complex plane (α). It is tempting to try to see whether
there exist functions / such that / be analytic in α for fixed ρ. Actually
this does not work but instead one has the following result : there exists
up to a factor one and only one infinitely differentiable function f(w)

such that/(<7) given by (10') is equal to e 2 times an analytic function
of α. To see this we solve

d -5fL.-f i(]/~2~wlm<x -- I m α 2 ) , / i /?T-r» \ /%
-^pβ 2 v 2 ιf(w — J/2Reα) = 0 .

This reads :

(Reα - γ=\ f(w - l/2ΓReα) -γ= f ' ( w - J/§~Reα) - 0

or
wf(w) + f ' ( w ) = Q

hence
_ w2

f(w) — ctee 2 .

With the proper normalization we call this function :
_ JL w<i

fo(w) = π~^e~~^. (14)

For g of the form g(oc, 0) we get from (10') :

— — ί w2 I r~ 19f0(w) = n ^ exp j -- g -- yαα + y2woc - γα2
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where we have recognized in (15) the generating function for Hermite
polynomials. We are now in position to introduce the Bargmann space.
For two square integrable functions /x and /2 let us denote by (fv /2) their
scalar product

(/ι,/ι)= SXh(w)h(w)dw.
— CO

Then to each square integrable / we associate the analytic function Hf:

Hf(oc) =

We shall see below that equation (16) has a second interesting inter-
pretation. This functional space has been studied in detail in reference [1 ]
and we shall sketch very briefly the results we need. Let / (w) be expanded
in terms of a complete set of orthonormalized Hermite functions

CO

/(")= Σ c
o

the convergence being understood in norm; then one deduces from (15)
and (16) that:

oo αn

Hf((x) = Σ cn ~F= is an entire analytic function.
o Vnl

It is then natural to define a scalar product by

(H flt Hft)a = (/1; /,)

where the subscript 38 indicates that we evaluate a scalar product in a
new space. The operator H is isometric. One shows that (Hfv Hf2)@ can
be written as an integral

(Hf,, Hft)a = / dμ(«) Hf^Λ) H/,(α) = (A, /,) , (17)

7 , . cίReαίίlmα e~αα

dμ(oc) = .

The analytic functions with finite norm (defined through (17)) build a
Hubert space and H is then unitary. Let us call this Hubert space έ%.

The group W acts on 3$ by requiring that

°Ht = H ° f . (18)
This gives with g Ξ= g(oc, ρ)

Ήf(z) = e~^ (^<«.o)/0, of) = e~^ (^'^^ f)

' 4. _ α5

l * -aί). (19)
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In deriving (19) we have used the fact that g acts unitarily on
From the infinitesimal form of (19) we get the representation in 88 of the
Lie algebra of W (compare with (11)):

+ ίρ + <zz - α Hf(z) ,

hence

4 = -Jj A+ = z B = I. (20)

We can also deduce the image in & of /0. From (15) and (16):

αδc

#/„(«) = .Fo (*) = «"*" ('<*•%, /„) = !

and from (19)
_ g5

*<δ>0^0(2) - jFβ(«) = e*~ ~*~ ' (21)

We can now give a second interpretation of (16) as follows. Let F
then it is the image under H of some / £ ̂ 2(R); according to (17) and
(18)

Now *<δ 0)£Γ/0 - .Fα(z) as expressed by (21), Hf = F and (16) also reads:

e«*F(z) , (22)

so that e 2 Fκ(z) = e*z plays the role of a ' 'delta function" in the Hubert
space £%. Moreover /0 was of unit norm and g acts unitarily, hence
||̂ α|| = 1, and Schwarz inequality applied to (22) leads to

|ί (α) | ϊ£ \\F\\ e^ (23)

The detailed mathematical analysis of the space £8 and of the mapping
H are given by BABGMANN in [1]; we have merely pointed out that the
whole construction can be given a rather detailed group theoretic inter-
pretation. It is also worth mentioning that one can directly arrive to SS
if one induces representations of W by selecting only the one parameter
abelian subgroup WQ of the elements of the form g(Q, ρ). But one looses
this way the connection with the usual representation in terms of
square integrable function of one variable.

We complete this section by computing matrix elements of W. We
have seen previously that the functions

δm(z) = -fLm = 0 ;l, ... (24)

make up a complete orthonormal basis in the Hubert space 3%. Let us
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compute
(25)

where Σ' means that the sum has to be taken for non-negative arguments
of the factorials. Now recall that the associated Laguerre polynomials
are defined by

r* (r\ = f (-*)* Γ(p + k

" ~

f dx β- x* LI (x) L\ (x) =

it turns out to be useful to define L^(x) also for negative integer k
through :

This definition is in agreement with our expression of £* (ίc) given above

provided one remarks that π/7 - τ-ττ- = 0 for s ̂  — A; — 1, s integer.
^ («; -f- s ~τ i;

This enables one to write

ff»»(«> e) = /-^r eίδ"^ α"~m £&"*(**) (26)
One verifies of course the unitarity condition Untm(oc, ρ) = Umfn(— α, — ρ)
and the orthogonality relations

ί ̂  f»,»(«,0) Ϊ7»', „• (α, 0) = δn, n δm, m. . (27)
J 71

From the group law U(g) U(gr) = U(gg') one also deduces

_ V1 ~n—SnS—
~ Z^ αl α2

(28)

The character of the representation is given by :

*(«, g) =f 17,,.(*. 6) = eiefdμ(z) e+"-f- f (' "J"5"
w = 0 w = 0

= e<β f — e-^Γ + «*-**=
J 71
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where δ^(oc) stands for <5(Reα) ό(Imα). The preceding formulae can be
used to derive numerous properties of Laguerre polynomials. We give a
few examples in appendix I.

III. Canonical transformations

Our aim in this section is to study certain automorphisms of the
group W. To be more precise we are interested by the continuous auto-
morphisms of W of the type

with ά function of α. The conditions to be satisfied by this correspondance
to be an automorphism are

/"\ i O * i Q(i) α + p = K + p,

The only continuous solutions of (i) are ά = Iα —μδc, while (ϋ)
imposes \λ\2 — \μ\2 = I which also insures the mapping to be one to one.
The notation is chosen for convenience. These automorphisms are in one
to one correspondance with the matrices

— μ λ

and to the product of automorphisms corresponds the product of the
matrices. These form a group isomorphic to the special linear real
group in two dimensions SL(2, R) which we shall denote in the following
by K, while *g will stand for the transform under k ζ K of an element
g £ W. K is the canonical group. Its action on the generators of W is
defined through:

α*4+ - δcM - (lα - μόc) A+ - (Aα - fla)A .
That is:

We now seek in the space $ a set of operators V(k) such that:

U ( * g ) = V ( k ) U ( g ) V - i ( k ) . (29)

In order to solve (29) we shall follow reference [1]. We remark that in

0ί_JΪ
£8 we had a set of vectors F t ( z ) ~ e 2 which allows one to compute

iϊ
the value of any function F ζ & at the point t through F(t) = e 2 (Ft, F}.
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They are defined except for a factor by

(A - t)Ft = 0 .

Now according to (29) one requires that

(*A -t)
or

so that, we can choose :

Argλ
~ π £ ArgΛ π .

The various factors in (30) are such that
check this with the help of equation (1).

Hence we define V (k) for arbitrary F
convergent integral :

= \\Ft\\ = 1- One can

through the absolutely

' —π < ArgA < π .

A tedious though straightforward calculation shows that:

(i) F (k) is unitary,

(ii) the condition (29) is indeed satisfied,

(iii) the result for Ft(z) is the one given above.

The operators F (k) satisfy obviously the following indentity

[V(k)V(k')V-1(kk'),U(g)] = 0

whatever g. Since the representation U (g) is irreducible, we expect
V(k) V(k') to differ from V(kk') only perhaps by a phase factor. That is
they generate a projective representation of the canonical group K. In
fact we have choosen the phases in (31) in such a way that the arbi-

trariness be at most a sign this is reflected in the λ 2 which appears in
front of the integral. We want to make this more explicit. The manifold
of the group K is topologically isomorphic to the product of a two-
dimensional plane and a circle. This is obvious if we choose as para-

metrization: μ arbitrary complex number and λ = eίφ]j\ -f- \μ\2. Hence
the universal covering is infinitely sheeted. Equation (31) provides us
with a representation of a two sheeted covering group of K.
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The analysis of the representation of the Lie algebra of K is simple.
Let Jc be close to unity we write :

'kς* I - (ί 2(5^0 + d2M+ - 02M,)

δl real, <52 complex M0 = y (0 __^ , -M+ = (0 0) > -̂ = (_! 0)

with [Jf o, -M+] = if+ (32)

and λ ̂  e101 μ ̂  $2. Using in 88 the dense subset of polynomials on which
the Lie algebra can apply without restrictions (31) yields

or (33)

V(MQ), V(M+)+ V(MJ and - [V(M+) - F(Jf_)] are hermitian

operators since the representation V is unitary.
An interesting feature of the representation (31) of K is that it is

reducible. There exists two closed invariant subspaces of 3& namely the
set of even and odd functions respectively. We shall denote them by
38+ and SS~\

&±^{F ζ&,F(-z) = ±F(z)}. (34)

They both correspond to the same value of the Casimir operator of the
Lie algebra of K :

We now define a set of basis vectors in

in J>+

in

and &~ as follows

= 1,1+1,1+2,...

2- /,(-) _7 UK —

(35)

(36)

-i
Then in each of these subspaces we have:

(37)

The formulae look the same, they differ only by the range of n.



Boson Commutation Rules 103

These results should be compared to the classification of the (true)
unitary representations of K^SL(2,R) given by BARGMANN in re-
ference [3]. They are an extension of the discrete class1 D^ to values of

3 1 3
k satisfying ^ = k(l — k) = -y^- , i.e. k = -r- and k = -j- in ^+ and £%~

respectively. We shall call them V+ and F~. The following considerations
provide a better mean to visualize this analogy.

We want a simpler expression for the representations F±. We first
consider F+ and introduce the following matrix element

λ (60, V(k)F) = dμ(z)F(z)ei= Φ - , (38)

The function Φ is obviously an analytic function of its argument inside
the unit disk. Hence (39) defines a mapping of & in the space of analytic
functions inside the unit disk. Its kernel is ̂ ~ and we restrict immediately
this mapping to «^+. The case of odd functions will be studied later. If
k corresponds to (λ, μ) and lc' to (λ', μ'), then k" = kkf corresponds to

λ" = λ'λ + μμ' μ" = lμ' + μλ .

The mapping sends F on Φ, it will then send V(k')F on

(60,

Using the same notation for the representation F+ we have then

(39)

The complex variable s is such that \s\ < I and it is clear that the trans-
formations

k-1 __ λs + β τjt_[λ — M
S —^ S = r~ A/ = I _ ι I

μs -\- λ \ — μ Λ /

are just the usual automorphisms of the unit disk. Note that μs + λ
never vanishes for \s < 1.

We shall study the mapping (38) in more detail. The image of b2m is

Φ ίm(β)=[(2m)!]-

[(2m) I]*

dμ(z)zzme

p im j

Γ(m

(40)

m = 0, 1,2, . . . .

1 The reader should not confuse the symbol lc used here and only here as the
subscript for a representation, with Jc an arbitrary element in the group K.
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Define now a Hubert space of functions analytic in the unit disk, ^x/^
in the following way

Φζje±~\s\<l, Φ(s}= Σ cmΦZm(s], \\Φf = Σ c m

2 < ~ . (41)
2 m = 0 m — 0

Note that the Taylor series of Φ converges uniformly on any compact
subset of the unit disk since

CO CO 1_

*) / M2 <c \^ 1 2 V1 Iff) ί \\2 11^7)112/1 ~\ 2

SS < 1

due to the fact that for

for that branch of the function (which we consider) which is real positive
for x = 0. The inequality (42) tells us also that any Cauchy sequence in
ffl jya converges to an element of ^Ί/2 in the Hubert space norm and in
the usual sense uniformly on any compact subset of the unit disk.

The scalar product in f̂ x/2 is defined in an obvious way when the
functions are expanded in terms of the complete set {Φm} and the mapp-
ing (38) is then a unitary map between &+ and J#Ί/2. Then the formula
(39) defines in ̂ !/2 a unitary double valued representation of the canoni-
cal group K in ^fΊ/2.

The Hubert space ^Ί/2 has the usual features of a Hubert space of
analytic functions. Apart from the inequality (42) we have a reproducing
kernel as an immediate consequence of (38). Indeed since the correspond-
ence F -> Φ preserves the scalar product we have

Φ

Φ0(β) = 1, [V(k~i)Φ0] (a) = (1 - μs}-

So that:

Φ(a) = (Φ,, Φ)^1/2; Φa(a') = (1 - ee')~i |β' < 1 . (43)

And in (43) the square root has a positive real part.

We compute the matrix elements of V+. Denote F^m(&) the matrix
element

) . (44)
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Then a direct computation leads to:

m ^ n

L(2rc) ! .

X F(-n, —'i

X

-~r f,m — n+

(45)

(_ iΛn—m X

1

.(2m)!

X F(-m9 - r a - f y ; w - m + l ; -

ι,m = 0 , l , 2 , . . .

where .F(α, δ; c; #) is the usual hypergeometric function.
We wish to give a similar analysis of the representation F~. For that

purpose we replace (38) by an other matrix element which has the same
virtue, namely except for an extra factor, to depend on k only through

the combination -y. An obvious candidate is:

λf(61,F(]fc)ίτ) = fdμ(z)F(z)ze^2 = Ψ (-£) . (46)
\ A /

Again we thus define a mapping F -> ϊ7 of & in the space of analytic
functions inside the unit disk, the kernel of which is «^+. We restrict

ourself to £%~ and call ^3/2 the image of 3$~. ^3/2 ^s given a Hubert
space structure by choosing as an orthonormal basis the images Ψ2m+ι
of 6am+1, m = 0; l ,2, . . .

= [(2m dμ(z)
szz f(2m 4-~ U +

(47)

m = 0, 1, 2 , . . .

Then ̂ f 3/2 has the following definition

^6^3/2 o β| < 1, !P(i) = ^ CmΨ2m+1(S),\\Ψ\\*= Σ |Cm|2 < «>• (48)
m = 0 m = 0

In this case one has also the possibility of defining the scalar product
through an integral indeed:

So that

(49)
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This could not be achieved for ^^ the corresponding integral being
divergent. In complete analogy to what we obtained before we also have:

3
' a. t/p —x m/( \ I 2 <^ ιιιz/112 (~\ ~\— 2"

Ψ(8)=(ψ,,ψ), ΨS(S')=(I-SS')~.

The representation V~ of the canonical group K yields in ffl 3/2

leading for the matrix elements

= (yίn+1, V-(k) Ψίa+1)

(50)

(51)

(52)

to the following expressions:

m ̂  n

1)
Iji χ-m-n-l^-n χ

-n — -̂  m — n ί -μμ)
n ^ m (53)

X

%, m = 0, 1, 2, . . . .

One can observe that
since for any Φ £ c^/2 one has

I m' m 2 ; n m + l; ^

^3/2 the inclusion being continuous

In the Hubert space
/Φ\

of two functions I ^1 with Φ £ ̂ /a, S7

take the following form

0 li Γ 0

'3/2 — II ̂  IIJTl/2 '

3/2 we can write any vector as a set

2. The operators ^L and

2-—- 0
cZs

The quadratic forms in A, A+ are diagonal as they should, and do not
involve derivatives of order higher than one:

1 (l

τ(τ
4 ds

3 d

0

3s

?

l

y^2 =
Γ f °1ds

0 ^
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It is possible to compare this representation of the Lie algebra of K
(equations (32) and (33)) with the global form (equations (39) and (51))
and see that they agree.

IV. Generalization to higher dimensions

We study briefly the case of N degrees of freedom. The Hubert space
3SN is now the set of entire functions of N variables / (z), z = {zv . . ., zN},
such that

with
dμN(z) = e~zz dllez-L . . . dImzNπ~N ,

and
N

Z ' Z = Σ zi ' %ί -
1

The monomials

form a complete orthonormal basis and the Weyl group is replaced by the
group WN defined as follows. An element g £ W$ is parametrized by a
complex vector α = {α1? . . . , OCN} and a real number ρ with the group

N

law gr(α', ρ') flr(α", ρ") = g(oc + α', ρ + Imα' α") with α' ά" = Σ <**«".
i

The group WN is not the product of N groups W. The canonical group K
is then the set of continuous automorphisms of WN of the type

k : g (α, ρ) ~> g (ά, ρ) & function of α . (54)

The conditions to be satisfied by Jc are similar to the ones encountered in
the previous section leading to the answer

fyk = Σ λijλijc - μi;iμik (55)
i

0 =

The group KN is isomorphic to the set of complex 2N x 2N matrices
which we denote by the same symbol

where λ and μ stand for the N x N matrices {λ^} and {μi}} and for a
matrix σ the symbols σ, στ and σ+ mean complex conjugate, transpose
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and hermitian conjugate. The restrictions on k are equivalent to

and (57)

7 + 7 (IN ° \k+τ3k = τ3, τ3 = (Q —ij'

We remark that Ar1 is obtained by the transformation λ -> λ+, μ-> — μτ.
The group J£jy is in fact isomorphic to the real symplectic group in 2N
dimensions Sp(2N, R) (of course Sp(2, R) « SL(2, R)). Then for the
Lie algebra one has

or
+ Ajfijt; *At = A j λ j t + A? μίt (58)

- .
The representation of WN in ̂ lY is easily obtained as

ie-^ «t«-»l // î ία^,) . (59)

We now look for operators F (k) with the property that

U ( * g ) = V ( k ) U ( g ) V ~ i ( k ) .

zrt_lL
The method is the same as before. If F t ( z ) = e 2 denote as before
the reproducing vectors we have to solve the set of equations:

N

£
Due to the equations (56) the matrix λ has an inverse and λ"1 μ as well as
μλ~l are symmetric. Solving the linear system above, we obtain:

V ( k ) F t ( t ) = (deU)~ί exp ί- ~zμλ~lz +1 λ~lz + —tλ^μt - 4rl (60)
( 4 Δ Δ }

In (60) the normalization factor is such that |F(&).2^|| = 1. This leads to
the following formula for an arbitrary function F (which is in terms of an
absolutely convergent integral)

V(k)F(t)
i r ί i - i ϊ (61)= (detλ) 2 / dμN(z)expl~zλ~lμz + zλ~lt ~ ~~tμλ~1t\F(z).

One observes on (61) that indeed (60) is verified and further that
(i) V(k) is unitary
(ii) V(k)ϋ(g)V-*(k)=U(*g),
(iii) 7(fc') 7(Jfc) = ±V(k'k).
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We shall carry out explicitely the calculation for point (iii)

F(Jfe') V ( k ) F ( t ) = (deU')~ΐ (deU)-l ί dμN(z) dμN(zf) F(z)

expί^z'λ'-^μ'z' + z'λ'-^-^tμ'λ'-^ + ̂ zλ-iμz + z

We carry the integration over z' with the help of the following conse-
quence_of equation (1) valid for M and N symmetric matrices such that

^ ~~ ( - 2 - ) ( - 2 - ) be definite positive (for the proof, see appendice II):

/

( i i _ _ _ __ ϊ
d//jv(z)exp J + γ2 -Mz + i£z -f yzJVz + ϊ zl

- [det(l - MN)]- 2 x (62)

X exp jy [̂ (1 - Jf j^)-1 w + 2v(l - MN)~^u + v(l - M N)~l M t?

So that with A'' = λ'λ + /Z> and μ" = I> + ̂ '

F(A') F (4)^(0 = ±[dθtr]-iί^(») J(2) x

X

+ ~ zλ~lμz + ~ z λ~lμ'+ λ"τ-^z + zλ"~lt - ± t

Now with the help of the definitions of λ" and μ" and (56) we find

λ~lμ + λ-lμ' + λ"τ-1 = μ"+λ"τ-1 - (λ"-^μ")τ

and

μ'λ'-ι + λ'-*τμλ"-ι = μ"λ"-*\
so that :

V(V)V(k)F(t)

= ± [detA'T 2 dμN(z)F(z) βxp ±zλ"-1β"

Now one checks easily that k" = k'k has for parameters λ" and μ" as
defined above, hence comparing our result with V(k") F ( t ) given by (61)
we see that we have indeed proved our statement (iii). In other words we
have a projective unitary representation of the canonical group

The representation F is reducible in two irreducible ones acting in the
subspaces £%'$ and ^^ of even and odd functions of 08$. As in the one
dimensional case we can map ̂  ̂  and ̂ ^ on Hubert spaces of analytic
functions defined on an homogeneous space for the group KN. Consider

first

(deU)l(δ[0], V(k)F) = ίdN(z) expl±zλ-iμz}F(z) = Φ(λ-iμ). (63)
J (A )

8 Commun. math. Phys., Vol. 4
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The N x N matrix S = λ-1μ is symmetric and satisfies the condition

S 6 PS (64)

as one readily derives from (56). We shall call 2? J/2 the image under (63)

of the space ^J. It is given a Hubert space structure by defining an
N

orthonormal basis as the image of {δ[m]; \m\ even}; \m\ = Σ mί We shall
i = l

call these functions Φ[TO]i

Φm(*) =fdμ(z) e+^^-= , m\ even = 2p (65)

= 1/Ϊ̂ Γ y π^

i

The function Φ[m] is an homogeneous polynomial of degree -̂ p- = £> in

the coefficients of the matrix S. According to (62)
tst

[m] ]/[m!]

if we let Φ = 0 for m = 2p + 1.

For a given m\ = 2p the number of functions Φ [ wj is I „

while the number of homogeneous polynomials of degree p in the

~2 variables siί is |

P
These two numbers are unequal in general, except for the case N = 1

already studied. We shall prove that the functions Φ(S) that we con-

sider, satisfy a system of partial differential equations for N ^ 2. Indeed

consider

[m]

and let Kij = K^ stand for 2δii~1 -̂ 77 then:

tSt } i_

Since this identity is valid for all values of t we deduce that:

{(KiiKlm-KimKli)ΦM(8) = 0
(66)



Boson Commutation Rules 111

According to lemma 6 proved in appendix II the necessary and sufficient
condition for a polynomial Φ(S) in the variables si;j = s^ to be written
as a linear combination of the Φ[m] (S) is precisely that

(KijKlm-KimKlj)Φ(8) = 0

for all values of the indices ί, j, I, m from 1 to N. Moreover, this expansion
is unique. We are now in position to give a formal definition of the
Hubert space ^]j^. It is the set of functions in the coefficients of the
N x N symmetric matrices S, analytic in the generalized unit disk
5fN satisfying the second order partial differential equations

1 ^ i, j , l,m^N (67)

which insures that for all S subject to the restriction (64) they can be
written in a unique way as a power series

[m]

uniformly convergent in any compact subset of the generalized unit disk
finally one requires that

ιiΦiιa=ΣΊ'[m]ia<«> (68)
[m]

In this summation only the terms with \m\ even enter since if |m| is odd
φ[w j = 0. According to the construction above any such Φ is the image
of a unique even function F belonging to &N through an identity of the
type (63), Taking into account the fact that \\F\\ %N = ||Φ||̂ /2 and the
unitarity of V

\Φ(λ-*μ)\ < IIΦH | d e t λ | =

if s = λ~lβ we deduce from λλ+ - μμτ=I that 1 - S3 = (λ+λ)~l so
that:

\Φ(S)\ ^ IIΦH det(l - SS)~~* . (69)

The reproducing kernel K(8l7 82) = Σ Φ[w](^ι) Φ[m]($a) can also ^e

[m]

computed from (63). For that purpose we note that $P )/2 is a carrier space
of a projective representation V+ of KN defined by requiring that if Φ
is the image of F then V(k1)Φ is the image of V(k1)F:

F+(fc1)Φ(λ-1/Z) = (dθt^(&[0], V(k) V(Jc1)F} = ± (deU)i(6[0], V(kk1)F).

Now with

k = ( ' λ - μ ) fc1 = (\
\—μλ) 1 \—μι

we have

li) = [λx -1- (λ-lμ)μl]~l [fa + (λ-
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and

[V+(k)Φ] (S) = det(λ + 8μΓΦ((λ + Sμ)-* (μ + Sty . (70)

The transformations $-» (λ -f 8 μ)~l (μ -f $1) with λ, μ satisfying the
conditions (56) are the well known automorphisms of the generalized
unit disk. The double valuedness of the representation V+ is included in
the root of the determinant. That the latter never vanishes for S in the
generalized unit disk stems from det(λ + 8 μ) = detλ det(I -f- S μλ~l),
now άetλ φ 0 and μλ~l is symmetric and also belongs to the generalized
unit disk. We can then apply lemma 3 of appendix II which gives

Sμλ~l) Φ 0.
The reproducing kernel easily follows we have again

V(k)F)a, =

since Φ[0] is the image of δ[0]. We have already observed that k~l is
deduced from k by substituting λ+ for λ and — μτ for μ. According to
(70) we have :

V(k-i) Φw(8) = det(λ+ - Sμτ)~%= det(ί -

= (detl)"2(de

So that the reproducing kernel is :

K(S19 S2) = dβt(l - 8,8,) ΐ = Σ Φ[«,](Sι) Φ[«](«a) (71)
[OT]

The phase in (71) is obtained by analytic continuation from K(Q, 0) = 1.
One can observe that the transformations (70) are such that the

equations (67) are still fullfilled. This is obvious from our construction
but can be verified directly (see lemma 7 of appendix II). One also notes
that KN contains as a subgroup UN the unitary group in N dimensions,
then F+ restricted to UN is reducible and yields all the representations
of the type g ζ UN~>άQtg~1/2 x a totally symmetric representation of
even degree.

The case of odd functions in έ$χ is a little more involved. To any
element in &χ we associate a vector in an N- dimensional space whose
components are analytic functions in £fN in the following manner.

Denote by bi I ^ ί^ N the elements δ[0,o, . ..1,0,0] — zί in ^$N> we

write for an arbitrary F

μz}zίF(z) = Ψi(λ-^μ). (72)
?'=1

It is clear that the N functions Ψi(8) associated to F are analytic in
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έ?N and satisfy the same equations (67) as before. We shall call J^jj^ the
image of £%~^. The basic vectors δ[TO], |ra odd, map on the vectors

ΨM,i(8) = VWΦίm, ..... *,-! ..... «,](«) (73)

where the Φ[m \ are as before (it is understood that if m$ = 0 then ϊ7^], t

is zero). Any Ψ' belonging to 3? ̂ 2 is assumed to be such that

Ψ= Σ d[m]Ψ[m}, Σ \dlmf < oo . (74)
|w| odd

Clearly the conditions (67) are insufficient to insure that an analytic
vector function in the neighborhood of 8 = 0 will have an expansion of
the type (74). One must add further restrictions relating the various
components of Ψ. To see this observe that one has :

t s t

from which follows that all the Ψ[m] and hence all the functions Ψ that
we consider satisfy the system of equations

KtiΨt(8) = KtlΨj(8) . (75)

It is clear that in fact for each component of Ψ the equations (67) follow
from (75). A slight extension of lemma 6 (appendix II) shows that con-
versely any vector valued polynomial in the Si:ί satisfying (75) can be
expanded in terms of the Ψ[m \.

Schwarz inequality applied to (72) easily yields for any Ψ(S) ζ ^fψ1

N _ 1

ΣΨi(S)Ψi(S)£\\Ψ\\*άet(l-SS) 2 Trace [(I - SS)~l],S ζ^N . (76)
t = l

The representation V~~(k) is also derived from the same formula

[V-(k)Ψ]t (8} = [det(A + 8μ)Γ^Σ ^((λ + 8 μ)~l (β + SΪ)} X

X \λ

And finally the reproducing kernel is a set of N elements in $P^ depend-
ing on S' such that :

y.OS') = (&.*, Ψ) ι

Kl>'(8) = [1 - SS'ϊΰ1 [dβt(l - 88')Γ^

In conclusion let us note that restricted to the unitary group UN C KN

the representation V~ is equal to the direct sum of all the representations
of the form g ζ UN -> det^"1/2 x a totally symmetric representation of
odd degree.
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Appendix I

Laguerre polynomials as matrix elements

We want to use formula (26) of section II to deduce some classical
properties of Laguerre polynomials.

From Schwarz inequality one has Un> m(α, ρ)| ^ 1.

This yields

|e"f \x\^Ll(x}\ <Z p^1] 2 p + Jc positive . (79)

From the integral representation

e - - Ώ > V z (80)

one can get a generating function since for \t\ < 1, k ^ 0

( 2 \ 1

wϊ-ϊh
Hence :

tX 00

~ ί < 1, yb ^ 0 .
o

For Un,m we can use an alternative expression

tfn,m(α> 0) = <ni e*A+-«A m)= , l <Q\Ane«A+- ^A+m 10) ,
/ ?̂  ! m !

where |0) stands for the function &0(z) = 1. Now [A, A+] commutes with

A and A+ and we can make use of the identity eA+B = eAeBe 2

valid for the case [A [A, B]] = [B[A, B]] = 0. This allows one to write
]_ flP+fc fim

which is equivalent to

From (25) we get:
m

0—3>z (v ...I ']\'m — y1 znLm~~n(χ} ί82

If we use the fact that in the space 3&, z and -̂ — are hermitian conjugat<

we can cast (80) in the form
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Let in this integral z = yte"ιφ and α be real α2 = x > 0. Then:

k °° fc J SFi

*v p fp t j v j ZiTl

0 0

which also reads
oo

dte-*ΐ + τj 21/tΓ 83)

0

a classical expression for L%.
Finally we can also express Un>m(oc) in the initial Hubert space

J£?2(1R). Then using (10) written for α = ix one derives:

}n~™ e^L^~m(x2) (84)
-f oo

= / dwe-rt+ίfo™ Hn(w) Hm(w] .
— oo

Appendix II

Lemmas on symmetric matrices

We establish a number of results used in the text which have all to
do with symmetric matrices. The first of them are "polar decompositions".

Lemma 1. Any symmetric N x N matrix 8 can be written:

8=UTDU (85)

with U unitary, D real diagonal with non negative elements.
Proof (i) Let Q be unitary and symmetric. It can be written eίH with

iH

H hermitian and symmetric, hence real. Let Q' = e 2 then Q = Q'2

= Q'TQ' since Q' is also unitary and symmetric. Thus (85) holds for the
symmetric unitary matrices.

(ϋ) For an arbitrary symmetric 8 consider the hermitian non nega-
tive matrix $$; let F(0). . . V^ be the orthogonal proper subspaces of the
corresponding operator in an N dimensional vector space

V = F<°> 1 W . . . 1 F<r> .

Restricted to F<fc), 88 is proportional to unity, the proportionality
factor being the β-th eigenvalue of SS. We assume for instance that
0 ^ λ0 < < λr.

(ϋi) Let u be a vector belonging to V^,λ the corresponding eigenvalue
of 88 (for brevity we omit the subscript k):

88u = λu λ ̂  0 .

We write 8u — v, 8v = A^ then $£ = λΰ and λS$v = λ>Sϋ = λv. Hence
u and v both belong to the subspace F(fe). Choose a basis u^ in
Write v(α) = Su^. According to what we have seen v^ = Σ tΛβΰ
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If the basis is orthonormal (i.e. ΰ^u^ = δ x β ) we have:

Since S is symmetric txβ is equal to tβx. Moreover:

W = 88 uW = t
,

The symmetric matrix t = {ία/5} is then such that tt+ — λl.
If λ is zero t is equal to zero (it is sufficient for that to observe that

0 = tΐtt+ = Σ |y 2) hence 8 7<°) = 0.
«Λ

If λ φ 0 Q' — —j=r is unitary and symmetric according to (i) it follows
J/Λ

that there exists Q unitary such that t = yλ Q~1Q~IT. We then construct

wM=Σv«βV>W
β

which gives an other orthonormal basis in V^ with the property

(In F(0) the t(;(α), are any orthonormal basis vectors.)
(iv) We conclude from (ϋi) that there exists an orthonormal basis

w^ (1 ̂  a ̂  N) such that:

the μa being the roots of the non negative eigenvalues of SS each
repeated a number of times equal to its multiplicity. Let D be the diagonal
matrix

/ T V . . 0\

\0 '' -μj
and U~l the unitary matrix whose α-th column is the vector w^} then
the preceding set of equalities is equivalent to:

SU~l= CFίD= UTD
or:

S = UTD U .

Note that the square of the diagonal elements of D are the eigenvalues
of 3S or S3.

Lemma 2. Any element k of the symplectic group KN can be written in
the form

__ k — g1 dg2 (86)

with gλ and g2 of the form L ^.j , U :N by N unitary matrix, and d of the

type:
fchθ^.^ 0 --shθi .. 0

0 * ' ch^ 0
d(θl9...,θN)=~

shθ,-.^ 0

0 * -sh^ 0

of course gv g2 and d belong to KN.
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The proof of this lemma is omitted since it can be found for instance
in [4].

Lemma 3. // the symmetric matrices M and N satisfy 1 — M M > 0
and I - NN > 0 then det(l - MN) φ 0. __

Proof. For any non zero vector z, z z — z M M z > 0 and z z —
— zNN z > 0. Assume that det(l — MN) = 0 then there would exist
a non zero vector z± such that z1 = MN z±. Clearly Nz1 φ 0. Replace in
the positivity condition of M the arbitrary z by Nz^, it reads z, N N z^ —
— z"1z1 > 0 contrary to the hypothesis on iV.

The next two lemmas have to do with the integration of exponentials
of quadratic forms.

Lemma 4. The necessary and sufficient condition for the entire function

to belong to the space έ%N is that the hermitian matrix

I - SS
be positive definite.

Proof. According to equation (1) in the introduction the condition is
equivalent to the requirement that :

zz — - -

be positive for any complex ^V-vector z. Using lemma 1 this condition
is equivalent to the positivity of :

where dt are the diagonal elements of D when S is written UTDU.
Writing zj = x$ -f iys we must have:

or

The d!f are precisely the eigenvalues of 8S, hence 1 - ά\ are the eigen-
values of / — SS and the conditions we have found are just the state-

ment of the lemma. We remark that the norm of f(z) = e%z 2is equal to

»/I2= fdμs(z)

Lemma 5. Given two symmetric matrices M and N and two vectors u and
v the integral

/
( i _ \

dμp(z) exp |y [zMz-}-2u z -f zNz + 2v z]\
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is absolutely convergent if and only if :

2

in which case it is equal to

[det (I- MN)Γ^ X

X exp [uN(l - MN)~l u + 2v(l - MN)~l u + ΰ(l- MN)~l Mv]

the sign of the determinant being obtained through analytic continuation
between 0 < oc < 1 from [det(I - M^N*)]-1/2 with:

and

Proof. First the condition for absolute convergence is obtained by a
slight modification of the argument of lemma 4. It includes the case
where I — M M > 0 and I — M N > 0 since these conditions are equi-
valent to

+ zMz) > 0

hence _ _
_ M + N \ Λ*, I ^ _ _ ^Γ I ^̂  A2; -f- 2 2 > U

• i 4.4. Γr /Λ? + ^\ /^ΓH-^\1 Ain turn equivalent to / — I - ̂ - ) I - 2 - / >

To get the result of the integration we apply formula (1); write
z = x -}- ίy the integral reads:

Γ d?xdry -(^2/)^(^,) + 2(^Ji-V-).(^)
J ~~^~β V ;

R2P

with A a matrix in the (x, y) space equal to 1/2 Vτ A' V

-~ι
We have to compute det A and A"1, since

det V FΓ =

and with _
/° — Λ », A, II — MN 0σ=(l O J ' AσAσ=( 0 7_^



Boson Commutation Rules 119

hence (det.4')2 detσ2 = (det/ — MN)2 since I — N M is the transpose
of I — M N. Clearly det σ = 1 so that

det 4' - (- l)p det(J - MN) and det A = (/ - MN) ,

the sign of detJ' being determined by comparing the values of det -4'
and det (I — MN) at a particular point. The above calculation also
yields _ _

^ _ /N(I — If JV)-1 (/
A ~

So that A-1 = 2 F-M'-1 Vτ~l

-. u v ~ 2 \v
^

and

= ~ [uN(I - MN) u + 2^(1 - MN)~l u + v (I -

Collecting all these results in formula (1) we obtain the desired result
except the sign in front of det(/ — MN)~1/2.

For the latter we follow the procedure indicated in the introduction.
Lemma 6. The necessary and sufficient condition for a polynomial

Φ(S) in the coefficients si:ί of a symmetric matrix S to be expanded as a
linear combination of the Φ[m](s) is that Φ satisfies the partial differential
equations

(KίjKlm-K
„ i a .,,
^> = lf

The functions Φ[m] are given by (65). The expansion of Φ is then unique.
Proof. The necessity proof has been given in the text. Suppose

now that the polynomial Φ satisfies the above equations. It is con-
venient to recast the expression of Φ[m] in the following form:

M.
22 s% (2flm)«fa»

--/==• Φ[m](^)= L II —, — — p- .
|/[m!] αj^o.α^^O ί,l,ml<m α* α^:

2 α< + 27 Kji + Σ &H = m, .
? < ΐ Z > i

For each term in Φ[mj we can arrange the exponents in a symmetric
matrix of non negative integers

α =
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the sum of the elements in the i-ih row being equal to m^ Clearly the
sum of all elements equals Σ mi an(^ *s even since each off diagonal

i
element is repeated twice and the diagonal elements are even.

Our polynomial Φ can also be written

Φ(W Γ n ΓT S« (2^im)ftm

Φ(b) =2, β(β) 11 -ST — T~\ —
(β) i,Km Pί' Pb"

where (β) indicates the exponents written in a similar matrix form as
above. The differential equations satisfied by Φ can be broken in three
types according to the number of unequal indices among ijlm, namely
2, 3 or 4, leading to three types of equalities for the coefficients ρ^
namely

e<# = £(/?') (87)
if (β) and (βr) are linked by the following substitutions:

(ϋi)

(β)
2α + 2 c

c 2δ

2a + 2 d b "1 Γ 2α d + 1 δ + 1
rf c + 1 <-> d + 1 c

b c + 1

2a c + 2]
+ 2 26 J

1
α+ 1

c
d

α
c+ 1

c + 1

1 6

We have to show that the equalities (87) imply that the coefficients
ρ(β) corresponding to all the (β) such that the elements of each row sum
up to a given integer are equal.

First one observes that all three types of substitutions are such that
the sum of elements in any row is not changed. We will show by recur-
rence that given an arbitrary (β) it can be brought with the help of the
above substitutions to a canonical form (/?0); hence all ρ^ such that the
sum in each row of (β) is equal to a given non negative integer are all
equal to ρ^ and Φ is a linear combination of Φ[mj.

The recurrence starts with N = 2. We have an arbitrary matrix

(β) = ( c 25) with 2α + c = m1 26 + c = m 2 .

It is understood that all quantities are non negative integers. Two cases
arise — rax and m2 both even, then c is necessary even and (β) can be
brought with the help of (i) to the form

/X 0 \
I 0 mj

— m1 and m2 both odd then c is also odd and again repeated application of
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(i) leads to
1 \

2 — I / '

m =

Suppose now N > 2, with (i) one can reduce the non diagonal terms to
be 0 or 1, then with (ϋ) one can further reduce the number of off-diagonal
terms in each row or column different from zero to be at most one, this
exhausts the possible canonical forms if N is equal to 3 indeed we have
the possibilities:

mι == % Pi + 1 Γ2ft 1 °
1 2p2 0

0 0 2pJ

the other two cases with only m2 or ml odd are easily deduced from the
preceding one.

If N > 3 we use (iii) to show that the position of the possible 1 in the
first row (and the first column) is irrelevant so that according to
ml — 2pl + 1 or 2pl9 (β) can be brought to the form

i 0 0

= 0 2p2 0
O O 2P

~2ft 1 0. ..0"
1
0
0

or

"2ft 0 ... 0
0
0

and the box represents an N — 1 by N — 1 matrix (β') with m{ = m2 — 1
or ra2, m3 = m3 . . ., m'N_ι = mN to which the preceding procedure can
be applied again. This concludes the proof of the lemma if we remark

that the unicity of the decomposition Φ = Σ @[m]Φ[m] stems from the
[m]

linear independance of the functions Φ[mj.
An obvious extension of this result is that we can replace a poly-

nomial Φ by a function analytic in the neighborhood of S = 0.
Lemma 7. Let Φ(8) be analytic in the domain 1 — SS > 0, Sτ = S

and K(ij, lm) denote the second order differential operators

K(ij, lm) EEE KuKlm - Kίm Ku Ka = 2s" ' x ~

if for all values of i,j,l,m

then the same holds for V(k) Φ(8) defined by (70).
Proof. We use the fact that V+(k) V+(k') = ± V+(kk') and the polar

decomposition of any element k ξ KN as given by lemma 2 to reduce the
proof to the case _

(i) k is of the form g = L ^J , U unitary

(ϋ) k is of the form d(θ, 0, . . . , 0) (see lemma 2) since

d(θl9 θa, . . ., ΘN) = d(θv 0, . . ., 0) d(0, Θ2 50, . . ., 0) d(V, ...,ΘN)

(i) V+(g) Φ(S) = φ(U?SU).
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Call S' - UTSU, U = {UH}, and K ' ( i j , Im) the differential operator
corresponding to the variables {/S^ } then

K(ίj, Im) = Σ Uu,U5Ϊ VιvΌmm,K>(i'f, I'm')
i'j'l'm'

and the lemma is proved in that case.
(ii) We can write d(θ, 0, . . ., 0), θ real, as

(
chθ \ /shθ \

0\ / . 0\
1 pH .

0 I/ \0 O/

then S' = (λ -f Sμ)~τ (μ -\- Sλ) has the following matrix elements

chθ ' °lα ~ shθ ̂ u + chθ

with α, |8 running from 2 to ^V. The determinant of λ + /S'// is equal to
sh$$n -f- chθ, we call this quantity D. Then the statement of the lemma
is deduced from the following equalities, obtained by direct computation
where D is considered as the operator Φ (S) -> D Φ (S)

1 _1 Γ N

D 2 K ( I I , o c β ) D 2 = D~* μΓ(ll, ocβ) - shθ Σ Slγ X
J_ Λ » __ O

X (E'(lγ,Λβ) + K'(γl,κβ)')

+ βbfθ ΣS»SιaK'(γd,ocβ)^

D%K(lα,βγ)D~%=D-1\K'(lα,βγ)-βhθ Σ SlSK'(δx, β γ)]
L ί=2 J

DK(κβ, γδ) D~= K'(aβ, γδ) .

All the greek indices run from 2 to N and due to the symmetries of the
operators K(ίj, Im) we have exhausted all the possibilities. Since

the preceding expansions show that any operator K ( i j , Im) applied to
V+(k) Φ(s) is zero if the same is true for Φ(S).

References

[1] BARGMANN, V.: Commun. Pure Appl. Math. 14, 187 (1961).
[2] SHALE: quoted in R. HERMANN: Lie groups for physicists. New York:

W. A. Benjamin 1965.
[3] BARGMANN, V.: Ann. Math. 48, 569 (1947).
[4] BALIAN, K, C. DE DOMINICIS, and C. ITZYKSON: Nucl. Phys. 67, 609 (1965).




