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Abstract. In this paper we give a rigorous formulation of Gell-Mann's equal time
commutation relations in the framework of general quantum field theory. We show
that this can be achieved despite the nonexistence of charge operators for non-
conserved currents. Starting from the properly formulated equal time commutation
relations of "generalized charges", we justify the application of the Gauss-Theorem
and we discuss the limits for large times of time dependent "generalized charges".
The Jost-Lehmann-Dyson representation is used in order to show that the equal
time commutation relations always lead to exactly one, frame independent, sum
rule. We discuss the connection between properties of the Jost-Lehmann-Dyson
spectral function and the convergence of Adler-Weisberger type sum rules.

1. Introductory remarks

The most convincing success of the equal time commutation relations
between vector and axial vector currents originally proposed by GELL-
MAISΠSΓ [1] is the derivation of sum rules of the Adler-Weisberger type [2],
[3]. In the original presentation of ABLER and WEISBERGER this deriva-
tion was very involved and the independence on the frame of reference
was not shown. FTJBINI and FURLAN [4] proposed subsequently a simpler
and aesthetically more appealing covariant method based on the commu-
tation relations of "generalized charges"; however, the weak point of
their derivation was the discussion of the boundary terms for large times
and the ambiguity due to the bad large distance behaviour of the
retarded matrix-element. Furthermore, it was not realized, that re-
tardation i.e. the multiplication with the step function Θ(xQ) does not
introduce any ambiguous subtraction constant. This follows from a more
careful formulation of the commutation relations which takes into
account the distribution theoretical aspects. The use of Gauss's theorem
for field operators and a careful computation of time limits will resolve
the ambiguities for low energies (i.e. the intermediate one particle
ambiguity).

* On leave of absence from University of Pittsburgh, Pittsburgh 13 Penna.
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By starting from the stronger and more questionable assumptions of
equal time commutation relations for current densities and unsubtracted
dispersion relations for different amplitudes, FUBINI by -passed this low
energy ambiguity in a recent paper [5].

As regards the problems of high energy behaviour and covariance of
sum rules, we show that for a certain class of Jost-Lehmann-Dyson
spectral functions ψ (u, s) the covariant sum rules are identical with the
Adler-Weisberger type sum rules. We discuss preliminary results on the
general connection between the behaviour of ψ (u, s) for large s and the
form of the sum rule.

We will discuss the mentioned statements in the framework of
general quantum field theory1. However, the mathematical rigour of our
presentation is modest and more on the level of the LSZ formulation
than present day axiomatic field theory. Some of the results of the next
chapter, especially the first two statements are implicit in the work of
KASTLER, ROBINSON and SWIECA [10]. We avoid however the algebraic
framework used by these authors.

2. Definition of charges

The first problem we investigate is the question in what sense a
"charge" operator Q can be connected with a conserved current jμ(x):

d"jμ(x) = 0. (1)

We observe first, that irrespective of the conservation law (1) the matrix
element

is a smooth and fast decreasing function in x, whenever \ψy and |Φ)
are quasilocal states, i.e. states of the form

•» »m) Λ(*Ί)> - , Λ»fa») |0> (3)
m = 1

where the .̂'s are from the basic set of local fields (resp. currents) in
terms of which the theory is defined, and gm are fast decreasing smooth
functions. Here we assumed <J^(#)}0 = 0 and the restricted spectrum
condition, i.e. the non-occurrence of zero rest-mass states.

The smoothness property of (2) comes (due to translational invariance
of the vacuum expectation values) directly from the smoothness of the
{/'s, whereas the fall-off property for large x uses in addition locality and
is a special case of the so-called linked cluster property [7], [8], [9].
Hence the spatial integral

f<Px<Φ\jμ(x,t)\Ψ) (4)

always exists and defines a bilinear form.
1 For a short exposition of general quantum field theory see [6].
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In the conserved case we expect, however, to be able to define an
operator Q called "charge", and we try for the connection with the charge
density the following formula

i.e. we ask in what sense the sequence of unbounded operators ?0(/#, /y)
has an operator limit.

In choosing our space and time smearing functions fR, fτ we followed
the suggestion of KASTLER, ROBINSON and SWIECA [10]:

[-T, T], fdtfτ(t)=I (6a)

I Γ>s

s+ί <"»U X >• xt -j- Ju .

Hopefully as we expect from analogy to the classical case, the limit (5)
turns out to be independent of T, so that T -> 0 is superfluous.

We first want to show that (5) cannot exist in the sense of strong
convergence:

Statement I.

with C φ 0 unless jμ (x) = 0. _J
Proof. For a conserved current we have the following KALLEN-

LEHMANN [11], [12] representation:

hence

<?o (/* /ϊ ) Jo (/Λ» /τ)>o = / ^3^ IP/B (P) I2 9 (P) (8)
with

g(p) = -£- fy^} 2π J
We have

PΪR(p) = *π far r (-^fR(r)\ —
(9)

4π Γ ^ / / rax Γ si "= — J r/'(r— JB) \cospr -~-

where /' (r) is the derivative of (6b) for 12 = 0.
By change of variable :

PΪR(P) = ̂  / /' (e) [cos p(ρ + R) - ^fgVjf] (6 + Λ) eίρ . (10)

Inserting (10) into (8), using the addition theorem for sin and cos and
taking only the leading term in 12 we obtain :

)|» + |/^)|2) (11)



Relations in the Framework of General Quantum Field Theory 261

with

/is, ω - / ' » = • <12>
The coefficient of the leading term vanishes if and only if ρ (κ2) = 0.
According to a well known theorem [13], [14] 2 this is equivalent to

jμ(x) = Q.
It is easy to see that with our choice of an infinitely smooth test

function in time, the leading term is approached faster than any inverse
power in E.

Next we want to show that the limit (5) exists in the weak sense on a
dense set of states. First we show for this purpose that the vacuum is
annihilated weakly.
Statement II.

l im<Φ|M/ Λ ,/ Γ ) |0> = 0 (13)
R-^QG

for states Φ of the form |Φ> = / d?x h(z) Z7(x) B |0> where B is quasίlocal,
i.e. of the form (3). £7(x) is the translation operator and h(x) is a smooth
function which decreases for large r such that

Iimr2ft(x) = 0. J (14a)
r—>oo

This statement is the transcription of a Lemma by KASTLER, ROBIN-
SON and SWIECA [10] from their algebraic framework to the field theo-
retical framework.

Proof. As in the paper of KASTLER, ROBINSON and SWIECA, we
"divide" |Φ) by the energy operator. Here we use the fact that if
j3|0) is a quasilocal state of the form (3) with <0| B |0) = 0 then

\ψy = -jj B\Qy is again quasilocal. This is so since the smearing function

9m(Pι> - •? Pm) m (3), which according to the finite restmass spectrum
condition can be chosen such that

m M
9m (Pi, - ,Pm) = 0 for Σ Pi o < -9- (M = smallest rest-mass) ,

ΐ = ι 2

allow division by Σpίo and yield again smooth and fast decreasing test
functions, and hence \ψy is again quasilocal. Therefore we have:

) ?V(/i,/T)|0>

where jr = component along the radius vector x.
Now we consider the left hand state as the sum of two states

R/2 oo

f d * x h ( x ) Z7(x) \ψy = f d * x h ( x ) Z7(x) \ψy + f d ? x h ( x ) 17 (x) \Ψ). (15)
0 RJ2

2 This theorem, which is noΛvadays called the Federbush-Johnson Theorem,
was rediscovered by P. G. FEDEEBUSH, K. A. JOHNSON [15].
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The first state is effectively localized in the sphere with radius E/2 and
the second one behaves in norm as

(16)
x 'x f d*yh(x) A(y) <Ψ\ U (y

Rf2

This estimate holds because of RTJELLE'S result [8]

lim (x-y)2ΛΓ <Ψ\ U(γ - x) \Ψ) = 0
(x-y)2-»oo

for all N > 0, and the assumed fall-off properties of &(x).
The contribution to (14b) from the effectively localized first state is

R + L
f d ? x f d ? y h ( x ) f ' R ( j ) ( Ψ \ U ( y - x ) j r ( < ) , f τ ) \ θ y (17)
o

and hence because the matrix element vanishes again faster than any
inverse power of (x — y)2, the integration (17) leads to a function of E
which vanishes rapidly for E -> oo. For the second state in (15) we use the
Schwarz inequality and obtain

(18)

r(f'R,fr) \oy\\.
R/2

If we use for fR space -smearing functions of type (6b) with L = constant,
we obtain for the second norm

lim \\jr(f'R,f2,) \oy\\ <CR.
R-*oo

However, by using instead of (6b) a sequence of "stretched" functions

where / (r) is a smooth function which is one inside a certain fixed radius
and vanishes outside a larger radius, we obtain for the derivative

and hence for the norm

lim f f f l x f d*y f'R (x) f'B (y) <0| jr (x, fτ) jr (y, fτ) |0> < CSV* . (19)
jR->oo

Together with (16) we obtain a vanishing right hand side in (18) for
jR->oo.

We would like to mention that our estimates are optimal in any
conserved current theory. This can easily be seen by taking a state
\ φ y = f d * x h ( x ) j Q ( ' κ ί f τ ) |0> with lim x 2 &(x)Φθ. Such a state is still

y-»oo

normalizable however, a consideration which is similar to the state-
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ment I shows that L(Φ) = lim {Φ| j 0 ( f R , fτ) |0> vanishes if and only if
JR->co

iμ^o
Hence we have learned that in any theory the formula

ρ = tc-lim; 0(/Λ,/j,) (20)
R-+OO

breaks down if one of the states in which the weak limit is taken has a
"long range". The linear form L(Φ) vanishes (and therefore is bounded)
on the dense set of quasilocal states fulfilling eq. (14a), and hence the
operator Q (if it exists) must annihilate the vacuum.

If the connection between the jQ (fR, fτ) and a charge operator (20)
makes any sense, both operators should have a dense domain, which are
independent of E. The ' 'natural" domain of j0(fR, fτ> are "the quasilocal
states and hence one would expect that Q has to have the vacuum in its
domain. But then we can show that a nonconserved current cannot give
rise to an operator Q. This was first conjectured and made plausible by
COLEMAN [16] (see also [17]).

Statement III (COLEMAN). For a nonconserved current dμjμ(x)^
ΞΞΞ A (x) φ 0 the linear form

L(Φ)= lim <Φ|70(/Λ,/Γ)|0> (21)
R-+OO

is unbounded in |Φ). _J

Here |Φ) runs through the same set of quasilocal states as in the
previous statement. It should be stressed that L(Φ) is unbounded in
both the conserved and nonconserved case. Only on the subset of quasi-
local states do we have boundedness (since it vanishes) in the conserved
case.

Proof. Again dividing the state |Φ) by the energy operator one
obtains :

ίL(Φ) = lim (ψ\ jr (f'R, fτ) |0> + Km <Ψ\ A (fR, fτ) |0> (22)
JR->oo R— >oo

with

The first term vanishes according to the previous consideration. We
want to show that the second term is unbounded in |!F}. For this purpose
we choose a sequence of quasilocal states as

\Ψβ> = IA (/β, /r) lO)!-1 A (/„ fτ) |0> . (23)
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The norm behaves for large ρ like

M(/β>/2 )|o>||
= {/ tPx fffiyf, (x) f, (y) <A (x, fτ) A (y, /Γ)>0}V«

with (7 = 0

Therefore

which can be made arbitrarily large by choice of \Ψρy. Since |Φρ)
= H}Ψρ) and hence

L(Φ) is unbounded in |Φ>.
Let us now come back to the formula (20) in the conserved case. We

consider the action of 7o(/.R>/τ) on the dense set of states £|0) as in
formula (3), but with compact support test functions gm(x, . . .%m)'

h da, IT) B |0> = [J0 (fR, fτ), B] |0> + BJ0 (fR, fτ) |0> . (25)

According to locality the first term is independent of E for large E and
again has the form (3) with compact support test functions. The last term
converges weakly to zero as E -> oo. Hence the formula (20) defines an
operator Q which has in its domain all states (3) with compact support
test functions and furthermore the operator Q can be applied repeatedly
on this domain. It is just slightly more complicated to see that also
quasilocal states; i.e. states with concompact (but decreasing) test
function and multiparticle in- (out) states with non-overlapping wave
functions belong to the domain of Q.

Finally it is worthwhile to mention that all our considerations go
through if the current has other tensorial indices in addition to the index
in which the conservative law holds i.e. for currents

In this case the decomposition of the two point function into standard
covariants is more involved; however, due to the requirement that all
relations hold for arbitrary μ^9 . . . μn we obtain the analog result.
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3. Formulation of equal time commutation relations

The main point of this section is to show that despite the impossibility
of defining a charge operator in the nonconserved case, the commutation
relations of "generalized charges" can be given meaning since in the
commutator the infinities of the norm cancel each other. Let fτ(t) b©
any symmetric time smearing function with compact support in [ — T, T].

Statement IV.

<Φ\ &'$(/*, fv), ?£(/*, /τ)l |Φ> = 0 (26)
between TCP invariant states. _J

Proof. If Θ is the TCP operator we have

<Φ| ΘΘf0(fR, fN) ?£(/*, fτ)ΘΘ |Φ> = <Φ] ;«(/Λ, fτ) jXtfz, fτ) |Φ>*

because of the choice of symmetric test functions fR and fτ. Hence we
have (26). Here the index ί, k designates any vector or axial vector
current. If the state |Φ) is the vacuum we can omit the smearing in space
due to the fact that ]0) is rotational invariant.

In the literature one finds very often the statement that the vacuum
expectation value of the equal time commutator vanishes. This is wrong
because there is no equal time meaning to this quantity. Even for free
field currents the two-point function, although perfectly well defined as
a Wightmann distribution, can hardly be given meaning for equal times.
However, our symmetric time smearing process takes care of this problem,
i.e. it truncates the matrix element automatically.

In order to avoid a lengthy discussion due to generalities we take as a
model the axial vector commutation relations of Adler and Weisberger.
The currents jμ (x) lead after smearing in time to one particle truncated
expectation values

<?rlΛ+>δ(χ,/2.)Λ->6(y,/2.) \φy-<ψ\Φy α+)5(χ,/r)Λ-)5(y,W>o (27)
which are infinitely smooth functions in x and y and decrease in these
variables faster than any inverse power. This statement is a direct con-
sequence of RUELLE'S results' [8] since the one particle (wave packet)
states are quasilocal. Hence the integration with /#(x) /#(y) and the
limit R -> oo causes no difficulties3.

In our nonconserved current case the result will, however, depend on
the time smearing function /y(£) Let fτ be a sequence of symmetric
compact support test functions which for T -> 0 approaches the ^-func-
tion. The statement of equal time commutation relation in the case of

3 Here and in the following a smearing in space is superfluous since the spatial
integrals converge in the ordinary sense. We will, however, keep the /Λ's because
they serve as a convenient reminder that the spatial integration in general cannot
be interchanged with other limits.
19 Commun. math. Phys., Vol. 3
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our special expectation value is now the assertion that

Km Km <f| [?<+>* (fR, fa), j^(fR, fa)] |Φ> = 2 <Ψ\ I, Φ> (28)

where JΓ3 is the 3rd component of the isospin operator. Such an assertion
does not run into any obvious difficulties with the principles of quantum
field theory. However, an explicit perturbation-theoretical check in
some renormalizable models would certainly add a lot to the credibility
of relation (28). We will discuss this problem in a future paper.

Symbolically we could write

Hm lim &•<+>* (/Λ, fτ), ?<-)5 (/*, fτ)] = 2/3 (29 a)
.R->oo

if we only consider the left hand side between states which lead to fall off
properties in x and y and hence to the existence of limE -> oo. All so-
called quasilocal states certainly belong to the set of admissable states,
but a more detailed investigation shows that (29 a) can also be taken
between multiparticle in- (or out) states with nonoverlapping wave
packets.

In this section we have studied the commutation relation between
space integrals. Often one also formulates commutation relations between
densities, for example

Km [?<+)5(x, /Γ),?V-)5(y, /2.)] = 2^3)(x, 0) <5(x-y) (29b)
J. — >Q

or equivalently

[^+>5(x, ί),^-)5(y> *)lίr = 2?<o3>(x, t) ό(x-y) -

The validity of such commutation relations is doubtful, even if the cur-
rent is conserved. The derivation of sum rules is, however, much less
complicated for that case.

4. Derivation of sum rules

Consider now (omitting the index 5)

t

j(

0

+)(fn, 1τ) = -/ ̂ Λ+)(/β! fί) dτ + ?<+>(/*, /£) (30a)
0

and
o

Jo (/jR> /T) — / ~d^Jo (fn>f ττ) dτ + JQ (fR, fτ*) (30b)

where
V (τ) Λ±> (fs, fa) & (τ) = #=> (/a> fr) fτ (t) = fa(t-τ).
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Lemma 1.

« o

ffdr dτ' lim <ψ\ {\~&+)(fR, K),-£riP(fa, fίi\ ~
J J R-+OO IL^17 u/τ J /Qi 0 \o -t (όi a,)

, ft), -DH (/Λ, $)]}!*> = < >

0

t

~fdT JUSo <¥/i [̂ +> (JR' fT) '
0 "

= 0.
Here |Φ) and \ψy are quasilocal states and

Proof. Since

-fciPUa, fr) = ̂ '(/i, fr) + -»(±)(/B. Γa )

in order to prove (3 la) we have to show that:

<Ψ\ [DM (fR, fr), ,'(-) (f'E, /$)] |φ><r (32)

where tr (truncation) indicates subtraction of the vacuum expectation
values4.

We prove that every single term in (32) goes to zero. Consider for
example the first term explicitly

R+L R+L
f d*x f d*y /i(x) /Λ(y) <ψ\ [? <

+)(x, fττ)> W (y, /$)] \Φ}tr .

According to RUELLE [8] the truncated matrix element

<Ψ\ Λ+>(x, fτ) DH (y, /ί) |Φ>tr ζ 6x,y (33)

i.e. is a smooth function which decreases rapidly in x and y. Hence after
integration with fR(j) the remaining expression decreases rapidly in x
and hence the integral over the ring E ^ |x| f£ E + L gives a decreasing
function in E. Therefore the first commutator decreases rapidly as
E -> oo. The argument for the decrease of the other terms as well as for
(31b) is the same.

4 If the integration over the τ's is performed as in the Lemma the vacuum
expectation value of the commutators vanishes; hence the truncation would be
superfluous. However, working with the integrands only, the truncation is necessary
for the existence of the limit R -> oo.
19*
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Specializing |Φ) = \ψy= I ~γ^ψ(p) |ί>) to a one particle state

(proton state) with a smooth decreasing wave packet (such states are
quasilocal [7], [8], [9]) and using lemma 1 we obtain:

JR->co

= - / dτ f dτ' lim (Ψ\ [DH (fR, ft), DH (fB, #)] \Ψ) +
0 — t E-^oo

+ fdτ Um (ψ\ [?•<<+>(fκ, fy), DH (fR, fy)] \ψy - (34)
_t R-ΪOO

— fdτ lim <Ψ\

We now want to show that the contribution for large t of the 2nd and
3rd term vanishes.

For this purpose, we use translational in variance and obtain for the
second term :

— 2ί
dτ lim <Ψ\ $+> (/*, /°τ), D" (/a, A-)] l^> - (35)

For DH (x) one has the formal development into incoming fields:

%(k) +

(π~k\ DH (x) |0> ̂ ^ (i)} + (3βa)

The first term in this formal decomposition is clearly similar to the LSZ
term. The only modification is due to the fact that the matrixelement
(0| D(~) (x) \kπ+y is different from the wave function of the pion by the
π-decay constant. The bilinear term in the neutron creation and proton
annihilation operator is the next term in this series. Terms with two
particle creation- resp. annihilation operators and all the higher multi-
linear terms have not been written down in (36 a) because of the following
theorem due to H. ARAKI and R. HAAGS.

Theorem. Let \ψy and |Φ) be in- resp. out-states with nonoverlapping
wave packets. Then formula (36 a) is correct for the matrixelements
(Φ\ D(~) (x) \ψy. The matrixelement of the rest {Φ| R \ψy decreases to zero
faster than any inverse power of t for t -> — <χ> uniformly in x. Jj

5 "Collision cross sections in Terms of Local Observables." Unpublished manu-
script. We thank Professor HAAG for communicating to us some results contained
in this manuscript.
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The LSZ term evidently decreases like £~3/2 and gives after wave
packet integration the time independent creation resp. annihilation
operator of an incoming particle. The second term goes like t~3 for
t -> — oo and hence vanishes after wave packet integration (as well as the
rest). However, integrating (36 a) over x space leads to a result in which
only the second term survives6.

(36b)

The validity of this formula taken between states |Φ) and \ψy as defined
in the theorem is a immediate consequence of the theorem. However, in
formula (35) only one state \ψy has the form required in the theorem:

<Ψ\ ?V° (/a, 1τ) f d*x D<-> (x) \Ψ) = <X| / d*x D<~> (x) \ψ)

whereas the other state |X) has no simple interpretation in terms of
incoming or outgoing states. Fortunately, this does not matter because
of the following statement also due to ARAKI and HAAG5.

Statement. For the matrixelement of space integrals of local (or quasi-
local) operators taken between states of which at least one consists of
incoming or outgoing nonoverlapping wave packets, only the bilinear
' 'density" term remains in the limit t -> ̂  oo and this term is approached
faster than any inverse power in t. Applying this statement to the two
operators D and j0 and taking into account that {&| D |jfc) = 0 we
obtain :

<X| / d*x f D<-> (x, ft) \ψy j^^ Q + R (37 a)

, fi ) \k, 53; P> x (37b)

put f out

where E decreases faster than any inverse power of t. The first relation
yields immediately :

^m f <x\ f d*x D(~} (x> IT) \Ψ} dτ = 0
t-^+oo _2t

and hence leads to the vanishing of the second term in (34). In an
analogous fashion one shows that the third term in (34) vanishes in the
limit.

6 For our special D field this contribution vanishes since (k\ ZX±)|&) = 0 but
this would not be the case if we take j ( x ) instead of
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With the help of (37b) the fourth term in (34) yields:

where the summation goes over the two spin states of the neutron. Since
f fτ(t) dt = 1, the fτ is dropping out and we obtain:

where we used the definition of the axialvector renormalization constant :

*) (40)

Now we want to discuss the remaining first term on the r.h.s. in eq. (34).
After integration over one τ and evaluation of linijR->oo one obtains

— (2π)3/ dx0Θ(xQ) xQfd^x x
(41)

x <p| [DM (χ/2, ft*), Z><-> (-x/2, /Ϊ-/2)] ip)

where we have omitted the wave-packet integration.
From the form of eq. (41), one would expect, after taking the limit

T -+ 0 that eq. (41) transforms with respect to Lorentz transformations
like the zero component of a four vector, i.e. is proportional to pQ. Suppose
the retarded commutator appearing in (41) is Lorentz -in variant 7 and the
integration over the whole Minkowski space is independent of the order
of integrations, then this proportionality to pQ would be the case indeed.
But this independence of the order of integration is not fulfilled for the
one-particle contribution, as will become evident later on. The definite
prescription given for the order of integrations in (41) is an immediate
consequence of our distribution-theoretic definition of equal time com-
mutators. It agrees with the limiting procedure given by OKTJBO [18] in
momentum space.

Eq. (41) may be written as

ft, ά Λ"(ω) (42)

with

><+) (x/2, /f/2), D<-)(— χ/2, /?W2)] \p)

if Eiτ (ω)^ is an analytic function in ω whose first derivative approaches a
continuous boundary value at ω = 0. That this is indeed the case will be
shown in the subsequent discussion.

7 That this is generally not true even for local commutators will be discussed in
the next section.
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Due to the smearing in time the product of the step function with the
commutator in eq. (42) is a well defined quantity. Therefore, we may
evaluate the ^-integration which results in the Hubert relation

+ 00

ω' - - / K ω ' ) (43)
— 00

where M is the Fourier transform of the matrixelement of the commu-
tator

M(q\ = f d*x e^'x{p\ [DM (x/2), D<-> (— ff/2)] \p) . (44)

According to the spectral conditions M(q)v may be decomposed as
follows

- ~(2π)-2 s(q0 + Po) q*K*(q*) δ((q + p)* - Jf2) + M0(q)*

where the support of the continuous part Mc is given by

?o ^ -PO + Vw + μf+ (ι + p)2 (46a

ϊβ ̂  Po - VW + μr +(*-*)* (46 b)

and the vertex function K is defined as follows

<P\ D(0) IP') = (2π)~3 2M ΰ(p) γ5u(p') K((p-p'f) .

K (0) is connected to the axial- vector coupling constant renormalization
GA by

K*(Q)= (2MGA)* . (47)

The first term in eq. (45) results from the one-particle intermediate
state in eq. (44) and its "crossed counterpart", i.e. the partially dis-
connected contribution from the 3 -particle intermediate state (one anti-
neutron, two protons).

We require that the operators D(±)(#) are local relative to each
other i.e.

[D<+>(α),D<->(y)] = 0 if (x — 2/)2 < 0 . (48)

For the further development, it is advantageous not to work directly
with the decomposition eq. (45) but with the closely connected ' 'causal
decomposition"

M(q)9 = M^(q)f + Mm(q)ί> (49)

where M & is defined by

Po) δ((q + p? - M*) . (50)

The Fourier transforms M^(x)v are causal functions (i.e. vanish for
x2 < 0) because this is true for MM by construction and for M it follows
from the requirement eq. (48).
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By insertion of eq. (49) into eq. (43) and evaluation of the M W con-
tribution we obtain

8) +

With the aid of eq. (45) and (46), we get the support of MW(ω',

', 0)^ = 0 if ωf < -p0 + γ(M + μY + pΓ (52)

Therefore R^τ(ω) is an analytic function of ω within a circle around

ω — 0 with radius — pQ -j- J/(lf -f μ)2 -f- p2. The differentiation of Efτ(ω)
at ω = 0 may be carried out now, leading to

(2π), ^ ' f l K ) . (53)

On the premises of the existence of equal-time commutators for axial-
vector charges the limit T -> 0 of the r.h.s. of eq. (53) exists.

We now make the technical assumption that lim T -> 0 may be taken
under the integral, which excludes certain oscillatory behaviour of
M<2) (ω', 0)3, for ω' ~> oo, i.e. we obtain in this limit for eq. (53) (resp.
eq. (41))8:

"'•> '-Vo)^ (54)

We mention that the prescription given for the order of integrations in
eq. (41) led to the absence of a one-particle contribution, but to the
presence of its "crossed counterpart" in eq. (54) 9.

To exploit locality for M (2) we use the Jost-Lehmann-Dyson (JLD)-
representation [19], [20] in its Lorentz invariant non-unique form [20]:

If (2) (̂  = f d*u f ds ε (q0 - UQ) δ ((q - u}* - s) ψ™ (u, a), (55)

8 In the usual treatment of equal time commutation relations without testing
functions for example in S. ADLER'S treatment [2] this formula follows directly
from intermediate state insertion.

9 If we would disregard this proved prescription and exchange the order of
space and time integration in eq. (41) by considering

lim lim lim (2π)2 - - dωf
f

Jq-»0 ω-^o oω J ω — ω — is

the result would differ from eq. (54) by the one-particle contribution

lim q»/(q p)
q— >0

which may take any desired value.
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with

supp ψ(^ = {(p ±u)ζ V+, ]/s ^

^ Max(0, M — l/ί^MO2, M + μ — ]/(p — ̂ O2)} .

As is well known, this support of ψW leads to support properties for
-M"(2)(g)p as given by eq. (45) and (46). Because we have split off M(l)
from M in defining Jf<2) we obtain a further restriction on suppy<2>:

(u, s)p = 0 if s < u* . (56)

The proof of eq. (56) is given in the appendix.

The high-energy problem

Next we would like to remember that the existence of the integral
in eq. (54) which requires a good high- energy behaviour for the even
(with respect to ω) part M^ of M <2), i.e.

^V.ok^ooω1-', ε > 0 (57)

is an immediate consequence of the existence of the equal time com-
mutation relation eq. (28). Therefore eq. (54) already leads to a well
defined sum rule without containing any unknown subtraction constant.

In the following, we want to discuss sufficient conditions for the
spectral function ψW (u, s)v to obtain from eq. (54) the sum rule in its
dispersion-theoretic like form (i.e. the Adler-Weisberger relation [2], [3])
whereas more general cases are discussed in the next section.

Necessary and sufficient for the validity of eq. (57) is the following
behaviour of ψ^

f tfu ψW (u, (ω - Uoγ - ua)Jeven ̂  ωι-«, ε > 0 . (58)

We now consider the sufficient requirement, that the good large s be-
haviour of ψW (u, s)p is valid uniformly10 in u :

\ψ^(u9s)v\ ^ CW* <ι-«), ε > 0 (59)
S— >oo

for every u ζ supp^Λ2).
This requirement is not necessary, as will be shown by counter

examples in the next section11.
Inserting the JLD -representation eq. (55) into eq. (54), we may

interchange the order of integrations by considering eq. (59) and (56)
and evaluate the ω' -integration with the aid of the ό-function. In this

10 In eq. (58) and (59) we treated ψ(2) as a function, however, the distribution-
theoretical modification can easily be formulated.

11 But it turns out, that these counter examples are more or less of a patholo-
gical nature.
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way we obtain

Because of Lorentz-in variance y(2) (tt, s)^ is only a function of the
invariants u2, u p and 5. Therefore, the r.h.s of eq. (60) transforms
like the 0-eomponent of a four vector, i.e. is proportional to pQ, as ex-
pected. The non-covariant term K*(Q)l2pQ in eq. (54) just cancels the
non-covariant contribution from the boundary term in eq. (39). There-
fore, with the requirement eq. (59), we always get the sum rule in a
frame independent form.

For reasons of simplicity, we now work in the laborsystem p = 0 (this
will be indecated in the following simply by suppressing the index p).

Theorem.

Γ , Jf(2) (ω', o) r M(ω', e ω')
/ dω 7^ = / dω —» (ol)J ω 2 J ft) 2 v

— oo —oo

where e is an unit vector.

The r.h.s. of eq. (61) has exactly the unsubtracted dispersion-theoretic
form. To prove this theorem, we first observe that MW(ω', eω') = 0
because M M (q)p ~ q2. Inserting now the JLD-representation for M^
into the r.h.s. of eq. (61), we may again interchange the order of inte-
grations and get by a simple and straightforward calculation, thereby
using the rotational invariance of ψW (u, s) and the support properties
eq. (55)

r r
ds -

which is due to eq. (60) the desired result.

The integral on the right hand side of (61) may now be rewritten
with the help of the formula

(62)

and one obtains :
00

or)*-^ /7^K°^0)-<+(,,0)] (63)
(M + μY

k(s ζ)
where σ^+(s, ζ) k^ μ^ are analytic up to ζ = μ* [21] and σ$*+(s, μ2) is

the physical total cross section of p π± scattering (k(s, ζ) is the CMS

momentum for pions of mass ~
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Collecting all terms for the l.h.s. of the equal time commutation
relation eq. (28) we finally arrive at the Adler- Weisberger relation [2], [3] :

(64)

(Λf +

We would like to emphasize that formula (62) (often called the PCAC-
hypothesis) is not an assumption but a result of quantum field theory. It
follows from general collision theory [22], [23], [24] that if a local field
has a nonvanishing matrixelement between the vacuum and the one

θ (65)

then the field12 φ^(%) = — D^(x) is a possible candidate of an inter-

polating pion field12. In other words, this field inserted into the LSZ
reduction formula gives the correct on-mass shell scattering amplitude.
The application of this observation to the problem of a "universal"
ρ -meson coupling was pointed out by HAAG, NISHIJIMA and SCHBOEB (un-
published) and used extensively by GELL-MANN [1], This result of
general collision theory seems to have been overlooked, however, in the
recent literature on PC AC.

Since the vertex function of the field φπ taken at the momentum
transfer μ2 is also an $-matrix observable (residue of the pole term)

<k;n\ (Π + μ2) <p(~>(0) I*'; ?>!(*-*')»= μ* = 9 N N π - ϋ n ( k ) γ5u^(Jcf) (66)

we can, by taking in addition the definition of the axial vector coupling
constant (40), in a well-known manner compute the normalization c and
obtain formula (62). Of course, in order to obtain the right on-mass shell
π N- scattering amplitude, we could have taken any element of the
Borchers class [25], [26] of D(x). However, the equal time commutation
relation for the "generalized charges" of the axial vector current force
us to study the off-mass shell extrapolation with the help of the field

— ̂ p- . The "smoothness" of the extrapolation from ζ = μ2 to ζ — 0 is, in

contrast to the analyticity in ζ, not a property of the whole Borchers-
class of D.

12 Anybody who has a distrust of general quantum field theory may check this
insensitivity of the in and out fields with respect to the particular form of the inter-
polating field in perturbation theory.
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The nontrivial part of the PCAC hypothesis is the claim that matrix
elements of the preferred (by weak interactions) physical field
(D + μ2) D± (x) have this smoothness property in ζ. It is well known
that from observed τr-lifetime the "smoothness" KNNπ(0) ^ KNNπ(μ^)
i.e. the Goldberger Treimann relation follows [27], [28]. A sufficient
condition for this smoothness would be according to GELL-MANN [1] an
unsubtracted dispersion relation with fast decreasing absorptive part.
However, for matrixelements entering into the Adler-Weisberger relation
such dispersion relations in ζ have not been formulated.

5. A more general discussion of the high- energy problem

In the last section, we only discussed JLD-spectral functions ψ (u, s)^
which are bounded for s -> oo by CV/2^"^ (ε > 0) uniformly in u. Now
we want to relax this restrictive condition by considering a more general
class of spectral functions bounded only by a polynom in s but leading
to the existence of the equal- time commutation relation, i.e. to the
existence of the integral

To avoid unnecessary complications with one -particle states, which do
not influence the high- energy behaviour, we consider the example of the
commutator of axial vector charges transforming with respect to S U (3)
like the ± -components of a F-spin vector, taken between one-pion
states.

The support of our M(q}^ is then given by

<?o ^ -PO + 1/V + μ? + (q + p)2

(bo)
io^po-vV + /*) a+(q--p)2

where μ resp. m is the mass of the pion resp kaon i.e. we have in the
system p = 0 a symmetrical spectrum. This allows the application of the
unique Jost-Lehmann (JL)-representation [19] for Me. Due to Lorentz-
invariance of M we have

Jtf(ω',o)p = Jf(ω'-^-,-p-y ) (69)

Using the JL-representation for the even (with respect to ω') part of
eq. (69) we obtain

ΛΓβ(ω/,o)3,= ε(ω/)ω/-^ f d*u f dsφ(u,s)δ(ω'2—^- 2p u—u 2 —s] (70)
ft J J \ ft I

with u — lu l and

, s) = {u ^ μ, ]/s ^ J/s0 = m + μ — γμ2 — u2} .
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Necessary and sufficient for the existence of the integral eq. (67) is the
condition

fd*uφ(u,ω'* — — 2p u — u*} ~ (ω')~ε, ε>0. (71)
J \ μ / ω'~»oo

Next we consider the special case p = 0. Then a very general class of
JL-spectral functions satisfying eq. (71) but only bounded by a polynom
in s for large s is given by the ansatz

N

u*φ(u, s) = u*φ(u, s) + Σ <(u) (s + t*a)» Θ(s- 8Q(u)) (72)
n = 0

with \φ(u, s)\ ^ Csl/2ε, β > 0 for every uζsuppφ and suppαn(^)

= (0, MI
Because the g?-part of (72) has been considered already in the last

section, we restrict ourselves in the following discussion to the poly-
nomial part (which we call φ). By partial integration in u we obtain from
our ansatz

φ (u, ω'2 — u2)

N

i.e. we have a Me(ω'', o) with compact support.

But this ansatz fulfills eq. (71) for arbitrary p only after imposing some
supplementary conditions for the an(u): Calculating the l.h.s. of eq. (71)
by using our φ we get

with

0 if

2<£"1)ω/«6w(|p|)
m = 0
woven

and
m—l

= Σ
k odd 2

where f(ω') has compact support.

The r.h.s. of eq. (71) requires

M|p|) = 0 for every |p|
i.e.

/ du an(u) u* = 0 (75)

if n > 1, k odd and k ?g n — 1.



278 B. SCHROER and P. STICHEL:

Further integral conditions for the an (u) we obtain from the require-
ment of Lorentz-in variance of the "naive defined" retarded commutator:

f^k_. (7β)
/ — — \ i

The r.h.s. of eq. (76) always exists, because due to conditions (75)
Me (q'0, q)j, has compact support with respect to q'Q.

Because H (q, p) is already rotational invariant by construction it is
sufficient to consider an infinitesimal special Lorentz transformation
along the ^-th coordinate axis. Invariance of (76) then requires

gί--Jfr.teί.q^O. (77)

In coordinate space eq. (77) is a condition for the equal time commutator
of the divergences of our currents

&t((0,x) )f~δ(x). (78)

We have not the intention to write down the complicated conditions for
the an(u) following from eq. (77) resp. (78) for a general N. We only
give the results for the two simplest cases :

N = 0 : no condition
(79)

N=l: f dua1(u)u = ΰ .

It is immediately clear, that from the Lorentz in variance of H (q, p) the
desired proportionality of the expression eq. (67) to pQ follows, provided
that H (q p, g2) has a continuous first derivative in q2 at g2 = 0 (which
is the case for our Jϊβ) Since the r.h.s. of our equal time commutator is
proportional to p0, we are forced to require Lorentz -in variance of
H(q,p).

After these considerations, the important question arises whether the
unsubtracted dispersion- theoretic like sum rule i.e. the expression

exists. Unfortunately, this is not always the case. A simple calculation
shows

N

fd*uφ(u, 2e uω' — ̂ 2)^τz^ Σ cn™'n + ^(ω'-1) (81)
n=*I

with cn ~ f du an(u) un~l.
According to eq. (75), we have already

cn = 0 if n even

from the existence of the equal-time commutator, but no condition for
Cπ with n odd is onhand.
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Suppose only terms with n even are present in φ so that the expression
eq. (80) exists. Even in this case the equal-time commutator, i.e. the

expression / —e—j{—is different from the dispersion-theoretic (i.e. Adler-

Weisberger) expression / —^̂ —-. This corresponds to the situation in

dispersion theory where an analytic function I in our case / —^Vf; ) may

be represented in the cut ω-plane by the unsubtracted dispersion integral
plus a real polynom in ω.

It is our hope, that one may exclude the considered φ by imposing
more conditions following from general quantum field theory on our
commutator matrix element. From the point of view of perturbation
theory, these φ are of a pathological nature, because in this case un-
subtracted dispersion relations and naive multiplication with the Θ
function are always synonymous.
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Appendix

A theorem on the support of the JLD-spectral junction for M^ (q)^
The purpose of this appendix is to prove eq. (56). Next we consider

the JLD-spectral function ψ(u,s)p for M(q)v which has support in
D(u,s):

D(u,s)=:{(P±u)ζV+,
,- , ,— (Al)

YS ^ Max(0, M — ]/(P + u)*, M + μ — J/(p — u)2)} .

This ψ may be decomposed into two parts

Ψ^Ψo+Ψi (A 2)

where ψQ have support in DQ:
i i

DQ = Π (D r\ Uε) with Uε = {s = u* + ό, |ό| < ε}
(A3)

DI = D-DQ.
Theorem.

1. ψQ = 0 if u Φ —p

2. ψλ = 0 if s < u* J

Proof. The domain _D0 consists of all points u, s for which the hyper-
boloids (q — %)2 — s = 0 are admissable in the sense of DYSON [20] with
the subsidary condition (u, s) ζ Uε i.e. we have for u ζ DQ in the Lorentz-
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frame p — (M, o) for arbitrary q:

UQ + j/q2— 2u q + u§+<3 ̂  — M + JAM2 + q2 (A5)

ι̂ 0 — j/^^ q + ̂ +l" ̂  M — /^TT '̂+l2" (A 6)

with \δ\ < ε>0, ε -> 0.

Consider now (A5) and (A 6) for one particular q : q = 0. Then we
obtain

$
u<>+ Kl + 2hrr^°;2™ i < 5 | < β > 0 , ε - > 0

(A8)

From (A 8) we infer %0 < 0. With that the limit ease ε = 0 only allows
the equality sign in (A 7). Then the same is true for (A 5) because q is an
arbitrary vector. But with the equality sign and (5 = 0 (A 5) has the
unique solution u0 = — M9 u = 0. It may easily be seen that this solution
fulfills (A 6). This proves the first part of our theorem.

Corollary. The hyperboloid (q — u)2 — s — 0 is not admissible for
s <ui because it is a monotonic function of s and (A 7) and (A 8) are in-
consistent for δ < 0.

With that we have proved the second part of our theorem.

ψ1 (u, s) = 0 if s ^ u2

From the support of ψ0 and the JLD- representation for M(q)v

M(q), = / d*uf ds ψ(u, s), δ((q-u)*-s) s(qQ-u0) (A9)

it is immediately clear that ψQ only gives a nonvanishing contribution to
M on the one-particle mass shell (p -f g)2 = M 2. In order to fix the con-
tribution of yt at s = u2 we consider the derivative of M (ω, o) at ω -> 0

M (ω, o)— T^ ̂ -̂ [2M δ(ω* + 2ωM) +
v ' / ω-^o 2 L v y (A10)

(ω + Jf) .

On the other hand we get, according to eq. (A 9), and our theorem

applied to -~- ψ (u, s)
OS

r r

~2 / d*u / ds ε(ω~ uo)uo x
(AΠ)

The follomng ansatz satisfies eq. (A 10)

- d(s-^)^^δ(u + p). (Δ12)
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Therefore ψ(u, s)p may be decomposed as follows

ψ(u, s)p — ψ(l) (u, s)p -f- ψW (u, s)^

with

.2) (u,s)9 = fas' \-^rψ(u,sf)^o . (A 13)

With the aid of eq. (A 12), (A 13) and the definition of M^(q)v it may
easily be seen that ψ^ (u, s)v is the JLD-spectral function generating
MM, therefore ψW generates Jf(2> and has according to eq. (A 13) and
our theorem the desired property

s) = Q if s^u*. (A 14)
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