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Abstract. The field theoretical formulation of quantum mechanics is used to
consider the nonrelativistic multichannel scattering theory. With the help of
appropriately constructed time dependent creation operators, Hubert vectors are
formed whose limits in time can be defined as multichannel scattering states in the
usual sense. The existence of these states is proved under certain assumptions for
the potential, by showing the convergence of the above mentioned operators. The
commutation relations for the limits of these operators are given.

1. Introduction

Several formulations have been proposed to give a basis for the de-
scription of multichannel scattering processes. The first sufficiently
general and correct of these approaches is due to EKSTEIN [1]. The
essential point of his method is to define scattering states as limits of
appropriately constructed time dependent Hubert vectors. In contrast to
other formulations channel M011er operators1 are not needed and there-
fore it is not necessary to split the total Hamiltonian into a channel
Hamiltonian and the interactions between the fragments. In particular
the formalism developed in Ref. [1] makes it possible to treat scattering
processes of identical particles without disregarding the Pauli principle
during parts of the calculation. Thus it can be transfered to field theory
which automatically assures the Pauli principle. Furthermore, with this
method scattering states can possibly be defined, even if channel M011er
operators do not exist (a discussion of these questions is given in the
review article of BRENIG and HAAG [3]).

Refering to EKSTEIN'S basic idea and generalizing them HAAG [4] has
defined' 'in "-respectively' Όuf-states for the scattering of (in general com-
posite) particles in the relativistic field theory. Furthermore he proved the
existence of these asymptotic states. This proof was made rigorous by
RUELLE [5] under the premises of the Garding-Wightman axioms and
additional spectral conditions. Especially, RUELLE was able to show the

* Present address: Physikalisches Institut der Universitat Bonn.
1 See, e.g., Ref. [2].
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validity of the "spacelike asymptotic condition" decisive for HAAG'S
treatment. The physical and formal transparency, achieved in these
papers, suggests the study of the analogous, but more simple, problem in
nonrelativistic multichannel scattering theory, considering the procedures
used in these papers.

In what follows Sec. 2 explains our notations and assumptions. Cor-
responding to the prescription of Ref . [4] in Sec. 3 multiparticle operators
are constructed which upon acting on the vacuum state create bound
states. In Sec. 4, using these operators, we form time dependent Hubert
vectors and define scattering states as their limits in time. The existence
of these states is proved in Sec. 5, by showing first the convergence of the
above mentioned multiparticle operators to asymptotic "in"- and "out"-
operators. The proof, which is related to the procedure used by COOK and
HACK [6], [7] and discussed in Ref. [3] is done under two different
assumptions for the potential (compare (5.13) and (5.20)). The commu-
tation relations for the asymptotic operators are given in Sec. 6. Further-
more we show (Sec. 7) that the Hubert spaces spanned by the scattering
states are defined independently of the special choice of wave packets
used for the construction.

The considerations carried out in the following are done with respect
to the nonrelativistic multichannel scattering theory, but can also be
regarded as an illustration of certain methods (mentioned above) in
relativistic field theory by a familiar, physically completely inter-
pretable theory. Of course, the differences in detail should not be over-
looked.

2. Assumptions and notations

A system of identical bosons or fermions of mass m will be treated.
The ^-particle Hamiltonian in configuration space representation is
given by

#<«> (x1; . . . , xj = - ~ Σ n + Y Σ F(*i - x3 ) (2.1)
i = 1 i 4= /

where we take U—\. For the (real) potential F(x^ — x, ) we further
require F(x^ — x, ) = F(x3 — x^).

Instead of this representation we shall use the field theoretical
formulation2 especially suited for multiparticle problems, i.e., field
operators ψ(x) are introduced which satisfy the commutation rules

[V(x'),V+(x)]τ = 3(x '-x) ,

- 0 .
2 Concerning this method compare, e.g., Ref. [8], Chap. 6, where further

literature is given. For applications of this formalism to nonrelativistic scattering
theory, see, e.g., Ref. [9].
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In (2.2) the commutators hold in the boson case, the anticommutators
in the fermion case. Here and in the following the variable x includes
also the spin variable, if particles with spin are considered. In this sense
the integration over x means simultaneously summation over the spin
variable. With the help of the operators ψ (x) the Hamiltonian, introduced
by (2.1), is written in the form

(2.3)

)^+(x) F(x'- x)y(x)y(x ' ) .

This representation of H is independent of the particle number n, thus it
combines the operators H(n) for arbitrary n.

To fix the notations used in the following we summarize some further
important relations. By applying the field operators ψ+ (x^) on the vacuum
ΦQ one gets the (anti-)symmetrical position states

x J . - . y + ί X n J Φ o (2 4)]/n\

which are (impoper) eigenvectors of the particle number operator

N = f (Z3 x ψ+ (x.) ιμ (x) (2.5)

and of the center-of-mass operator

belonging to the eigenvalues n and— (xx -f -f- xn), respectively.
71

The total momentum operator has the form

(2.7)

thus the energy operator of the center-of-mass motion is

ZLJΓ TJ1 /O Q\n. — n. = ~nj^— w °)

By the transformation
iHt (2.9)

Heisenberg operators ψ (x, t) are associated to the Schrόdinger operators
y(x) which satisfy equal-time commutation relations corresponding to
(2.2).

We note that under the assumptions (5.13) or (5.20), required in
the following for the potential, the Hamiltonian given by (2.1) or
(2.3) is essentially self-adjoint if Hubert spaces & with finite
particle numbers are considered [10]. That is, the closure of H is self-
adjoint. In (2.9) and in the following H shall designate this closure. Thus
e±ίst is uniquely defined in the whole Hubert space tff.
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Finally the relation

tyί (x, t) = MX, *), #] = (- 2̂ - PI + 17 (x, *)) V(x,ί) (2.10)

with
C7(χ, ί) = C7+(x, ί) = f d*x' y+(x', 0 F(x' - x) y(x', 0

should be mentioned.

3. Multiparticle field operators

For the description of multiparticle bound states we introduce
^-particle field operators (compare [1], [4], [5])

r r= 7 d*xι- J <Pχn

(3J)

The functions ^(x — xl5 . . . , x — xw) shall now be restricted in the
following way:

I. / d* x / (x) gv (x — xl5 . . . , x — xw) is square-integrable in X1? . . . , χn,
i.e. ξ L2(R*n), for all test functions /(x) of the class &> [11].

II. 0v (x — xl5 . . ., x — xn) is a symmetric function of the variables
(x — xz ) in the boson case, an antisymmetric function in the fermion
case.

III. gv(χ — x1? . . . , x — xj is chosen such that the state 5^v(x, 0)Φ0

describes a particle system with the center-of-mass x, i.e., this state is an
(improper) eigenvector of R to the eigenvalue x :

EJB+y(x,0)Φ0 = χ JB+^(x,0)Φ0. (3.2)

From (3.2) it follows (by suitable normalization)

J 9v (x ~~~ xι> ? x xw) ^(x ~~ Xι> . . . ? x ^Tϊ) X
x eZ8x1 . . . c^3xn = δ(x' - x) . (3.3)

IV. Furthermore gv (x - JLV . . . , x — x^) has the property that
j^+^x, 0) operating on the vacuum creates a %-particle bound state of
binding energy Ev. By (2.8) this property means3

(#'- J0,)B+,(x,0)Φ0 = 0. (3.4)

For an alternative formulation of condition IV we regard a system of
solutions of the free one-particle Schrδdinger equation with mass
M = n - m:

. (3.5)

The /« (p) (ί ̂  are chosen to form a complete orthonormal system inL2(^3).
3 The construction of the fields jδTC(J,(x, 0) can be called "solution of the one-

particle problem" [1], [4] if each w-particle bound state is called "one particle of
mass M = n m".

25 Commun. math. Phys., Vol. 3
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Defining

/£(x, 0 eίErtBn,Λx, t) (3.6)
we have

#.,(ί)Φo = / rf'P /.(P) « ̂ ~^~* ί̂,(P, 0)Φ0

 (3 7>
with

+ 4JBB>r(x,ί). (3.8)

6^v(p, 0)Φ0 is an (improper) eigenvector of the total momentum P. It
therefore follows from (3.7)

&ί«, (0 Φo = «*<='-*>* &+„ (0) Φ0 . (3.9)

This implies that condition IV is equivalent to

0. (3.10)

Now we have

x (3.11)

X - = y+ (x1; ί) . . . Ψ+ (xn, t) + t f f i x/β (x, ί)β-*

ffr - Xl, . . ., x - χn)-i=v+(x1> ί) . . .y>+(

Eq. (3.10) gives, since Ufa, t)Φ0 = 0,

f ̂ "if ^ + τ^7(χ,-χ, )] x (312)

X flf*(x-x1,...,x-xn) = 0.

Thus (3.4) or (3.10) leads to the eigenvalue problem (3.12) which fixes
(together with condition I, II, III) the binding energies Ev and the cor-
responding eigenf unctions g* (x — x1? . . . , x — xn), where v contains all
the quantum numbers necessary to characterize the eigenfunctions.

Eqs. (3.11) and (3.12) yield, with condition II,

n0*(x- x1? . . .,x- xjx

, t) *7(Xl, t) . (3.13)

Finally we note the estimate important for subsequent use

IMx, *)l ^ - δ ϊ
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which can be proved immediately [12] if one considers that from (3.5)
follows (for f Φ 0) :

with/α(x, 0)ζ &.
4. Scattering states

With the help of the creation operators b^.x.v. (t) we now construct a
system of time dependent Hubert vectors

&n(t) = Φ(nl^ ..... w* = b+XΛ(t) . . . b+w(t)Φ0, (k < oo) . (4.1)

The strong limits of these vectors
put put

φin __ φin _ lίm φ(0 (A O\
^η Ψnί<z1vl,...,njίΰckvk

 lil|i ^nlκlvί,...ίnjcockVk \* Δ)
I — > -Jz OO

are defined as scattering states, which are associated with certain initial
("in"-) or final ("out"-) configurations, characterized by the quantum
numbers (n^&^v-^ . . ',nkocjcvjc) = η. The Hubert space, i.e., the closed
linear manifold spanned by the in- (out-) Hubert vectors is called4

The definition of scattering states by (4.2) is meaningful and in accord-
ance with the one given first by EKSTEIN [1] and discussed in the review
article of BBENIG and HAAG [3]. This can be seen by writing (4.2) in the
form

lim \\φf - φn(t)\\ = Urn ||
t— > ±00 ί— >• i oo

ΛI Pi *ι,.

= 0

where 6+,̂ , 0) . . . 6^ iVA!(pfc, 0)Φ0 = Φ%PI, l t t m m ι nitWk has been introduced.
Eq. (4.3) shows that for sufficiently large positive or negative times the
Schrόdinger states e~~ίHtΦ^ differ "arbitrarily little" from a wave
packet of free moving (generally composite) particles, characterized by
the quantum numbers η ~ (n^oc^v^, . . . , nkockvk). It should be noted that
<yfex according to the definition (4.2) contains besides the scattering
states in the proper sense (k > 1) also the bound-states

0.
Because of (2.2) we have

[δi«,,4(
ί),&ΐ^(0]τ = 0 (4.4)

where the anticommutator holds in the f ermion case if ni as well as n^ is
odd, and the commutator in all other cases. Correspondingly the states
Φ^x are (anti-) symmetric with respect to an interchange of the sets of
indices (^α^) and (

4 We often use the designation "ex" for either "in" or "out".
25*
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5. Proof of existence

To prove the existence of the scattering states defined by (4.2) we
have to show the (strong) convergence of the Hubert vectors (4.1).
Instead of doing this directly5 we first prove that under certain assump-
tions for the potential the operators b^κv(t) converge on all vectors Φ of
the Hubert space <2FN if &N contains only finite particle numbers
n ^ N < oo. That is, we show that the norm

becomes arbitrarily small for sufficiently large |̂ | and either t2> tl> 0

or £2 < ^ < 0. This norm can be written in the form

which holds, because the integrand exists and depends continuously on

t in the norm topology6. The immediate consequence of (5.1) is

(5.2)

which leads to the sufficient condition for the strong convergence of

^ const |f|-ι-v, γ > 0 . (5.3)

To prove this estimate we regard the vectors

φω = y cZ»yι . . . y ePjr, JF (yl5 . . . , y,) ̂  γ>+ (yι) . . . V+ (y, ) Φ0 (5.4)

of the Hubert space 3tf M with fixed particle number /. The functions
Ffti, - •> y5 ) ζ L2(R3j) are chosen to be (anti-) symmetric in the
(fermion-) boson case. This yields

HΦ#>|» = fd?7l...f d^ \F(ylt ..., y,)|2 . (5.5)

Defining the operators

6ί«,(ί,0) = e-'»'6+β,(ί)e'*' (5.6)

which are given explicitly by (3.13) having replaced there ^(x^, t) and

f7(x1? £) by ψ+fai) and ί7(xl5 0), respectively, we get

x

X d 3x/α(x, t) 0*(χ - x1? . . .,χ - xj x (5.7)

5 A direct proof is given in Appendix C.
6 The continuous ί-dependence follows from similar considerations used below

for the estimate of (5.1) if the potential fulfils (5.13) or (5.20).
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With the help of the inequality

+ . . . + x Φ 0 | | 2 ̂

following from SCHWAKZ' inequality for functions v(x1? . . ., xfc) £ L2(RBk)>

one immediately has

a . . . d x, / d»yι . . . tPji X

X /cPx' /*(*', t)gv(x' - xlt . . ., x' - xj /d"x/ β(x, ί) X

X jr? (x - X1; . . . , x - XTC) 7^ (Xl - yι) I J1 (ft, . . . , y3.)|2 (5.9)

d?r f d3y^ . . . d3js x

Ύl * Ί

Here the abbreviations K(n>^ — . _ , '. _ ,. t (n + j ) l , xx — yj = r,

(|r| = r) and

G(x', x) = /c^ 3x 2 . . .fd*xngv(x',x' - xa, . . ., x
; - xj x

*/ ,(5 10)
X ^ (X, X - Xa, . . . , X - Xn)

have been introduced. The special properties of the functions gv, shown,
e.g., in Eq. (A.2), imply

G(x', x) = ό(x'- x)G(x) (5.11)

where, as a consequence of condition I, β(x) is an integrable function for
n Φ 1 and equals δ (x) for τι = 1 7. Thus the inequality

(ί, 0) ΦJPI g JΓ(" « fd^fd^fd^,... (Z3y, x

x |/α(x + r + yl5 ί)|2 G(x) F2(r) \F(ylt . . ., y}.)Γ '

holds, which is essential for this proof.
If F(r) satisfies the condition [6]

/ F 2(r)^ 3r<σo (5.13)

Eq. (5.12) yields, under consideration of (3.14), the estimate

^^^^ U - (5.14)

Here cα > / is independent of F, hence έjαv(ί, 0) is a bounded operator
on tff ^. Considering (5.6) it follows from (5.14)

7 The proof is given in Appendix A (see Eqs. (A.7)—(A.9)),
25a
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i.e., the sufficient condition (5.3) given above for the convergence of

&nav(0 is fulfilled. Therefore b^av(t) converges on fflW and thus on every
N

Hubert space 3ίfN = Σ ® ̂ ω ^h N < °° We should stress that
7 = 0

Eq. (5.15) implies not only strong bub even uniform operator convergence

on ̂ N

8.

The convergence of the states (4.1), i.e., the validity of (4.2) follows

immediately from the strong convergence of the operators b^ΛV(t) and of

their boundedness with a bound independent of t. To show this bounded-

ness we define, similarly to (5.6), the operator

&ί«,(t,0) = e-<ιrίδ+[,(ί)e<fft (5.16)
and get, with (5.8),

!&+„(*, 0)<^|« <: ~~(n + j)\\\Φ$\\*. (5.17)

The same estimate holds, of course, if b+xv(t, 0) is replaced by b+ΛV(t).

This completes our proof.

With the definition

6+J? = δ+- = lim &+„(<) (5.18)
ί—> i oo

the scattering states (4.2) can now be written in the form

Φex _ ij+ ex 7)+ex fa ικ Ί Q\
Wι«ι *ι,...,***«*"* ~ °n1«ίvl

 ϋnk<Xkvk^O - (O.LV)

The existence of these states can also be proved under the following

assumption for the potential [7]
r = rϋ

/// V2(r) d3r < oo for arbitrary but finite r0
r = 0 (5.20)

|F(r)|^-^, ^>0, for r>r 1 (r 1 >0, fixed).

Using similar considerations as above we show in Appendix B, that

fcwΦ^li ^ |^r||ΦW||, Cα,, = cα,,(g , (5.21)

holds, with γ > 0, if only \t\ ̂  t0 > 0. Thus (5.3) is fulfilled, i.e., the

operators b^xv(t) and therefore the states (4.1) converge.

Finally we note that from the boundedness of b^xv(t) on ̂ N one can

conclude that bnΛV(t) is also a bounded operator on 3?'N with ί-independ-

ent bound. Furthermore, from the estimates (5.15) or (5.21) the conver-

gence of bnoιv(t) can be derived. If, e.g., (5.21) is valid, Eq. (5.2) yields

ll ^ -TW IIΦo ' l l , v > o (5-22)
8 The norm defining the uniform operator topology depends on the particle

number of 3Fs.
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It hence follows

»(δ«.,(<2) - *W(y)Φ(ί)I2 rg Iφωjl f^ ||(6nβ,(g - 6nβ,(ί1))ΦWl (5.23)

and therefore

- |Φ(ί)il (5.24)

(for 7i > 7 we may set c'Λj__n = 0). As the right-hand side of this inequality
becomes arbitrarily small for sufficiently large |ίx the convergence of
bnxv(t) is proved on 3tfW and thus on the Hubert space ^fN.

This justifies the definition analogous to (5.18)

δ£, = &$»«= lim δ»«(0 (5-25)
ί-> ± oo

6. Commutation relations

The convergence and boundedness of b^xv(t) and b n < x v ( t ) yield

out out out out

fc, δSWk = [b+£, δfίίV]τ = 0 . (6.1)

Furthermore, defining

[δ««ΛO, #«V(«)]=F = <UΛ« <U + 4L.,«'α'/ (6.2)
we have

out out

K ί

n

α,,,6+-iV]τ=άn«'<5αα'<5w-+ lim ^L.n'.-v (6.3)
ί-> ± oo

We show that
lim ί$U.n.βv = 0 (6.4)

ί-> i oo

Λvhich implies
out put

$?«,,#]?/]* = a.» d.«Λ, . (6.5)

First we note that «$av,tt'av equals zero for τι = ri = 1, otherwise it
is a sum of terms

d(t) = const / d3x / cZ3x' / cPx! . . . d3xn / ^3x^ + 1 . . . ̂ 3x;, x

X /* (x, t) gv(x - x1? . . . , x - X;, x - x f + !, . . . , x - xn) x
(6.6)

x /α'(χ r

? 0 g#(χ' - χι, . . . , x' - χ<, x' - χί + 1, . . . , x' - <0 x

X

where in any case ί Φ 0 holds and for n ~ n' in addition i ^ n.

We now define, analogously to (5.6) and 5.16),

(6.7)
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and get, with the help of (5.8),

\\d(t, 0)<Zf I* ̂  const ||ΦP||* / d»x,+1 . . . ePx, / d»y,+ 1 . . . d»yn X

X {|/ ί»Xl . . . d x, / d»yι . . . ί»y, / d»Σj + ! . . . d*x'n, X

X /ePx/*(x, ί)g,(x- x1( . . ., x- xj X

X

X f d 3 y f x ( y , t) gf(γ - y1; . . ., y - yj x

x/^y'/?(y',<)^(y'-y1,...,y'-y ί,y'
Under consideration of (3.14) the estimate

(6.9)
follows, which can be obtained by manipulations similar to those used in
Sec. 5. However, not the behaviour of the potential, but the strong
decrease (for large |^|) of the bound-state functions9 hv(ξl9 . . ., f^.^)
is important in this case. For the validity of (6.9) it is already sufficient,

n-l

that 1 (̂1?!, . . . , lFn-ι)| can be estimated by const fj |̂  |~3~ε, ε > 0, for
ί=l

large ||f|.

In (6.9) the operator ά(t, 0) can be replaced by d(t) and therefore our
statement (6.4) is proved. It should be noted that the commutation
relation (6.5) together with

0 (6.10)

implies the orthogonality of "in"- resp. Cίout"-states with non-identical
sets of quantum numbers

out
7. Uniqueness ofJ^ίn

For the construction of the operators b%ΛV(t) a special complete
orthonormal system of functions /α (p) ζ £f has to be chosen. Starting

from a different set of functions /α (p) £ ̂ , we can introduce the cor-
responding operators b^ΛV(t) which lead to operators &+α

e

v

x and states Φex

as it was described in the previous sections.

From the completeness of the /α (p) we now have

= Σ

where /α(x, t) is given by (3.5), with /α(p) instead of /α(p). As a con-
9 These functions and the variables ξ( are defined in Appendix A.



Definition and Existence of Multichannel Scattering States 369

sequence of Eq. (7.1) the right-hand side of the inequality

«v« - Σ <Wδ+,,

β (7.2)

g const / |/α(x, 0) - Σ <W/« (x, 0)|2 d»x|e-'ff 'ΦjPl"
α' = 1

becomes arbitrarily small for sufficiently large values of α10.
Hence

&=f <wδ»+£ (7-3)
α' = 1

and therefore
Φex = F c / c / Φex / / (7 4Λ-^W^Vi, . . . , W ; f c α & V f c ^ ^αι«l ' * ' <*&<*£ ^%<*li>i, ..., ft* α*v* \ t ^:/

«{...«*

is valid, which shows that Jfίn and J^out are defined uniquely, i.e.,
independently of the particular choice of the functions /α(p).

Thus we may introduce distribution valued operators δ^x(p) with

δ^x = /d 3p/α(p)δ+Γ(p) ' (7.5)
and

έ+α

e,x = /^ 3 P/α(p)^f(p). (7.6)

Now it can easily be seen, that ^^(Pi) . . . δ^,e^(Pfc)Φo is an improper
eigenvector of H to the eigenvalue

«2 p2

gjζ- + ̂  + + -̂  + EVk . (7.7)

To show this we write
ft+ex _ i^ t+ / . \ __ i p-iHτh+ (f\ piHτ
unav ~~ . UJΓ °n<xv(t ~ ?) ~ t

 πm e Q.nκv,τ\t) e
ί->ioo ί->±oo /y g\

_ p-iHτ 7)+ ex ^Fr
~~ 6 Qnoιv,τV

where δ^αr>τ(£) is given by (3.5) and (3.6) with the test function /α(p)
replaced by

Eqs. (7.8) and (7.6) yield

eίπτb+™ e-iπr = δ+exτ = j d»p ̂ ^(p) 6+«(p) . (7.10)

First differentiating this expression with respect to r and then setting
τ = 0 we get

[H, &+«] =_/>p (3^ + ̂ ) /«(p) ^,ex(p) . (7.11)

From this the statement follows at once.
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10 That is, 1>nΛV(t), considered as operator- valued function of /α(x, 0)ξL2,
depends continuously on /α.
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Appendix

A. The Functions gv(x — xl5 . . . , x — xj

The conditions I.— IV. given in Sec. 3 fix the functions gv(x — xl9 . . . ,
x — xn) introduced by Eq. (3.1). For their calculation it is convenient
to use Jacobian coordinates (see, e.g., [13]):

(x— Xl) + + (x— x,) Xl + 4- x,
9i = - 1 -- V X — Xz+l) = X*+l -- 1

( i = l , . . . , r c - l ) (A.I)
. (X— Xj) H

Then Eq. (3.2) implies

gr*(x - xl5 . . ., x - xj - &(x - rn, f f i , . . .,!„_!)

Λvhere, due to condition I, we have

*r(lι, ...??n-ι)6^2(^3n-3) (with respect to ?1,...,|n_1). (A.3)

From (3.12), which is equivalent to (3.10) and (3.4), respectively, one now
obtains

'' (A.4)f-
L i

with

//4 ί ' m m \ /
and

t — 1 ?'~2 1
^ - x, - x, - £_! — — — ?,_! + 27 T ?fc ' for ί > * (A 6)

k = ί

Thus hv(§l9 . . ., ljn—ι) is an eigenf unction of the ^-particle Schrόdinger
equation with separated center- of -mass motion.

Eq. (A. 2) yields at once the property (5.11). Substituting (A. 2) into
(5.10) we have, for n =J= 1,

x. . . f d*xn

where the variables ^^ are defined by (A.I) setting there Xj = 0. We now
put

to get lastly

ό χ ' - x rf3 . . . <?§;_! |ί,(x, fέ, . . ., ι;_ι)i2

( }
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From hv ζ L2 it follows Kv £ L2 (with respect to all its variables), and
therefore (?(x) is an integrable function of x.

We mention that in the special case n= 1 Eq. (A. 2) gives

Bnβ x ίx, 0 = / cPxx <5(x - xj v(Xl, ί) - γ>(x, <) . (A.10)

Finally it should be stressed that we could have also started by first
defining the functions gv(x — x1? . . ., x — xn) by (A.2) — (A.4). After-
wards constructing ?ι-particle operators b^xv(t) by (3.1) and (3.6) the
property (3.10) could have been proved. However, the method used in
Sec. 3 shows more transparently the general points important for the
construction of scattering states. Furthermore, this procedure is closely
related to the one employed in the relativistic case [1], [4], [5], where
it is impossible to start with an analogue of Eq. (3.12), while condition
(3.10) can still be used [4].

B. Proof of (5.21)

In this appendix the validity of (5.21) is shown under the assumption
(5.20) for F(r). We start with the estimate (5.12) abbreviating its right-
hand side by J ( t ) . We now split up the integral J ( t ) into three parts:
J ( t ) = Jι(t) + J2(t) + J3(t) such that

0 ^ r ^ rx in Jx

r^r^m in J2 (B.I)
to

-~- TI ^ r < oo in J3

with \t\ ̂  ί0 > 0. Therefore it follows, with the help of (3.14),

F«(r) d«x (?(x) \\Φψ\* ^ —- \\Φψ\\* . (B.2)

From (5.20) one sees, that in the integral J2 the estimate

|F(r)|g^, β>0 (B.3)

can be introduced. Using again (3.14) we get, in the case β =j= 1/2,

£ const

For β = 1/2 the estimate
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implies at once

In J3 we have

and therefore

W. SANDHAS:

(B.β;

(B 7:

3

where

flίf [|2 ίS

(B.9

has been used.
Thus from (B.2), (B.4), (B.6) and (B.8) we conclude

(B.io
with

and
y = j 8 for / ? < l / 2 , 7 - 1/2 - ε for 0=1/2

y - 1/2 for 0 > 1/2 .

The same estimate holds, of course, if δίαv(£,0) is replaced by δ^"αv(ί)
Q.ED.

C. Alternative proof of existence

In the following we show directly the convergence of the states (4.1)
not proving first the existence of 6^α

e

v

x, as it was done in Sec. 5. Thi
procedure is somewhat more related to the one used in the relativist!
case [4], [5]. Furthermore it allows to weaken the assumptions on th
potential slightly (see C.15).

Analogously to (5.3) a sufficient condition for the convergence o
(4.1) is:

Because of

£ Σ IftUΛO *iUnW *iU
i = 1

= Σ Ii(
ΐ = 1

we have to consider terms of the form

I i ( t ) = ̂ ^(t, 0) . . . b+XiVi(t, 0) . .. 5+^,(ί, 0)Φβl

where the definitions (5.6) and (5.16) have been used.

(C.2

(C.3
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Now, with the help of (3.13), one obtains

tiitwV, 0), b+^t, 0)]τ = b± (t, 0) (C.4)
with

δ.j (t, o) = / <z»xί . . . d*x'nί / <pχί' . . . <z»j£ x
x w(*{, . . . , <,; xi', . . . , xQ γ»+(xί) . . . y -(x^) V

+(x") y+«)

and

x <7*(x, - xί, . . . , x, - x;.) F(xi - xi') ^.(x, - xi', - - . , x, -

To simplify the notation we write

δί^(«,0) = δi

+ (C.7)
and thus it follows

Ii(t) £ Σ |δί - - δtΛ+

+ i . . δ,-Λ++ 1 tf ^ (ί, 0)Φ0J . (C.8)
?' = ΐ + 1

Here we have used, besides (C.4), that b^(t, 0) (anti-)commutes with
bnκv(t> ^) -A 8 & was shown in Sec. 5 the b£ are bounded operators (see
Eq. (5.17)), i.e.,

/,(0^ const- Σ ||^(^0)Φ0H (C.9)
j = ί + l

holds. With the help of (5.8) we find

^3r χ

^
x /«* (y<, 0 /«, (x* 0 /ί (y, + r, 0 /αj (x, + r, o x

X F2(r) Gijdi - xf, y, - x, , x,- - x, )

where x^ — x^ = r has been introduced and

Giίtii - Xi, Js - xy, x< ~ x/) = / ̂  I ί84 - - ̂  / ̂ 3χ2 - ̂ < x

x gVi(Si - z, y< - Xg, . . . , yf - xή$.) g* (x< - z, x^ - Xg, . . . , xf - x^) x (C.ll)

X gvj(jj - z, y^ - Xg , . . . , y, - xQ ^*(χ3. - z, x, - xί,' , . . . , x, - x^) .

Considering the specific properties of the functions gv (x — xl5 . . . , x — xn)
given in (A. 2) we obtain

where the 5^(x^ — x; ) are ό-f unctions or, as a consequence of condi-
tion I, integrable functions (compare the corresponding property (5.11)).

Therefore the estimate

δ* (t, 0) Φ0||« < const / d» x, / d» x, / d»r x
(O.loj
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follows and we find, if (5.13) or (5.20) is fulfilled (cf. Appendix B):

, y > 0 . Q.E.D. (C.1

The validity of (C.I) can also be shown under the following somewhat

less restrictive assumption for the potential [14] :

There exists an e > 0 such that

f (r + i)β-ι 72 (Γ) dsτ < oo (C.15)

(without loss of generality we take ε ̂  1).

Using instead of (3.14) the estimate [15]

valid for any β ^ 0, we obtain by virtue of (C.13)

Q.B.D.

We note that for the proof of this inequality the strong decrease of the

bound-state functions (A. 2) and therefore of $^(x) (for large values of its

variables) is important. It already suffices if / d*x\x\l~ε (5^-(x) exists,

which is fulfilled, if the same property holds for \hv(ξl9 . . ., fn_ t)|2 with

respect to each of its variables.
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