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Abstract. Techniques due to R. L. DOBRTJSHΓN and R. GRIFFITHS are combined
to prove the existence of a first order phase transition at low temperature for a
class of lattice systems with non nearest-neighbour interaction.

1. Introduction

In recent papers, DOBRUSHIN [2] and GRIFFITHS [5] have proved that
a gas with nearest-neighbour attractive interaction on a cubic lattice in
v dimensions (v ̂  2) undergoes a first order phase transition. DOBRTJSHIN
and GRIFFITHS compute explicitly a region where two phases coexist and
the pressure is a constant function of density at constant temperature.

While the result and techniques used are not quite new (see [7], [9],
[10]), they are important in giving a simple model for proofs of condensa-
tion1. In this note we shall combine the techniques of DOBRUSHIN and
GRIFFITHS (these authors worked independently) to prove the existence
of a first order phase transition at low temperature for a class of lattice
systems with non nearest-neighbour interaction. Our main result is the
theorem of Section 3, which the reader may consult at this point.
Section 2 contains preparatory material for the proof of the theorem.

2. Systems with pair interactions on a lattice

We collect in this section some definitions and known results.
We consider a v-dimensional lattice with vertices k = (k1, . . ., kv)

where kl

9 . . ., kv are integers. Particles on the lattice are assumed to
interact through a pair potential Φ such that Φ (k) = Φ (—k) and

Φ(0) = + oo, Σ lφ(k)l = D< +°° ί2-3-)
1 One of us (D. R.) has been informed by V. ARNOLD and R. BALESCU that

further results in this direction have been obtained by SINAI and BEBEZIN; on the
other hand DOBRUSHΓN has extended his results to certain lattice gases with non
nearest neighbour interaction (private communication).
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The total potential energy for n particles located at kl5 . . . , kn is then

Let K1, . . ., Kv be integers >0 and define a "box" ^4(K) and its
"volume" F(K) by

Λ.(K) = {k : 0 ^ k*< Kl for i = 1, . . ., v] (2.3)

F(K) = ΠK*.
i=l

The (configurational) canonical partition function is

• Σ e-
lϊn£Λ(K)

and the grand partition function at activity ζ is

• • • >k») (2.4)
n'

(2.5)
ft

Let us write K -*• oo if K1 -*• -f oo, , Kv-^ + oo.
Proposition 1. 1. Let K-^oo, F(K)-1 n -^ ρ where 0 < ρ < 1 then the

limit
<7(ρ) = limF(K)-Πogρ(K,«) (2.6)

exists and is finite and concave in ρ.
2. Let K -*• oo, ζ > 0; then the limit

P(ζ) = Km F(K)-1 logs' (K, f) (2.7)

exists, is finite and satisfies

(2.8)

A proof of Proposition 1, with the conditions (2.1) on the potential,
does not seem to be published but is an easy exercise (published results
on the thermodynamic limit include [8], [4], [3], [1]).
Furthermore if one assumes that Φ(k) vanishes except for a finite
number of values of k, then Proposition 1 follows from [4].

Let us write

C= Σ ΦOO (2-9)

Furthermore if A is a subset of A (K), let n (A) be the number of elements
in Δ and define

)= Σ Π Π exp (-i/ΪΦfe-k!)) (2.10)

Proposition 2. 1. // K -̂  oo, F(K)-1 n -*- ρ where 0 < ρ < 1,

, n) = flr(ρ) +^^C^ = ^fe) (2 12)
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2. IfK-^oo and z = exp ( — y β C \ ζ > 0, then

limF(K)-1 log£(K9 z) - P(ζ) - p(z) (2.13)

0 (z) = max [ρ logs + 0(ρ)]. (2.14)
Q

Apart from boundary effects we would have Q — Q exp I — ̂ -n βC\

and Ξ = Ξ (see [6]), but it is easily checked from (2.1) that the boundary
effects disappear in the limit, proving Proposition 2.

Proposition 3. The following identities hold

p(z-^). (2.15)

Proposition 4. If Φ(k) ^ 0 /or k Φ 0, ^e^ ^e polynomial Ξ(K, z) in
z has its roots on the circle z\ = 1. From this follows that p(z) is real-
analytic on the intervals [0, 1) and (1, +σo) but may be non-analytic at
2=1. The system may thus undergo at most one phase transition (for z= 1).

Proposition 3 is obvious, Proposition 4 is a deep theorem by LEE and
YANG [6].

According to Propositions 3 and 4 a first-order phase transition
would be likely to occur as a horizontal segment in the graph of the
function g. To exhibit such a behaviour we shall make use of the following
result.

Proposition 5. For each K we choose a set &κ of subsets of Λ (K) and
define

Z(Δ)= Π Π θ x p l / J Φ f o - k j (2.16)

Σ Z ( Δ ) , (2.17)
A£0}]£,n(A) = n

if
V(K)

lim F(K)-Mog Σ £(K,Λ) = 0(1) (2.18)
K-oo n==0

/F(K) \-l F(K) 1

lim. inf. \ΣZ{K9n)\ Σ F(K)-1 ^Z(K, n) ^ ρ0 < T (2 19)
K->oo \W ϊ = 0 / n==Q

ίΛe^ g reduces to a constant on the interval [ρ0, 1 — ρ0].

Given ε > 0, there exists a sequence (K,,-) such that

K; - °°> (ΣZ(*ι, O-1 Σ V&i)-1 nZ(&i> n)^Qo+ *β - (2-20)
n n

Then,

*)] feo + ε) g ρ0 + e/2 (2.21)



190 J. GINIBRE, A. GBOSSMANN, and D. KTJELLE :

or

(Σ Z(κi9 n)}
n

hence

Mm F(K )-1 log Σ Z(^ n) = P(l) (2 23)
2-*00 »<(ββ

Let 7^ be such that

n) = max Z(ΊLj9n); (2.24)
tt<(ρo + δ)F(Kj)

then

lim F(K )-1 logZ(K,, rc,) = 0(1) . (2.25)
-^oo

Possibly taking a subsequence of (K3 ) we may assume that

F(K,)%-gι^ρ 0 +e. (2.26)

Since Z(Ky, %) ^ 0 (K^, %), it follows from (2.25) that

#(1) ^ g(Q1) £ 9(ρ0 + e) £ g (y) = #(1) (2.27)

which proves Proposition 5.

3. Existence of a first order phase transition

Theorem. Consider a system of particles on the lattice of points
k = (&1, . . . , kv) with integral coordinates in v dimensions, v ̂  2. We
assume that the particles interact through a pair potential Φ such that
φ(k) = Φ(— k) and Φ(0) = +00. Let Φί9 . . ., Φv be the values of Φ for
nearest neighbours in the directions of the v coordinate axes and put

Di = τΣ'\v\ \ΦW\ (3.i)
^ k

where Σ' extends over all k except 0 and the 2v nearest neighbours of 0.
// we have

Φ, + Di < 0 (3.2)

for i = 1 , . . . , v , ίλew- the system undergoes a first order phase transition at
low temperature.

Let us define

Λ'(K) = { k ς Λ ( K ) : l ^ ki<Ki— 1 for i = 1, . ..,?}. (3.3)

We shall base our proof of the above theorem on Proposition 5, taking
for ^κ the set of subsets of /Γ(K), i.e. the set of configurations which
have no point along the "boundary" of Λ(K). Equation (2.18) is then
clearly satisfied.

To evaluate the l.h.s. of (2.19) we now follow DOBBUSHIN and GRIF-
FITHS. Given Δ £ ̂ κ we draw around each k ζ Δ the 2v faces of the unit
cube centered at k and suppress the faces which occur twice : we obtain



Condensation of Lattice Gases 191

in this way a closed polyhedron Γ(Δ). Each face of Γ(Δ] separates a point
Iq ζΔ and a point k2 $ Δ. Along a v-2 -dimensional edge of Γ(Δ) there
may be either 2 or 4 faces meeting. In the case of 4 faces, we deform
slightly the polyhedron, "chopping off" the edge from the cubes con-
taining a particle. When this is done Γ(Δ) splits into disconnected poly-
hedra yl5 . . . , γrί which we shall call cycles.

It will be convenient to consider a polyhedron Γ(Δ) as the set formed
by the cycles into which it splits: Γ(Δ) = {γl9 . . . , γr}. Given a cycle γ,
we denote by n(γ) the number of lattice points inside of γ and by \γ\i

the number of its faces orthogonal to the i-th coordinate axis. We call
origin site of γ the lattice point k inside of γ which is smallest in lexico-
graphic order.

We shall make use of the following easy lemmas which give in terms
of the parameters |y| l5 . . . , \γ\v estimates of the entropy, number of
particles, and energy associated with a cycle. It would be easy to obtain
better estimates, which would improve the r.h.s. of (3.12) (see [2], [5])
but not our theorem.

Lemma 1. At least v faces of the unit cube around the origin site of a
cycle γ belong to γ (one orthogonal to each coordinate axis). Building up
γ face by face, with 3 possible orientations for each face, one finds that

V

there are at most fJ3\γ\*~l cycles with |y| t faces orthogonal to the i-th co-

ordinate axis and given origin site, hence less than F(K) fj^γ^~l cycles
i = l

with arbitrary origin site.

Lemma 2. // Γ(Δ) = {γl9 . . . , γr], then

^ Σn(Yi) (3.4)

and for any cycle γ
7 =

We leave the proofs of Lemma 1 (see [9]) and Lemma 2 to the reader.
Lemma 3. Let the cycle γ belong to Γ(Δ) and let A' be such that Γ(Δ')

Γ(Δ) — {γ}; then

Z(Δ)jZ(Δ') <£ exp β Σ Mi (Φi + A) (3.6)
L ΐ = i J

To prove Lemma 3 notice that two lattice points which are both
inside or outside of γ yield the same contribution to Z(Δ) and Z(Δf)
(see (2.16)). Each face of γ separates two lattice points of which one is
empty and the other occupied for Δ , but both are empty or occupied for
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Γ l " 1
A'\ this yields the factor exp \-=- β Σ Mi Φ< in (3 6) The numker of

L i = ι J
ways in which k = (fc1, . . . , kv) may occur as the difference kx — k2 or

V

k2 — kj with kx inside of y and k2 outside of γ is at most Σ \7\ί W\ (draw
i = l

between kx and k2 a broken line constituted of v segments parallel to the
coordinate axes; it must cross a face of γ and if this face is orthogonal
to the ΐ-th coordinate axis, can do so in only |fc*| ways). Therefore, apart
from the factor due to nearest neighbours, Z(A) and Z(Δ') differ by at
most a factor

)l Σ Mi wl = exp fiι8 f Mi D] . (3-7)
k i = l J L i = l J

which concludes the proof.
We come now to the proof of the theorem. We notice that by (3.4)

Σ

where
(3.9)

By Lemma 3 we have

^~lN(γ) ^ Σ Z(Λ)I Σ

(3.10)

By (3.8), (3.10) and (3.5)

V(K)-ln(A)Z(A) ^

(3.11)

γ
-1 /? Σ \v\< (Φ< +

Replacing the sum over y by a sum over \γ\± = 2Z1? . . ., \γ\v — 2lv we
obtain thus by Lemma 1

V 71 λ\ \ V1

2j "(A)\ 2^Γ
oo oo v

£ Σ Σ JTO/<"~1) 32''-1 ̂ [liβ(Φi + D)Ί) (3.12)
ί, = i z, = i i =- 1

i =• 1 Z = 1
i + D))] .

J
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It is immediate that if (3.2) holds then, for sufficiently large β, the r.h.s.

of (3.12) is smaller than y and the theorem follows from Proposition 5.

Remark. The result we have obtained could of course be easily
extended to more general lattices. Furthermore, by well-known argu-
ments, it is possible to translate it into statements about spin systems
in a magnetic field or about mixtures. This yields in particular a proof of
the spontaneous magnetization of a ferromagnet under fairly realistic
assumptions. On the other hand the method could be applied for instance
to prove the segregation into two phases of a mixture of two different
kinds of dimers on a lattice in the close-packing limit.
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