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Abstract. A new proof is given that the subtraction rules of BOGOLIUBOV and
PABASIUK lead to well-defined renormalized Green's distributions. A collection of
the counter-terms in "trees" removes the difficulties with overlapping divergences
and allows fairly simple estimates and closed expressions for renormalized Feynman
integrals. The renormalization procedure, which also applies to conventionally non-
renormalizable theories, is illustrated in the ^-theory.

1. Introduction

Renormalization in Lagrangian quantum field theory is in the inter-
pretation of BOGOLIUBOV and PABASIUK [1], [2] the extension of certain
linear functionals, defined on a subspace of <9*(R*n), to tempered distri-
butions in 9" (R*n) [3]. For instance, the Gell-Mann Low perturbation
expansion of the truncated time-ordered distributions has the form

n==m \

f*

/ dxm+1 . . . dxn XJ

Here the truncated vacuum expectation values (φ\(Xι) . . .
are well-defined for ^fl(x), which are WICK polynomials of the free fields
φl(x). On the other hand the straightforward construction of
(Tφl(xλ) . . .3Pl(xn)}τ by WICK'S theorem [4] leads to a product of
distributions

xh). (1.2)

Formula (1.2) is in general not meaningful as one sees from the definition
of Δf in p-space

= lim iP,(p) (p* -mf + ie)-ι , (1.3)

where Pι(p) is a polynomial and where ml > 0 is always assumed. Then
the convolutions in ^-space corresponding to (1.2) can lead to "ultra-
violet divergences".

Nevertheless the product (1.2) taken with regularized [5] propagators
is a good starting point for the definition of
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The choice of regulators will turn out to be rather arbitrary, but it is
desirable to maintain Lorentz co variance. Using

2f (p) = lim Pz (p) fd α exp [< α (p* - mf + i ε)] (1 .4)
eJO o

we define f or ε > 0, r > 0

(1.5)

2f β belongs to % t#4) π 00 (Λ4) ([3], vol. 2, p. 101) and Fourier trans-
forms and convolutions of several 2p* can be obtained (in the sense of
distribution theory) by interchange with the α-integration. Evidently
2f(p) — lim 2l'*(p) converges to zero in (Pj^ (J24) for r 1 0. One has

βJO
00

<Lβ)
in 0Jf(jR4)Λ0<7tB4) and thus the product Π Δτ

l^(xi - xfl) is well-
ies

denned. Furthermore it can be shown ([6]; see sec. 4) that

lim lim ΠΔfa(xit - xh)•10 f i l n

is a continuous linear functional on the subspace £fN(R*n) of those test
functions φ ζ ^(R*™), which vanish of sufficiently high order N when-
ever two arguments xi9 xί9 1 ̂  i < j ^ n, coincide.

The renormalization theory of DYSON [7] is in this framework a
constructive form of the Hahn-Banach theorem: one subtracts from
U Δj β(x^ — Xfr) counter terms which vanish on &*N(R*n), such that the
remainder has a limit in &" (R*n) f or r j 0 and ε j 0. The fact that these
subtractions can be implemented by formal counter terms in #?1 (x) is
an inherently beautiful feature of Lagrangian quantum field theory.

Feynman graphs efficiently organize the combinatorics of the counter
L

terms. We map the n arguments xί9 . . . xn of Π Δr^ε(xiv — xfv) onto n
v = l

points F!, . . . Vn in a plane, called vertices, and each propagator
Δ%*(Xi, — #/„) on an oriented line lv from V^ to Vfv. This gives (up to
topological equivalence) the graph 0(V19 . . . Vn, <&) for ΠΔl>f> where

^ = ft,.. }̂.
Def.: A subset ϋ = {V[, . . . V'm} C {V19 . . . Vn} is caUed a generalized

vertex of 0(Flf . . . FΛ, J2?).
Def.: Let I7f = {Fα, . . . Vira)}, I ^ i ^ m} be pairwise disjoint

generalized vertices of G(Vίy . . . Fn, JS?) and J( d&. Then the graph
G(Ul9 . . . Umί Λ) is obtained by representing the sets Uv . . . Um by
m points in a plane (again denoted by £7$) and by connecting them by
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those I £ JK, which run between different Ut (i.e. between Vίt £ Z7t ,
FΛ £ Z7/, Uf φ P,). Sets {F^} are also denoted by Ff.

Example: Let JS? - ft, . . . Zβ} and £(F1? . . . F4, J2?) be as in Fig. 1.
If Ul = {Vl9Vt} and ̂  = ft, Z4, Z5, Z6}, then G(U19V99Λ) becomes
Fig. 1.

Fig. 1. Graph and generalized subgraph

Def.: G(UV . . . Um, Jί] is connected, if {Uv . . . Um} is connected by
the lines in Ji'. G(U19 . . . Um, Ji} is 1-particle irreducible (IPI), if for all
Z ζe^f and *Jt\l — *Jέ — {Z}, G(U^ . . . C7TO, ^/Z} is connected. Otherwise
G(U19 . . . Um, Jί} is called 1-particle reducible (IPR).

Def.: The superficial divergence v(V'l9 . . . V'm) of Θ(V[9 . . . Vf

m)^)9

{Fί, - - - V'm}ζ{Vl9 . . . Vn}, is defined by

v ( V [ 9 . . . V'm) = Σ (rι Hr 2) + 4(m - 1), (1.7)
conn

where Σ extends over all Z £ J^7, which connect two vertices from
conn

{Vi, . . . V'm} and rl is the degree of the polynomial Pl in (1.3). In the
above example one has for a scalar theory (rl = 0):

v(F1( F,) = 0, v(Vίt F,, Fs) = 0, v(Vί} F2> F,, F4) = 0 .

To each generalized vertex {Fj, . . . V'm} we define a vertex part

&y(V{, . . . V'm) as the following distribution with support in

Def.: Let ί, . . .F;}c{F l f . . .F Λ }.Then

1 , if m = 1

(F{,... F^), otherwise ,

(1.8)

(1.9)

}, 1 ^ ̂  A (P)}, of

_
^(V[, . . . V'm) = Σ' Π ^(F/i, . . . Ffr(Λ) Π Δ

P y = 1 conn

Here ̂ ' extends over all partitions {{F£, . . .
p

{Fί» ^m} into l<lc(P)^m sets and 77 is taken over alU ζ^
conn

which connect different sets of the partition. The operation M maps

&y(V[, . . . V'm), being in #>-space of the form δ(p{ + + p'm) x
X J(pi, . . . j4) with J? ζ(PM(Λ^), into 3(pJ + - - + p'm) T(p[9 . . . p'm),

where the polynomial T is the Taylor series of F around p( = p'm = 0
Commun. math. Phys., Vol. 2 21
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up to the order v(V'v . . . F^), T = 0 for v < 0. One verifies by induction
that for ε > 0, r > 0 the above definition makes sense. Finally we set

^(Fί, . . . V'm) = «S?(Fί, - V'm) + a%f(V[9 . . . V'm) . (1.10)

Example: If we denote graphically each (— M)-operation by a dotted
encircling of the corresponding subgraph, then we obtain in a typical
case Fig. 2. We have only listed the non-vanishing terms. One sees the

Fig. 2. Counterterms

emergence of subtraction rules, which are similar but not identical with
those proposed by SALAM [8].

The main theorem of BOGOLIUBOV and PARASIUK is that for an

arbitrary product of Feynman propagators (1.2) lim lim «^^ε(F1? . . . FJ
eJO r j O

exists as a tempered distribution and defines a Lorentz covariant con-
tinuation of (1.2) which can be implemented by (formal) counter terms

Unfortunately the papers of BOGOLIUBOV and PARASIUK [1], [2] come
close to not satisfying SALAM'S criterion: it is hard to find two theore-
ticians whose understanding of the essential steps of the proof is iso-
morphic. This is particularly regrettable, since the very ingenious and
elaborate treatment of the authors is the most general discussion of
renormalization in Lagrangian quantum field theory. Our aim is to give
a new and possibly clearer account of the fundamental operations and to
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circumvent a number of errors in the original proof of the main theorem.
We shall give a new treatment of the combinatorial structure of the
^-operation (Lemma 2.4), which deals efficiently with the overlapping
divergences and leads to a direct majorization of the counter terms in
partial sums of tree structure (Lemma 3.2). Each tree gives a renor-
malized Feynman integral in the limit r j 0, which has the usual analyti-
city properties and is a tempered distribution for ε j 0. In an example we
shall discuss the renormalized perturbation series for the ^-theory [9].

2. Tree structure of the ^-Operation

In momentum space each term in &rg (VI9 . . . Vn) has the following
structure

oo oo L Γ n L "I

Pi)f f ΠdoclR(X,p)exp\iΣ AijPiPj - i£ α,K- ie)
r r 1=1 L 1 1 J

(2.1)

The Aij = Aij(oc) are rational and homogeneous of degree +1 and
JR(<x, p) rational and in general not locally α-integrable for α j 0. Thus
the "ultraviolet divergences" become manifest and the counter terms are
introduced to enforce local integr ability when r j 0. The greatest diffi-

culty in proving the existence of lim lim ^^ε(Fl5 . . . Vn) arises from
ε j O r |0

"overlapping divergences", i.e. from the necessity of subtractions for
generalized vertices Ui = {VilL, . . . Vik}, Uj = {F^, . . . F }̂ with
Ui r\ Uj φ 0 and neither Όi ̂  Uj nor Uj ^ U^ Although each term in

^r&CVι> Vn) diverges in general for r ! 0, one easily sees in simple
examples that certain partial sums of counter terms converge individually
in regions of the type αZι ̂  Ξ> α^ ̂  0.

This leads to the following combinatorial problem : Given an ordering

ZJL > > 1L of the lines &. Can one decompose ̂ ^ε(F1? . . . Vn) into
partial sums involving only non- overlapping subtractions, while keeping
definite order relations between the lines £? such that "the right sub-
tractions arise at the right places" ? The answer is affirmative, and the
problem of keeping track of all counter terms has found a surprisingly
simple solution by Lemma 2.2 due to BOGOLIUBOV and PABASΠJK [1], [2],
In this section we shall not denote explicitly the r > 0 and ε > 0 depend-
ence (by writing e.g. Δl for Zip).

We first introduce a generalized ^-operation for a set ί71? . . . Us of
pairwise disjoint generalized vertices Ui = {F^, . . . F^^)} with vertex
parts ^(ϋi) (i.e. distributions with support in {xil= - = %ir(i)}) and
for a subset Jt c «^ For any union ϋ[ \j w U't, U^ ζ {£71? . . . C7S}, we
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define a vertex part as in (1.8, 9, 10) by

&(U') if t = 1

3£jr(D'l9 . . . U't) = 0 if G(ϋ'l9 . . . U't, Jt) is IPR (2.2)

— M&j[(U[9 . . . U't) otherwise ,
__ *(P)

& (Uf U') = y; Π SC (ΊJP ΐJP } Π Δ (2 3)
P j =1 conn

J^7' runs over all partitions P of {£/{,. . . U't} into 1 < lc(P) ^ £ sets and
p
77 over all lines / ζ JSf, for which Vit and Fy, lie in different sets of the

conn

partition. M is defined in #>-space as Taylor expansion of the coefficient

of δ lΣ Pίn UP to the order v(Vlί9... Vtk(t)) around the origin. Finally
\i>i /

ύd (TTf TT'\ όd IΎ1' Ύl'\ i OF ίTT' TΊ'\ / 9 / f \
&£ $\U i? . . Ut) = ^^V^l' *J t) ' ^ M\ι \"> ' ' ' ^ t) v^ ^j

It is important to observe that ̂  only accounts for IPI in (2.2), while
Π extends over all connecting lines I ξ J& and 3? determines

conn

v(Vu, . . . Vtk(t)) by (1.7). Thus by varying ̂  one changes the number
of counter terms in (2.4) without affecting the analytical form of the
remaining terms.

Lemma 2.1. If G(Ul9 . . . U89 Λ) is IPR, then there exists a unique

partition of {U19 . . . Us} into {ί701}, . . . {*70s(o)}> {^ιι» 0ιβ(ι)}»
. . . {Url9 . . . Urs(r)}, s ( l ) , . . . s(r) > 1, such that G(Uil9 . . . UiBa)9 Λ)
are IPI and

s<°) " „ (2.5)
= Π X(ϋot) Π ̂ (ϋn, . . . ϋil(ί)) ΠΔt,

where Π extends over all I ζ 5£ connecting generalized vertices from
conn

different sets of the partition.
Proof: One obtains trivially the decomposition of G(U19 . . . US9 ^)

into IPI components by looking at the corresponding graph. These
components are some generalized vertices Uoί and some IPI subgraphs
G(Ujl9 . . . Uj8(S)9 Λ}. Since the definition of ^^(Uv . . . Us) excludes
all partitions of {Uv . . . Us}, which are not finer than {Ϊ701}, . . .
. . . (£7rl, . . . C^rs(r)} (because otherwise there would appear at least one
IPR subgraph) one obtains (2.5).

Since the connecting lines between the IPI components of any
θ ( Fj, . . . Vn, &) do not form closed loops, we can in the sequel restrict
ourselves to the renormalization of IPI graphs. The following lemma
shows how to regroup the counter terms in ^^(Ul9 . . . Um)9 if ̂  is
replaced by Jt\l\
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Lemma 2.2: Given Λέ C<& and a disjoint set of generalized vertices
Uv . . . Um with vertex parts &(!}?). If I ζ <Jt connects different Ui} then

n n u v ίr (,), , (r(Λ +1), , '
?

Here Σ extends over all IPI G(Ujv . . . C7y ,.(/>, ̂ ), 1 < ?(?') ^ m, which
?

become IPR without I. & jtiι(U ̂  \j - \J U j r ( f i , . . . Ujm) is defined by
(2.2) starting from &(Ujk), k >r (j), and from new vertex parts for

(2.7)

Proof1 by induction : The lemma is true f or m = 1 . We assume that
Lemma 2.2 holds for all proper subsets {C7{, . . . U%} of {C7l5 . . . Um},
where k < m and I ζ <JP C 3? is fixed.

If 0(U19... Um, Jt} is IPR, then also Θ(U19 . . . Um, Jt\l). Since
any IPI G(Ujv . . . Uίr(j),^) must lie in a IPI component of
Θ(UV ...Um, Jt}, all the graphs G(un u w ̂  r0 ), . . . Uίm,Λβ)
are IPR. Therefore both sides of (2.6) vanish.

If G(UV . . .Um, Jt] is IPI and m > 1, then we use (2.2) and (2.3).
For each of the &^, on the right hand side of (2.3) the induction hypo-
thesis applies. If I does not connect two vertices from Ufa, . . . Ufrφ,
then obviously &jt(Ufa, . . . Z7£ω) = tf^/^Ufa, . . . E7£ω). The other
alternative occurs at most once in every product in (2.3), say for / = 1.
By the induction hypothesis (2.3) becomes

i, . . . Um) = -

- M Σ" Σ &*lι(VLι u w Uζas(a), . . . Z7fβr(1)) x (2.8)
P a=

x nar^/l(UfL9...ufr(i>) ΠΔ,.
j = 2 conn

Here ̂ 7" extends over those proper partitions P oί{Uly . . . Um}, where
p

A
I connects two vertices from U^ , . . . Uζr^, and Σ over a^ Π^ subgraphs

α = l

> - ϋΐα8(α), Jΐ), 1 < s(α) ^ r(l), which become IPR without Z.
It is easy to see that the right hand side of (2.6) and (2.8) coincide:

becomes ^^ii(U^ . . . Um)9 if G(UI9 . . . Umί JPjl) is IPI and otherwise
1 The proof in [1], [2] is incorrect. Unfortunately the erroneous identity

E(Gαι . . . Gαiί : Γ') = Δ (jΓ7) R(Gαί . . . CrαA) has been used repeatedly in discussing
the analytical properties of the ^-operation (e.g. [1], (4.4) ff; [1], Satz 4).
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SCjeiiCϋi \j \j Um). By inverting the order of the summations Σ"
p

and Σ tne second term in (2.8) is identified with the sum over all IPI

. . . Ujr(fi,~$) which are IPR without I and over all proper
partitions of {£7n \j - - w Ujr(j), Uj(r(j}+l}, . . . ϋjm}.

This proves Lemma 2.2 and under the same assumptions:
Lemma 2.3:

Σ'
i

\j « . . . ϋjm) ,
(2.9)

where Σ' extends over all IPI G(Ujv . . . U^^), Jt}, 1 < r(j) < m,
i

which become IPR without I.
If we collect sums of iterated M- operations appearing in

^^(F1? . . . Vn) into non- overlapping sequences of M- and (1 — M)-
operations, the following definition arises :

Def.: Let 0(VV . . . Vn, <&) be IPI. A tree T = (It, Jΐ, σ) is a set XI of
generalized vertices, a subset <Jί C & and a mapping σ : U -*• {— 1, 0, + 1}
satisfying (A), (B) and (C):

(A) {F1? . . . Vn} 6 H; F; £11, 1 ̂  i^ n\ if U19 U2 ζH, then either
Ui r\ U2 = 0 or E^c Uz or C72C U^

Remark: The U ζ H can be uniquely labeled by their position in a
chain of elements in 11 :

U(i0, ...ίk)C U(i0, . . . ik_J C C ϋ(i0) = (2.10)

where iQ = 1 and the ίr ̂  1 are integers. We set I = (ί0, . . . ^fc) and
(/, i) = <0, . . . ifc, i) and thus ϋ(I, i) C Z7(I). ̂  = {I : ϋ(I) ζ H}.

(B) Either U (I) = F^ for some 1 ̂  i ^ n or ̂  connects the
{U(I, ί) : (I, ί) ζ J^} either IPI or linearly without closed loops.

Example: Fig. 3.

Γig. 3. Connection of the {Z7(I, i)}c 17(1) by Jί.

(C) σ(Z7(ί0)) = +1; σ(Z7(7)) - 0, iff C7(7) = Vt for some 1
If (r(ϊ7(7))= -1, then (?({17(7, i)}, uT) is IPR. If G({U(I,ί
IPI, then or(Z7(7)) = +1 and σ(C/(J, i)) ^ 0 for all (/, i) ζ y.

s
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Def.: Let T = (U, Jί, σ) be a tree for a IPI G(Vl9 . . . Vn, &}. Then
the Feynman amplitude ^^(V^ . . . Vn) = ^jt(U(ί0)) is defined
recursively from the 3? j((ϋ (I}} of the "branches" ϋ(I) ζ U by:

(a) If ϋ(I) = Fί, then ^^(U(I)) = 1 and £7(7) is called a "twig".
(b) If σ(Z7(7)) = - 1, then 17(7) is a "twig" and

= -Jf 77 &*&(!, ty ΠΔ\ (2.11)ΠΔ\
onn J

(c) If σ (ϊ7(7)) = + 1 and G({U(I, i)}, JΓ) is IPR, then ϋ(I) is called
a "bough" and

, i)} ΠΔ\ (2.12)
conn J

(d) If σ(Z7(7)) = + 1 and <?({*/(/, i)}, Jt} is IPI, then 17(7) is called
a "bud" and _

^(UW) = (1 - Λf) &*(&(!, i)}) (2.13)

is defined by (2.2), (2.3) starting from the J^(£7(7, i)) [= 1 or (2.11)]
as vertex parts W(U(I, i)).

In (2.11), (2.12) //^ extends over all Z ζ βSf?, which connect
conn

different U(I,i)cU(I).
Example: If ^(F15 . . . FΛ, Jg?) is IPI, then ^(Fl5 . . . FΛ)

= (1 - lί) ̂ (F1? . . . Fn) is a tree with the bud {F15 . . . Vn} and the
twigs Vi9 I ^ ί ^ .̂ A repeated application of Lemma 2.3 will again
lead to sums of trees (see Lemma 2.4).

Def.: The order of U(I), I = (i0, . . . ίk), is the length k of the chain
(2.10). Let σ(Z7(7)) = 1. Then the fc-order of U (I) is the length of the
subchain of (2.10) consisting only of buds and boughs.

Def.: I is contained in Z7(7), if F^, FΛ ζ Z7(7).
For each Z ξ «J f̂ there exists an U (I) ζ U of maximal order which

contains I: if Fίt = C7(7'), FΛ - #(/")> then ^ = i '̂ for 0 ̂  ρ ̂  r and

i'r + 1 ̂  V'+ 1 ̂ or some r then / = ( ,̂ . . . , O ^ ̂ (^ (^)) = — 1 » "t̂ 611 tne

bud or bough of maximal order containing I contains U (I) properly. The
following lemma motivates our arborological language :

Lemma 2.4.: Let G(Vί9 . . . Fn, &) be IPI and ̂  > > 1L be any
ordering of the lines j£f. Then there exists a finite set of trees
T = (U, u^, σ ) such that

(a) ^(F1,...FΛ)

(b) Each cjf contains exactly 72- — 1 lines.
(c) If I ξ o f̂ — <Jέ and if C7 (ί0, . . . ί8) is the branch and C7 (iQ, . . . ir)

the bough of maximal order containing Z, then I > Γ for all Γ ζ Jί^ (ίQ, . . . iρ),
r ^ ρ g «s, where ̂ x (7) is the set of all Z' ζ ̂ , which are contained in
17(7) but in no twig £7(7') C Z7(7), Z7(7') Φ Z7(7).
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Proof: Using the fact that ^^(Fl5 . . . Vn) is a tree and repeatedly
the reduction formula (2.9) we shall prove Lemma 2.4 by complete
induction with respect to the number of lines in S£ — Λt .

We assume that after ra steps, 0 ^ r a < L + l — n, ^^>(VV . . . Vn)
can be represented as a finite sum Σ ^τ(Vι> - Fw) of trees
T = (XI, Jί, or). In each tree every bough is of b-order ^ k and every bud
of b-order ^ k for some k ̂  0. <Jί consists of exactly L — m lines. If
Z £ 3? — <Jt and U(ίQ, . . . is) is the branch and U(iQ, . . . ir) the bud or
bough of maximal order containing Z, then I > V for all V £ ̂  (i0, . . . iρ),
r ^ ρ ̂  s.

Obviously £%& (Fl5 . . . Fn) satisfies all these properties for
m = 0. We shall show that the induction hypothesis remains valid, if in
any tree T we reduce one of the buds U(I) of smallest b-order by
applying Lemma 2.3 to its Feynman amplitude (2.13) and by reducing
with respect to the largest line I in ^1(I). By definition all branches
U(I, ί) C U(I) are twigs. Therefore one obtains

(2 14)
.))

27 extends over all IPI θ(U(I,h), . . . U ( I , j r ( j ) ) 9 Λ Γ ) , which are IPR

without Z. Let {U(I, ht)}, 1 ̂  ί g α, and (Z7(/, A< y), 1 ̂  ?' ̂  c(ί)},
1 ^ ί ̂  δ, be the partition of {!/(/, ^Ί), . . . 17(1, ?Vω)}' which charac-
terizes the IPI components of G(U(I, j^), . . . U(I, jr(j)), ^/ΐ). Then the
vertex part for U(I, fa) \J w Z7(/, ?V(j)) factorizes by Lemma 2.1 into

>)} X (2-15)
=ι

X Π [(1 - Λ
ί = 1 conn

Similarly, if G(Z7(7, 1), ... U(I, s), Λffΐ) is IPR, the first term on the
right hand side of (2.14) can be decomposed:

( l -J f ) ^,,(17(/,!), ...U(I,s))

"i}} X (2.16)

x ίi [(i - M)
i = 1 conn

On the other hand all 0(U(I, jj \j - w E7(/, #rω), ...ϋ(I9 ja),
are IPI in a bud U(I), and the corresponding Feynman amplitude does
not factorize beyond (2.14).


