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On a Method for Solving the Inverse Problem
in Potential Scattering

M. BLAZEK

GSAV Fyzikalny ύstav SAV, Bratislava, Czechoslovakia

Abstract. A method for solving the inverse problem in the non-relativistic
elastic scattering theory, using the analytic and asymptotic properties of the
scattering amplitude is proposed and the influence of the discontinuity parameters
of the scattering amplitude on the properties of the resulting potentials is discussed.
The case with spherically symmetric forces and without bound states is considered.
The possibility for solving the inverse problem by this method, leading to the singular
repulsive potentials is mentioned.

I. Introduction

The present investigations in the non-relativistic potential scattering
can be divided into two groups, i) the direct investigations where a
definite class of potentials is assumed and the properties of some in-
vestigated scattering functions are to be determined and, ϋ) the inverse
investigations proceeding from the known scattering quantities and the
acting forces in the Schrόdinger (or Schrόdinger-like) equation are to be
found.

In the first mentioned group of investigations, usually the charac-
teristic properties of one of the following functions are determined: the
scattering amplitude A(k, cos$) (k is the c.m. momentum and & the
c.m. scattering angle), the partial wave scattering amplitude Al(k)
(I is the physical angular momentum), the Regge function A (λ, k) (λ is
the complex angular momentum), the Jost function fl(k) and/or /(λ, k),
the conical amplitude, etc., in general an arbitrary scattering function or
its coefficients in a series expansion. In this direction, there were in-
vestigated e.g. the analytic properties of the various scattering amplitudes
in various complex domains, the validity of the Mandelstam representa-
tion for the scattering amplitude or of an integral representation for the
Jost function or for the conical amplitude or for the Regge parameters,
customarily, considering the class of Yukawa forces [1]. Some survey
papers deal with these problems (see e.g. [2]).

In the second of the above mentioned group of investigations one
proceeds from the known properties of the scattering amplitude or of
any function whose properties are derivable from the latter, and the
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methods of finding the scattering potentials in the Schrόdinger equation
are to be established. The investigations in this direction, taking into
account also the application of some approximation methods are in
details less elaborated than in the former case. First investigations were
originated by C. MΘLLER, C. E. FROBERG, N. LEVINSOISΓ, E. HYLLERAAS
and others. More details can be found in the survey paper [3] see also [4].

The solution of the inverse problem is interesting also from an other
point of view, namely if the scattering process is described by the
scattering amplitude which can be determined by more independent
ways, the problem of mutual internal connections of these ways there
arises. The solution of the inverse problem contributes to the under-
standing of this connection.

The potential can be obtained from the scattering quantities,
schematically by means of the following three methods,

a) the first Born approximation, or any other series expansion which
relates the potential with the scattering quantity (we include here also
the method of J. CHARAP and S. FUBINI, and of others),

b) the direct use of the Schrόdinger equation with some Ansatz (as it
is customary for the Jost solution); these works apply usually the
original methods of V. BARGMANN [5],

c) the analytic properties of the scattering functions under con-
sideration in certain complex domains.

For instance, using the analytic properties of the Jost functions
iι(lc) or f(λ, k) in the k- or λ-complex plane, the solution of the inverse
problem follows usually the original papers of I. M. GELFAND and B. M.
LEVITAN, and R. JOST and W. KOHN [6] (see also [7]) where the spectral
function technique is applied for the problem under consideration. This
is demonstrated e.g. also in [8], where the inverse problem in the complex
angular momentum plane is solved. However, an other method for
determination of the potential is established in [9] the analytic proper-
ties of the zero angular momentum partial wave scattering amplitude
in connection with the Fourier transform technique are there used. The
generalization for higher waves by means of the Hankel transform can
be found in [10]. By means of an Ansatz for the Regge function the
problem is partially solved in [11] where the first Born approximation is
used for the determination of the potential.

The different ways of the solution of the inverse problem lead to the
different classes of potentials. The peratization technique used in the
last years, pointed out the convenience for finding the solution of the
inverse problem for potentials singular and repulsive at small distances
the recent direct investigations in this field are rather extensive. Since
only the Gelfand-Levitan's procedure is usually used for solving the in-
verse problem in what follows we emphasize the other procedure (be-
20*
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longing to the methods mentioned above sub c)) allowing to determine
the potential directly by means of the basic properties of the scattering
amplitude. It would be convenient to extend this method also for
problems leading to the singular potentials.

After the next section of preliminary relations we derive the basic
integral equation in the Sec. III. The discussion is performed in the last
section.

II. Preliminary relations

1. The Schrόdinger equation Hψ = f i p + Uψ = Ey leads for the
spherically symmetric potentials F = V(r) to the equation (H = 2m = 1)

l(t,f) = 0 (i)
where

Ψ = Σ (2Z+l)-^^ P l(n 1-n a) (2)
ϊ = 0

(the Pj's are the Legendre polynomials, nx is the direction of the ingoing
and n2 of the outgoing particle). It is obvious that the non-local inter-
action of the form

Uy = f V(r; nx n)Ψ(k, r; n - na) dΩn (3)
βn

leads also to the same radial equation (1), the only difference being now
in the Z-dependence of the potential Fz(r). This is seen using in (3) the
series expansion (2) and1

4f (r; n na) = £ W + l) ?ι W pι(*ι ' »a) W
ι = o

Therefore, solving the inverse problem for each partial wave separately
we obtain a potential for each partial wave and this leads to the non-
local interaction of the form (3). In general, one does not know the con-
ditions securing the locality of the interaction, obtained by solving the
inverse problem for each partial wave. Usually it is assumed only that
the non-locality is weak.

2. It is customary to consider the potentials with finite first and
second absolute moments [2]. In this case we can express the solution
of the radial equation (1) by means of the free particle (V ~ 0) solution

u,(k9 r) = u™(k, r) + f K t ( r 9 1) u\<»(k, t) at . (5)

1 From the latter, non-local case expressed by eq. (4), the former, local case
00

follows using the relations F/(r)-> V(r) and Σ (2Z+ l)Pj(ivn2) =4πό(n! — n2).
!=0
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In (5) a is a fixed boundary value and Kl (r, t) is the kernel of this integral
transform. Introducing (5) into (1) we get

) 1(1+1) -g.M) HI + 1) .

F(r) = - 2 - (βb)

(in general, V = Vl (r)) and the boundary condition

0. (6c)

In the Gelfand-Levitan's procedure, the transformation (5) by means
of the regular solution is used. In this case Uι®(k,r) = krjl(kr)~
~ φi®(k, r)2, and further a = 0, ^z -> — ̂ z. The ?Ys are the spherical
Bessel functions.

If the Jost solutions fl (k, r) of the radial equation (1) are to be used, the
more natural way in this case is to put in (5) a = oo and u^ (k, r)
= i-d+ι> kr h\2)(k, r) == /{<»(&, r)3. The spherical Hankel functions of the
second kind hψ> (z) are given by

2 j l ( 2 ) / 2 j \ __ ? ϊ+l p-ί« p 1 (? + 8) ! 1
«^ (z)-ι e 2, o«(ί!) (2 — β)! (Ϊ2)- ' ( / j

s — u

The transformation (5) has now the form

By means of (8) the influence of the repulsive barrier term in the radial
equation is separated.

3. Let us consider an integral equation of the type

Zz(r, σ) + /Zz(r, ί) **,(*, σ) cίί + ̂ (r, σ) = 0 (9)
r

where K l (r, σ) is an unknown function and Fl (r, a) is given by

s
Fl (r, a) = const / Ml (k) u(^ (k, r) u\Q) (k, σ) dk . (10)

In (10) A and B are fixed and Ml (k) is an arbitrary (in practice a known)
function. Substituting (10) into (9) we can show by direct computation

2 We use the regular solution φι(k, r) of (1) defined by lim [>-<ι+ι> φt(k9 r)] — 1.
Ύ — >0

3 We use the Jost solution ft (k, r) of ( 1 ) normalized by lim [ft(k, r) exp (ikr)] — l;
T — >oo

/J0)(&, r) is the free-particle Jost solution.
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that the following equation holds

g) Kl + l) rr . Λ d*Kι(r,σ) 1(1 + 1)

with the boundary condition

M!^3..κ,(r.nί^!L].Λ. (lib,
Hence, if we define

-2^W(r) (lie)

then the relations (6) are reproduced. It is obvious that from (11) we get
the Schrόdinger radial equation (1) with the appropriate boundary con-
dition.

The solution of the inverse problem by means of the methods men-
tioned in the introduction in category c), leads usually to the integral
equation of the form (9). However, introducing now a priori the equation
(9) with the definition of the potential (lie), we obtain the Schrόdinger
equation (1) and its solution in the form (5).

4. We introduce the functions JΓ, ̂  and N

r, σ; nx - na) - Σ(2l + 1) Kt(r, a) Pl(n1 n2)

(r, cr; nx na) = Σ(2l + 1) Ft(r, a) P^ - na) (12)

r, σ; t; nx na) = Σ(2l + 1) ttj
0>(*, r) wj0>(i, σ) P^ na)

(we sum up from Z == 0 to Z = oo). The basic integral equation (9) can be
expressed by means of (12) in the form

f dt f jf(r, ί; % - n)J^(ί,σ;n na) +

where
B

&(r, σ Πi na) = const j dk \ ~~^~^^^ nι * n)^Γ(r, σ; -4;n na) (14)
JL βn

and

uT(4, D! - na) = 2? (2Z + 1) Jf,(t) Ptfa na) . (15)
j = o

The potential function (4) is now given by

^(r Di na) = -2d JtT(r, r; ̂  - n2)jdr .

In the Gelfand-Levitan's case (see e.g. [6], [8]) there is in (10)

MI(® = LlΛW ~ I/ΓWN k~21' A = °? ̂  = °° *
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The fι(ky$ are the Jost functions and for the free particle case we have
fl®(k) = [(21 + 1) ! \]/(ik)1. We see that the quantity (15) has in this case
no physical meaning. However, the procedure developed in the next
section leads to the basic integral equation of the form (9) with the
function M^k) equal to the partial wave scattering amplitude Al(k).
Hence, the function (15) is the scattering amplitude jtf(k, cos$) and the
inverse problem is solved by means of its basic properties.

III. Derivation of the integral equation

1. We proceed from the well known relation between the regular
φl (k, r) and the Jost ft(k, r) solutions of the radial equation (1)

Introducing the $-matrix element by St(— k) = (—\}lfl(—lc)lfl(k) we
obtain from (16)

(*. 0 + Λ(- k> r) + (~ 1)! /,(*, r) X

We express the Jost solution /j(fe, r) in the form (8)

fl (k} r) = ί- (l +1) [k r ^2) (k r) + f Kl (r, t) k t tip (k t) d t]
r

and from (17) we have

VfiW "~ 2Jcril(krϊ ^ jΓι + /2 + ^3 +^"4
where

- St(-k)].
r

a short manipulation the resulting expre
0

Γ n 7 Z 4 . 1
J dί*

After a short manipulation the resulting expression from (18) is
+ 00

J,
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2. a) The left hand side of (19) is zero provided there are no bound
states.

This can be demonstrated by closing the integral path on the l.h.s.
of (19) in the lower momentum half plane by a large semicircle and using
the relations4

0
(20)

which are true for \k\ -> oo, Irak ^ 0, r ^ σ.
In the enclosed region, the first integrand in the l.h.s. is a holo-

morphic function of the momentum k. From the second integrand only
the zero points of the Jost function fl(k) in the lower momentum half
plane can contribute. However, we assume there are no bound states
present and therefore the Jost function fl(k) has no roots in this lower
half plane. We have therefore the result that the second integrand in the
l.h.s. is also a holomorphic function in this region.

b) The right hand side of (19) can be expressed as
-f- oo oo +00

/ <&&(/! + I 2 ) k σ h \ 2 ) ( k σ ) = 2 f dtK^r.t) f dk ktj^kt) kσjt(kσ)
— oo 0 — oo

= 2πKl(r,σ)
and

/ dk(Iz + I4) kσ h^(kσ) = 2πFl(r, a) -f 2π f dt Kt(r, t) Fτ(t9 a)
— oo r

where
+ 00

. (21)

c) Taking into account the results obtained for the l.h.s. and for the
r.h.s. of (19) we get the basic integral equation of the form (9)

K, (r, σ) + fKl (r, t) F, (t, a) dt + F, (r, a) = 0 , r^σ (22)
r

where the kernel Fl(r, a) is now given by (21). As we consider the elastic
scattering with the threshold condition Al(k) ~ k21 (for k -> 0), the inte-
grand in (21) behaves well for small momenta.

Applying the procedure from the end of the preceding section we get
the integral equation (13) with the kernel (14) in the form

+ 00

' f , σ ; - f c ; n na^ (23)

4 The relations (20) can be obtained by means of the relations (3,9), (3,13) and
(4,16) of B. G. NEWTON'S paper quoted above in [2].
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In (23) the function Jf is known (see (12) with u^ (k, r) -+ kr h^(kr)).
The scattering amplitude is given as

j/(k, eos#) = Σ (2l+ !) ί(sιW ~ l)/2ΐ&] Pz(cos^ - nx - na) .ι = o
Enclosing the integral path in (23) by the large semicircle in the upper
momentum half plane5, we see the only input information comes from
the analytic properties of the scattering amplitude £/(k, cos$) in this
half plane (this corresponds to the physical sheet of the Riemann energy
surface, E = k2) for physical values of the transferred momentum
(i.e. — 1 ̂  Re cos$ ̂  -f 1 and Im cos$ = 0).

The potentials obtained by this method, in general, decrease ex-
ponentially at large distances. However, for particular values of the
parameters specifying the singularities of the scattering amplitude, the
potentials show a pathological behavior. The assertion that the potentials
possess first and second absolute moments expresses that the above
mentioned parameters are from certain domains.

IV. Discussion

By means of the methods which solve the inverse problem we can
find as customary uniquely the potential belonging to the scattering
quantity under consideration. However, if the potential is required to
have certain properties, we have to add some further conditions to the
scattering quantity.

Suppose that for a given angular momentum the singularities of the
partial wave scattering amplitude Al(k) lie on the positive imaginary
axis in the momentum plane; then the nearest singularity determines
the forces with the largest range, as follows from (21). The equations
derived in the %-pole approximation for these upper singularities of the
s-scattering amplitude are the same as obtained by the NjD method from
the dispersion relations [12]. We get in this ^-scattering case the
Hulthen's potential, the Noyes-Wong equation etc. more details can be
found in [13].

Considering further this %-pole approximation, the influence of the
values of the pole parameters in the redundant poles (always lying in the
upper momentum half plane) on the occurence of the bound state poles
can be investigated. This problem is partially solved in [14] where the
domains of the redundant poles parameters inducing no bound state
poles are established. A more general discussion is performed in [13]. On
the other hand, let us consider a branch cut on the positive imaginary

5 We assume that the exponential damping factors arising from the spherical
Hankel functions (7) in Jf suffice to insure the convergence of the integral (23) on
the mentioned large semicircle.
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axis. The discontinuity across this cut, specifying the potential (the
"redundant discontinuity") can cause an allowed energy band, in
general, a band spectrum can arise. The inverse problem for this case is
still unsolved.

The influence of the parameters specifying the redundant singu-
larities can be illustrated very simply in the one-pole approximation. Let
us consider, for instance, the low-energy neutron-proton elastic scattering
in the relative s-state described in the effective range approximation by
the relation: k cotό = — v + (rok2)l%, 0 < r0 (δ is the s-phase shift, v~l

determines the scattering length and r0 is the effective range). In this
case the $-matrix element is S0(k) = f(k)lf(—Jc) with the Jost function
f(k) = (k + ib)/(k - id) where a = [1 + (1 - 2vr0)

1/a]// 0 and b = - [- 1 +
-f- (1 — 2vr0)

l/*]/rQ. As we see a is always positive. For k — ίa we have a
redundant pole in the $-matrix. Introducing the "coupling constant"
τ by means of the residuum in the redundant pole τ = (2ia)~l Res 80(k)

Jc = ίa

= (a + b)l(a — b) we obtain b == a(τ — l)/(τ + 1). Regarding the last
relation b — b(a, τ) we get S ~ S ( k ; a, τ). We see that the sign of b
depends on the value of r, namely whether |τ| ̂  1 (both possibilities are
consistent with unitarity). If τ > 1, we have in the upper half &-plane a
further pole in the $-matrix and this pole corresponds to a true bound
state (triplet scattering). The condition for atractivness of the cor-
responding potential has the form 0 < τ. Hence, for 0 < τ < 1 the
attractive potential has no bound state (singlet scattering6) since the
corresponding pole lies in the lower momentum half plane (and nearer
to the origin than the redundant pole). Therefore, if we know that the
function S0(k) has in the upper half plane one pole k = ίa with the
corresponding residuum or coupling constant τ, we need a further
information in order to be sure that this pole is the only one present in
the upper half plane7.

The generalization of the procedure of Sec. III. to the relativistic
case (considering e.g. the radial part of the Klein-Gordon or of the Dirac

6 For the singlet scattering we have from experiment v~1 = —23.7 10~13 cm
and r0 = 2.40 10~13 cm. We get α = 0.87 1013 cm-1 and b = —0.04 1013 cm-1-
From the definition of τ = (a -j- b)/(a — b) we see the relation 0 < τ < 1 is true-
In this case, by means of (22) we obtain the known Eckart's potential V(r)
= — 8α2τ[exp(—2αr)]/[l + τ exp(— 2ar)]\

1 We note that for the ratio of the residue in the redundant pole Jc = ia (a > 0)

and in the pole k = ίb we obtain: [ Res SQ(k) 1 /1 Res 80(k)\ = —alb. If the pole
lJc = ia J / \_Jc = ib J

Jc = ib corresponds to a true bound state, i.e. b > 0, the two mentioned residues
have opposite signs. Characterizing a pole by a strength which is proportional to the
residue in this pole, we have the result that in this case the strength in the bound
state pole has the opposite sign to that of the redundant pole. This is in agreement
Λvith [15].
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equations) can be also performed. However, in this case the resulting
potentials are energy dependent. This leads to the discussion of the
subject of "potential scattering" (as it was introduced in [16]) and also
to the considerations on the basic properties which the potential itself
would have (this is performed in more detail e.g. in [17]).
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