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Abstract. A new proof is given that the subtraction rules of BOGOLIUBOV and
PABASIUK lead to well-defined renormalized Green's distributions. A collection of
the counter-terms in "trees" removes the difficulties with overlapping divergences
and allows fairly simple estimates and closed expressions for renormalized Feynman
integrals. The renormalization procedure, which also applies to conventionally non-
renormalizable theories, is illustrated in the ^-theory.

1. Introduction

Renormalization in Lagrangian quantum field theory is in the inter-
pretation of BOGOLIUBOV and PABASIUK [1], [2] the extension of certain
linear functionals, defined on a subspace of <9*(R*n), to tempered distri-
butions in 9" (R*n) [3]. For instance, the Gell-Mann Low perturbation
expansion of the truncated time-ordered distributions has the form

n==m \

f*

/ dxm+1 . . . dxn XJ

Here the truncated vacuum expectation values (φ\(Xι) . . .
are well-defined for ^fl(x), which are WICK polynomials of the free fields
φl(x). On the other hand the straightforward construction of
(Tφl(xλ) . . .3Pl(xn)}τ by WICK'S theorem [4] leads to a product of
distributions

xh). (1.2)

Formula (1.2) is in general not meaningful as one sees from the definition
of Δf in p-space

= lim iP,(p) (p* -mf + ie)-ι , (1.3)

where Pι(p) is a polynomial and where ml > 0 is always assumed. Then
the convolutions in ^-space corresponding to (1.2) can lead to "ultra-
violet divergences".

Nevertheless the product (1.2) taken with regularized [5] propagators
is a good starting point for the definition of

* Research supported by the National Science Foundation.
** Present address: ETH, Zurich, Switzerland.



302 K.HEPP:

The choice of regulators will turn out to be rather arbitrary, but it is
desirable to maintain Lorentz co variance. Using

2f (p) = lim Pz (p) fd α exp [< α (p* - mf + i ε)] (1 .4)
eJO o

we define f or ε > 0, r > 0

(1.5)

2f β belongs to % t#4) π 00 (Λ4) ([3], vol. 2, p. 101) and Fourier trans-
forms and convolutions of several 2p* can be obtained (in the sense of
distribution theory) by interchange with the α-integration. Evidently
2f(p) — lim 2l'*(p) converges to zero in (Pj^ (J24) for r 1 0. One has

βJO
00

<Lβ)
in 0Jf(jR4)Λ0<7tB4) and thus the product Π Δτ

l^(xi - xfl) is well-
ies

denned. Furthermore it can be shown ([6]; see sec. 4) that

lim lim ΠΔfa(xit - xh)•10 f i l n

is a continuous linear functional on the subspace £fN(R*n) of those test
functions φ ζ ^(R*™), which vanish of sufficiently high order N when-
ever two arguments xi9 xί9 1 ̂  i < j ^ n, coincide.

The renormalization theory of DYSON [7] is in this framework a
constructive form of the Hahn-Banach theorem: one subtracts from
U Δj β(x^ — Xfr) counter terms which vanish on &*N(R*n), such that the
remainder has a limit in &" (R*n) f or r j 0 and ε j 0. The fact that these
subtractions can be implemented by formal counter terms in #?1 (x) is
an inherently beautiful feature of Lagrangian quantum field theory.

Feynman graphs efficiently organize the combinatorics of the counter
L

terms. We map the n arguments xί9 . . . xn of Π Δr^ε(xiv — xfv) onto n
v = l

points F!, . . . Vn in a plane, called vertices, and each propagator
Δ%*(Xi, — #/„) on an oriented line lv from V^ to Vfv. This gives (up to
topological equivalence) the graph 0(V19 . . . Vn, <&) for ΠΔl>f> where

^ = ft,.. }̂.
Def.: A subset ϋ = {V[, . . . V'm} C {V19 . . . Vn} is caUed a generalized

vertex of 0(Flf . . . FΛ, J2?).
Def.: Let I7f = {Fα, . . . Vira)}, I ^ i ^ m} be pairwise disjoint

generalized vertices of G(Vίy . . . Fn, JS?) and J( d&. Then the graph
G(Ul9 . . . Umί Λ) is obtained by representing the sets Uv . . . Um by
m points in a plane (again denoted by £7$) and by connecting them by
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those I £ JK, which run between different Ut (i.e. between Vίt £ Z7t ,
FΛ £ Z7/, Uf φ P,). Sets {F^} are also denoted by Ff.

Example: Let JS? - ft, . . . Zβ} and £(F1? . . . F4, J2?) be as in Fig. 1.
If Ul = {Vl9Vt} and ̂  = ft, Z4, Z5, Z6}, then G(U19V99Λ) becomes
Fig. 1.

Fig. 1. Graph and generalized subgraph

Def.: G(UV . . . Um, Jί] is connected, if {Uv . . . Um} is connected by
the lines in Ji'. G(U19 . . . Um, Ji} is 1-particle irreducible (IPI), if for all
Z ζe^f and *Jt\l — *Jέ — {Z}, G(U^ . . . C7TO, ^/Z} is connected. Otherwise
G(U19 . . . Um, Jί} is called 1-particle reducible (IPR).

Def.: The superficial divergence v(V'l9 . . . V'm) of Θ(V[9 . . . Vf

m)^)9

{Fί, - - - V'm}ζ{Vl9 . . . Vn}, is defined by

v ( V [ 9 . . . V'm) = Σ (rι Hr 2) + 4(m - 1), (1.7)
conn

where Σ extends over all Z £ J^7, which connect two vertices from
conn

{Vi, . . . V'm} and rl is the degree of the polynomial Pl in (1.3). In the
above example one has for a scalar theory (rl = 0):

v(F1( F,) = 0, v(Vίt F,, Fs) = 0, v(Vί} F2> F,, F4) = 0 .

To each generalized vertex {Fj, . . . V'm} we define a vertex part

&y(V{, . . . V'm) as the following distribution with support in

Def.: Let ί, . . .F;}c{F l f . . .F Λ }.Then

1 , if m = 1

(F{,... F^), otherwise ,

(1.8)

(1.9)

}, 1 ^ ̂  A (P)}, of

_
^(V[, . . . V'm) = Σ' Π ^(F/i, . . . Ffr(Λ) Π Δ

P y = 1 conn

Here ̂ ' extends over all partitions {{F£, . . .
p

{Fί» ^m} into l<lc(P)^m sets and 77 is taken over alU ζ^
conn

which connect different sets of the partition. The operation M maps

&y(V[, . . . V'm), being in #>-space of the form δ(p{ + + p'm) x
X J(pi, . . . j4) with J? ζ(PM(Λ^), into 3(pJ + - - + p'm) T(p[9 . . . p'm),

where the polynomial T is the Taylor series of F around p( = p'm = 0
Commun. math. Phys., Vol. 2 21
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up to the order v(V'v . . . F^), T = 0 for v < 0. One verifies by induction
that for ε > 0, r > 0 the above definition makes sense. Finally we set

^(Fί, . . . V'm) = «S?(Fί, - V'm) + a%f(V[9 . . . V'm) . (1.10)

Example: If we denote graphically each (— M)-operation by a dotted
encircling of the corresponding subgraph, then we obtain in a typical
case Fig. 2. We have only listed the non-vanishing terms. One sees the

Fig. 2. Counterterms

emergence of subtraction rules, which are similar but not identical with
those proposed by SALAM [8].

The main theorem of BOGOLIUBOV and PARASIUK is that for an

arbitrary product of Feynman propagators (1.2) lim lim «^^ε(F1? . . . FJ
eJO r j O

exists as a tempered distribution and defines a Lorentz covariant con-
tinuation of (1.2) which can be implemented by (formal) counter terms

Unfortunately the papers of BOGOLIUBOV and PARASIUK [1], [2] come
close to not satisfying SALAM'S criterion: it is hard to find two theore-
ticians whose understanding of the essential steps of the proof is iso-
morphic. This is particularly regrettable, since the very ingenious and
elaborate treatment of the authors is the most general discussion of
renormalization in Lagrangian quantum field theory. Our aim is to give
a new and possibly clearer account of the fundamental operations and to
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circumvent a number of errors in the original proof of the main theorem.
We shall give a new treatment of the combinatorial structure of the
^-operation (Lemma 2.4), which deals efficiently with the overlapping
divergences and leads to a direct majorization of the counter terms in
partial sums of tree structure (Lemma 3.2). Each tree gives a renor-
malized Feynman integral in the limit r j 0, which has the usual analyti-
city properties and is a tempered distribution for ε j 0. In an example we
shall discuss the renormalized perturbation series for the ^-theory [9].

2. Tree structure of the ^-Operation

In momentum space each term in &rg (VI9 . . . Vn) has the following
structure

oo oo L Γ n L "I

Pi)f f ΠdoclR(X,p)exp\iΣ AijPiPj - i£ α,K- ie)
r r 1=1 L 1 1 J

(2.1)

The Aij = Aij(oc) are rational and homogeneous of degree +1 and
JR(<x, p) rational and in general not locally α-integrable for α j 0. Thus
the "ultraviolet divergences" become manifest and the counter terms are
introduced to enforce local integr ability when r j 0. The greatest diffi-

culty in proving the existence of lim lim ^^ε(Fl5 . . . Vn) arises from
ε j O r |0

"overlapping divergences", i.e. from the necessity of subtractions for
generalized vertices Ui = {VilL, . . . Vik}, Uj = {F^, . . . F }̂ with
Ui r\ Uj φ 0 and neither Όi ̂  Uj nor Uj ^ U^ Although each term in

^r&CVι> Vn) diverges in general for r ! 0, one easily sees in simple
examples that certain partial sums of counter terms converge individually
in regions of the type αZι ̂  Ξ> α^ ̂  0.

This leads to the following combinatorial problem : Given an ordering

ZJL > > 1L of the lines &. Can one decompose ̂ ^ε(F1? . . . Vn) into
partial sums involving only non- overlapping subtractions, while keeping
definite order relations between the lines £? such that "the right sub-
tractions arise at the right places" ? The answer is affirmative, and the
problem of keeping track of all counter terms has found a surprisingly
simple solution by Lemma 2.2 due to BOGOLIUBOV and PABASΠJK [1], [2],
In this section we shall not denote explicitly the r > 0 and ε > 0 depend-
ence (by writing e.g. Δl for Zip).

We first introduce a generalized ^-operation for a set ί71? . . . Us of
pairwise disjoint generalized vertices Ui = {F^, . . . F^^)} with vertex
parts ^(ϋi) (i.e. distributions with support in {xil= - = %ir(i)}) and
for a subset Jt c «^ For any union ϋ[ \j w U't, U^ ζ {£71? . . . C7S}, we
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define a vertex part as in (1.8, 9, 10) by

&(U') if t = 1

3£jr(D'l9 . . . U't) = 0 if G(ϋ'l9 . . . U't, Jt) is IPR (2.2)

— M&j[(U[9 . . . U't) otherwise ,
__ *(P)

& (Uf U') = y; Π SC (ΊJP ΐJP } Π Δ (2 3)
P j =1 conn

J^7' runs over all partitions P of {£/{,. . . U't} into 1 < lc(P) ^ £ sets and
p
77 over all lines / ζ JSf, for which Vit and Fy, lie in different sets of the

conn

partition. M is defined in #>-space as Taylor expansion of the coefficient

of δ lΣ Pίn UP to the order v(Vlί9... Vtk(t)) around the origin. Finally
\i>i /

ύd (TTf TT'\ όd IΎ1' Ύl'\ i OF ίTT' TΊ'\ / 9 / f \
&£ $\U i? . . Ut) = ^^V^l' *J t) ' ^ M\ι \"> ' ' ' ^ t) v^ ^j

It is important to observe that ̂  only accounts for IPI in (2.2), while
Π extends over all connecting lines I ξ J& and 3? determines

conn

v(Vu, . . . Vtk(t)) by (1.7). Thus by varying ̂  one changes the number
of counter terms in (2.4) without affecting the analytical form of the
remaining terms.

Lemma 2.1. If G(Ul9 . . . U89 Λ) is IPR, then there exists a unique

partition of {U19 . . . Us} into {ί701}, . . . {*70s(o)}> {^ιι» 0ιβ(ι)}»
. . . {Url9 . . . Urs(r)}, s ( l ) , . . . s(r) > 1, such that G(Uil9 . . . UiBa)9 Λ)
are IPI and

s<°) " „ (2.5)
= Π X(ϋot) Π ̂ (ϋn, . . . ϋil(ί)) ΠΔt,

where Π extends over all I ζ 5£ connecting generalized vertices from
conn

different sets of the partition.
Proof: One obtains trivially the decomposition of G(U19 . . . US9 ^)

into IPI components by looking at the corresponding graph. These
components are some generalized vertices Uoί and some IPI subgraphs
G(Ujl9 . . . Uj8(S)9 Λ}. Since the definition of ^^(Uv . . . Us) excludes
all partitions of {Uv . . . Us}, which are not finer than {Ϊ701}, . . .
. . . (£7rl, . . . C^rs(r)} (because otherwise there would appear at least one
IPR subgraph) one obtains (2.5).

Since the connecting lines between the IPI components of any
θ ( Fj, . . . Vn, &) do not form closed loops, we can in the sequel restrict
ourselves to the renormalization of IPI graphs. The following lemma
shows how to regroup the counter terms in ^^(Ul9 . . . Um)9 if ̂  is
replaced by Jt\l\
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Lemma 2.2: Given Λέ C<& and a disjoint set of generalized vertices
Uv . . . Um with vertex parts &(!}?). If I ζ <Jt connects different Ui} then

n n u v ίr (,), , (r(Λ +1), , '
?

Here Σ extends over all IPI G(Ujv . . . C7y ,.(/>, ̂ ), 1 < ?(?') ^ m, which
?

become IPR without I. & jtiι(U ̂  \j - \J U j r ( f i , . . . Ujm) is defined by
(2.2) starting from &(Ujk), k >r (j), and from new vertex parts for

(2.7)

Proof1 by induction : The lemma is true f or m = 1 . We assume that
Lemma 2.2 holds for all proper subsets {C7{, . . . U%} of {C7l5 . . . Um},
where k < m and I ζ <JP C 3? is fixed.

If 0(U19... Um, Jt} is IPR, then also Θ(U19 . . . Um, Jt\l). Since
any IPI G(Ujv . . . Uίr(j),^) must lie in a IPI component of
Θ(UV ...Um, Jt}, all the graphs G(un u w ̂  r0 ), . . . Uίm,Λβ)
are IPR. Therefore both sides of (2.6) vanish.

If G(UV . . .Um, Jt] is IPI and m > 1, then we use (2.2) and (2.3).
For each of the &^, on the right hand side of (2.3) the induction hypo-
thesis applies. If I does not connect two vertices from Ufa, . . . Ufrφ,
then obviously &jt(Ufa, . . . Z7£ω) = tf^/^Ufa, . . . E7£ω). The other
alternative occurs at most once in every product in (2.3), say for / = 1.
By the induction hypothesis (2.3) becomes

i, . . . Um) = -

- M Σ" Σ &*lι(VLι u w Uζas(a), . . . Z7fβr(1)) x (2.8)
P a=

x nar^/l(UfL9...ufr(i>) ΠΔ,.
j = 2 conn

Here ̂ 7" extends over those proper partitions P oί{Uly . . . Um}, where
p

A
I connects two vertices from U^ , . . . Uζr^, and Σ over a^ Π^ subgraphs

α = l

> - ϋΐα8(α), Jΐ), 1 < s(α) ^ r(l), which become IPR without Z.
It is easy to see that the right hand side of (2.6) and (2.8) coincide:

becomes ^^ii(U^ . . . Um)9 if G(UI9 . . . Umί JPjl) is IPI and otherwise
1 The proof in [1], [2] is incorrect. Unfortunately the erroneous identity

E(Gαι . . . Gαiί : Γ') = Δ (jΓ7) R(Gαί . . . CrαA) has been used repeatedly in discussing
the analytical properties of the ^-operation (e.g. [1], (4.4) ff; [1], Satz 4).
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SCjeiiCϋi \j \j Um). By inverting the order of the summations Σ"
p

and Σ tne second term in (2.8) is identified with the sum over all IPI

. . . Ujr(fi,~$) which are IPR without I and over all proper
partitions of {£7n \j - - w Ujr(j), Uj(r(j}+l}, . . . ϋjm}.

This proves Lemma 2.2 and under the same assumptions:
Lemma 2.3:

Σ'
i

\j « . . . ϋjm) ,
(2.9)

where Σ' extends over all IPI G(Ujv . . . U^^), Jt}, 1 < r(j) < m,
i

which become IPR without I.
If we collect sums of iterated M- operations appearing in

^^(F1? . . . Vn) into non- overlapping sequences of M- and (1 — M)-
operations, the following definition arises :

Def.: Let 0(VV . . . Vn, <&) be IPI. A tree T = (It, Jΐ, σ) is a set XI of
generalized vertices, a subset <Jί C & and a mapping σ : U -*• {— 1, 0, + 1}
satisfying (A), (B) and (C):

(A) {F1? . . . Vn} 6 H; F; £11, 1 ̂  i^ n\ if U19 U2 ζH, then either
Ui r\ U2 = 0 or E^c Uz or C72C U^

Remark: The U ζ H can be uniquely labeled by their position in a
chain of elements in 11 :

U(i0, ...ίk)C U(i0, . . . ik_J C C ϋ(i0) = (2.10)

where iQ = 1 and the ίr ̂  1 are integers. We set I = (ί0, . . . ^fc) and
(/, i) = <0, . . . ifc, i) and thus ϋ(I, i) C Z7(I). ̂  = {I : ϋ(I) ζ H}.

(B) Either U (I) = F^ for some 1 ̂  i ^ n or ̂  connects the
{U(I, ί) : (I, ί) ζ J^} either IPI or linearly without closed loops.

Example: Fig. 3.

Γig. 3. Connection of the {Z7(I, i)}c 17(1) by Jί.

(C) σ(Z7(ί0)) = +1; σ(Z7(7)) - 0, iff C7(7) = Vt for some 1
If (r(ϊ7(7))= -1, then (?({17(7, i)}, uT) is IPR. If G({U(I,ί
IPI, then or(Z7(7)) = +1 and σ(C/(J, i)) ^ 0 for all (/, i) ζ y.

s
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Def.: Let T = (U, Jί, σ) be a tree for a IPI G(Vl9 . . . Vn, &}. Then
the Feynman amplitude ^^(V^ . . . Vn) = ^jt(U(ί0)) is defined
recursively from the 3? j((ϋ (I}} of the "branches" ϋ(I) ζ U by:

(a) If ϋ(I) = Fί, then ^^(U(I)) = 1 and £7(7) is called a "twig".
(b) If σ(Z7(7)) = - 1, then 17(7) is a "twig" and

= -Jf 77 &*&(!, ty ΠΔ\ (2.11)ΠΔ\
onn J

(c) If σ (ϊ7(7)) = + 1 and G({U(I, i)}, JΓ) is IPR, then ϋ(I) is called
a "bough" and

, i)} ΠΔ\ (2.12)
conn J

(d) If σ(Z7(7)) = + 1 and <?({*/(/, i)}, Jt} is IPI, then 17(7) is called
a "bud" and _

^(UW) = (1 - Λf) &*(&(!, i)}) (2.13)

is defined by (2.2), (2.3) starting from the J^(£7(7, i)) [= 1 or (2.11)]
as vertex parts W(U(I, i)).

In (2.11), (2.12) //^ extends over all Z ζ βSf?, which connect
conn

different U(I,i)cU(I).
Example: If ^(F15 . . . FΛ, Jg?) is IPI, then ^(Fl5 . . . FΛ)

= (1 - lί) ̂ (F1? . . . Fn) is a tree with the bud {F15 . . . Vn} and the
twigs Vi9 I ^ ί ^ .̂ A repeated application of Lemma 2.3 will again
lead to sums of trees (see Lemma 2.4).

Def.: The order of U(I), I = (i0, . . . ίk), is the length k of the chain
(2.10). Let σ(Z7(7)) = 1. Then the fc-order of U (I) is the length of the
subchain of (2.10) consisting only of buds and boughs.

Def.: I is contained in Z7(7), if F^, FΛ ζ Z7(7).
For each Z ξ «J f̂ there exists an U (I) ζ U of maximal order which

contains I: if Fίt = C7(7'), FΛ - #(/")> then ^ = i '̂ for 0 ̂  ρ ̂  r and

i'r + 1 ̂  V'+ 1 ̂ or some r then / = ( ,̂ . . . , O ^ ̂ (^ (^)) = — 1 » "t̂ 611 tne

bud or bough of maximal order containing I contains U (I) properly. The
following lemma motivates our arborological language :

Lemma 2.4.: Let G(Vί9 . . . Fn, &) be IPI and ̂  > > 1L be any
ordering of the lines j£f. Then there exists a finite set of trees
T = (U, u^, σ ) such that

(a) ^(F1,...FΛ)

(b) Each cjf contains exactly 72- — 1 lines.
(c) If I ξ o f̂ — <Jέ and if C7 (ί0, . . . ί8) is the branch and C7 (iQ, . . . ir)

the bough of maximal order containing Z, then I > Γ for all Γ ζ Jί^ (ίQ, . . . iρ),
r ^ ρ g «s, where ̂ x (7) is the set of all Z' ζ ̂ , which are contained in
17(7) but in no twig £7(7') C Z7(7), Z7(7') Φ Z7(7).
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Proof: Using the fact that ^^(Fl5 . . . Vn) is a tree and repeatedly
the reduction formula (2.9) we shall prove Lemma 2.4 by complete
induction with respect to the number of lines in S£ — Λt .

We assume that after ra steps, 0 ^ r a < L + l — n, ^^>(VV . . . Vn)
can be represented as a finite sum Σ ^τ(Vι> - Fw) of trees
T = (XI, Jί, or). In each tree every bough is of b-order ^ k and every bud
of b-order ^ k for some k ̂  0. <Jί consists of exactly L — m lines. If
Z £ 3? — <Jt and U(ίQ, . . . is) is the branch and U(iQ, . . . ir) the bud or
bough of maximal order containing Z, then I > V for all V £ ̂  (i0, . . . iρ),
r ^ ρ ̂  s.

Obviously £%& (Fl5 . . . Fn) satisfies all these properties for
m = 0. We shall show that the induction hypothesis remains valid, if in
any tree T we reduce one of the buds U(I) of smallest b-order by
applying Lemma 2.3 to its Feynman amplitude (2.13) and by reducing
with respect to the largest line I in ^1(I). By definition all branches
U(I, ί) C U(I) are twigs. Therefore one obtains

(2 14)
.))

27 extends over all IPI θ(U(I,h), . . . U ( I , j r ( j ) ) 9 Λ Γ ) , which are IPR

without Z. Let {U(I, ht)}, 1 ̂  ί g α, and (Z7(/, A< y), 1 ̂  ?' ̂  c(ί)},
1 ^ ί ̂  δ, be the partition of {!/(/, ^Ί), . . . 17(1, ?Vω)}' which charac-
terizes the IPI components of G(U(I, j^), . . . U(I, jr(j)), ^/ΐ). Then the
vertex part for U(I, fa) \J w Z7(/, ?V(j)) factorizes by Lemma 2.1 into

>)} X (2-15)
=ι

X Π [(1 - Λ
ί = 1 conn

Similarly, if G(Z7(7, 1), ... U(I, s), Λffΐ) is IPR, the first term on the
right hand side of (2.14) can be decomposed:

( l -J f ) ^,,(17(/,!), ...U(I,s))

"i}} X (2.16)

x ίi [(i - M)
i = 1 conn

On the other hand all 0(U(I, jj \j - w E7(/, #rω), ...ϋ(I9 ja),
are IPI in a bud U(I), and the corresponding Feynman amplitude does
not factorize beyond (2.14).
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It is easy to see that only in &jt (U (/)) the reduction of ̂  to dt\l has
the effect of introducing new branches corresponding to a rearrangement
of counter terms. By definition Jί connects linearly the {ϋr(Γ', i)} in a
bough or twig ϋ(Γ), while in a bud G({U(Γ, i)}, Jt} is IPI and Jt deter-
mines the counter terms in (1 - M) J>^({£7(7', ί)}) by (2.2).

Now, the bud U(I) in (2.14) was chosen to lie in no other bud. There-
fore all branches containing ϋ (I) are boughs or twigs, whose sets of
connecting lines in <J£ is unaffected by omitting any I ζ ̂  contained in
U(I). For the same reason Λt and Λ\l are equivalent in branches
£7(7') n £7(7) — 0. Lastly every U(Γ)cU(I) is contained in some
£7(7, ί)) and we can also here replace *Jί by «^/Z, since I was chosen not
to lie in any U(I, i).

Thus if we insert (2.14) into the recursive definition of ίFτ (F1?. . . FΛ),
the contribution of each summand defines a new tree T' = (IT, Ji', σ'), Λ'
= Jt\l, if one separates the twigs and buds in (2.15), (2.16). Since the
bud 27(7) was of minimal b-order, any bough arising from (2.14), if
(τ({£7(7, i)}, Jί\ΐ) is IPR, lies outside of all buds, and every bud in Tf is
of b-order ^ k', k' = k or k -j- 1.

It remains to check the order relations in (IT, Jί', σ') between the
lines in *Jί' = Λΐ\l and ££ — ̂ '. Consider the line I. The bough or bud U
of maximal order containing Z is either U (I) or one of the new buds
U(I, Aα) w w U(I, hic(i}) in (2.15) or U(I, ktί) u w ϋ(I9 *,,ω)
in (2.16), and I does not lie in any twig contained in U, since each of these
twigs is contained in one of the U (I, ί). Therefore the lines in ^/Z, which
lie in U, but in no twig in U, are a subset of ,̂ (7), from which I was
chosen as the largest line.

Consider now an Γ £ J2? — ̂ , which is not contained in £7(7). Since in
all (11', ̂ ', σ') the structure of the branches outside of U (I) is the same
as in (U, J(, a) and since the set of I" £ Jt', which lie in £7(7) but in no
twigs in £7(7), is a subset of ^0^(7), the order relations hold for a fortiori
for V.

Suppose finally that I' ζ ££ — *Jί is contained in £7(7). Then the bud
or bough U of maximal order containing I' satisfies one of the following
alternatives:

a) U is one of the buds of (U, ̂ 5 a) contained in some £7(7, ί). As the
reduction did not change the structure inside of the £7(7, i), the order
relations are preserved.

b) £7 is one of the newly created buds in (2.15) or (2.16). Then the
twigs in U are contained in the 17(1, i). Thus Γ ζ ̂ (7) for all Γ' ζ Jt',
which lie in £7 but in no twig contained in £7. If V lies outside of all twigs
in U, then by the order relations in (It, *Jί, σ) I' > I" for all I" ζ *Jt±(I).
If the branch £7' of maximal order containing Γ is different from £7,
then the chain of twigs between £7; and £7 is contained in some
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U(I, i):U'cU"C' C U(I, i) C ϋ. In the chain ϋ' C ϋ" C' C Σ7(/, i)
the order relations of (H, «^f, σ) continue to hold, and as before V satisfies
the order relations in U.

c) U = U(I). Then it is possible that the twig ϋ' of maximal order
containing Γ generates a chain of twigs V C * ' * C U(I, i) C U" C U(I),
where £7" is one of the twigs U(I, jj \j - \j U(I, jr(S)) in (2.14). Again
in U' C' * ' C U (I, i) the order relations are not affected by going from
<Jί to <Jt\l, while in U" or U(I) the critical lines belong to «^1(/).

This completes the induction. After L + I — n reductions one has
eliminated all buds in all trees, and one arrives at the statement of
Lemma 2.4.

Example: Consider the graph β(Vl9 . . . F4, &) (Fig. 4).

vf

Fig. 4. G(F15 . . . F4,^)

For ^ > > Z5 ^(F1? . . . F4) leads to the trees (Fig. 5). Here
twigs are denoted by a dotted, boughs by a continuous encircling. The
lines in ̂  are solidly marked. In the case Z4 > Z3 > 15 > Zt > Z2 one obtains
Fig. 6.

Fig. 6. Trees in the sector Z4 > 13 > 15 > Ij. >

3. Analytical properties of the ^-operation

In this section we shall determine the analytical structure of the
^-operation in ^3-space. For ε > 0, r > 0 we first carry out all convolution
integrals in £>-space and study the remaining α-integrands. The essential
simplification occurs after reducing in every sector

0|1 ̂  ^ κlL ^ r (3.1)

the α-integrands of &g>(Vl9 . . . Vn) into a sum of trees with respect to
the order relation l± > > 1L.
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For a tree (It, ̂  , σ) we define :

= {lζ &\ connecting different Ϊ7(ί, i) C Z7(/)}

= {IζΛ: connecting different U(I, ί) C ϋ(I)}

^{l^^:ViΓV^ϋ(I)} (3.2)

= [Iξ:^: contained in U(I) but in no twig ϋ(Γ) C U(I),

U(Γ) Φ U(I)}
- {Z7(Γ) C ϋ(I): not contained in any twig U (I") C Z7(/),

Ϊ7(J")ΦZ7(/)}.

The number of elements in any of these sets Jf is denoted by |./Γ|, e.g.,
\&0(i0)\ = £. / ^ /', if Z7(/) :> £/(/')> and / > /', if in addition ϋ(I) Φ
Φ Z7(/'). The superficial divergence (1.7) of G(yo(7), JSP) becomes

) | - l ) . (3.3)

Lemma 3.1: Let T — (11, <Jt, a) be a tree in the decomposition of
^j^(Fι, - - Fw) in (3.1). Then the Feynman amplitude ^^(U(I)) of
any bough 17 (/) ζ XI is for fixed α a finite sum of terms of the form

Πdτ(Γ)]

ί
Li'

X Π D1'R1'(A1') S1'(Bl')\ x (3.4)

x exp Γί Σ t(I)2^ijPiPi - i Σ
LF^F^oCO

If σ(U (I)) = — 1, then ^^(U (I)) has the same structure (3.4) except for
Σ τ(/)2 Λ ljpipj being replaced by zero. The integrand in (3.4) satisfies:

(1) Pl(p) is a monomial in pi9 Vt 6 1^(1), of degree 2a?(/) + z(I).
(2) Qx(α, τ) is a rational function in αί5 l^^Q(I) and r(/'), /' ^ /,

homogeneous of degree 0 in α and uniformly bounded in (3.1) for r ̂  0
and all 0^ τ(Γ) ^ 1.

(3) D1' = Π Σ>Γ2> where Dz = Dl (α, τ) is rational in α, r, homo-

geneous of degree + 1 in α and Dl ^ oct for r ^ 0.
(4) A1' = (A\'j) is a positive semidefinite quadratic form. The -4|J(α, τ)

are rational in α, τ, homogeneous of degree -f 1 in α and satisfy uniformly
f or r ̂  0

μΐ l ^ c(Γ) max{αz : I ζ uT^Γ)}, c(ί') < co . (3.5)

(5) Bl'(A1') is a monomial of degree x(Γ) in u4g, Vi9 Vf ί ̂ 0(^)
(6) Blj(oc9 τ) is rational in α, r, homogeneous of degree — 1 in α, and

satisfies uniformly in (3.1) for r ̂  0

< oo . (3.6)
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(7) ^'(B1') is a monomial of degree y(Γ) in the J5g, 1 ̂  i,

(8) x ( Γ ) , y ( Γ ) 9 z ( Γ ) ^ 0 are integers satisfying:

x(Γ) = y(Γ) = z(Γ) = 0, for σ(Z7 (/')) = 0
(8'7)

7* for σ(tf (/'))=-! (3-8)

^ Σ Ί+ Σ [2x(Γ9i) + z ( Γ , i ) ] 9 (3.9)

where [[&]] is the smallest integer ^> A:.
Remark: This theorem sharpens the statements in [1], Satz 4. The

representation of the renormalized amplitudes as sums of terms of the
form (3.4), each of which being locally α-integrable in the whole range
0 5£ oci < oo, 1 < I g L, as stated in [2], (8.3), (8.4), has not been proved.

Proof: Let <s(7) be the length of the longest chain of branches
£7(7):) 17(1-1) ^ O Z7(7s(I)) (with proper inclusion) contained in U(I).
We shall prove Lemma 3.1 by induction on s (I), starting from an original
vertex with s (I) = 0. As induction assumption in the case s (I) > 0 we
take Lemma 3.1 for granted for all U(Γ) with s ( I ' ) < s(I) and thus for
all U(Γ)ζU(I).

We compute ^Jf(U(I}} in ^-space using (2.11) or (2.12). Then the
^-dependent part of ^^(U(I} 1)) ^^(U(I, 2))Zl;i2 becomes for
σ(U(I9 1)) = σ(ϋ(I9 2)) = + 1 a sum of terms

fdkδί Σ (Pi+etktiδί Σ
\F<€^0(I fl) / \F^^β(

^• (̂{ft + ̂ ^
exp Γ<αϊli F + iτ(/, I)

L

esk) fa.
u

where 6^=+! for i = ^ιa, ^ = — 1 for i = fιlt and 0 otherwise. If
C7(7, 1) and 17 (1,2) are not both boughs, one obtains similar terms.
After carrying out the ^-integration with the help of one of the ό-func-
tions (3.10) becomes a sum of terms

Σ

where P' (p) is a monomial in pi} Vt ^^Q(I, 1) \j ^^(I, 2), of degree
2

^ r^12 + ^7 [2^(7, i) + z ( I , ί)] and A' is a positive semidefinite quad-
i = l

ratio form, whose coefficients -4^ are linear combinations of the
^4^;1)r(7, I)2, Afy^τtf, 2)2 and α/ιa. By a similar argument one obtains

for n&*(V(I,ib Π Δτ (3.12)
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in p- space a sum of terms

Σ Pi) /• - - / IJdτ(Γ) ΠDΓRΓ(AΓ) 8If(B*') x
tζτr(D /o o r<r r<ι (3.13)

where P<r> (#>) is a monomial in the pi9 F^ ζ ^Ό(I), of degree ^ 27 rz +
ze^d)

+ Σ [2#(^, *) + 2(1, i)] and -4$ is a linear combination of the αz,

), and the Aγ^τ(I9ί)
z, σ ( I , i ) = l. Following [1] we use

9
p = — i -y- exp [*2>?*]|r = o and obtain

PC) (p) = p(r) (_ fp) exp Γί 2^ ftr,j . (3.14)

Let us assume that after having incorporated a set ̂  oί n lines,
r ^ % < 3? (ΐ) > we hav in ^-space instead of

in (3.13) a sum of terms

[ n
i Σ A($PiPj + i Σ B(knιrkrι +

(3.16)

r = 0

where Dl satisfies (3), P<w) (— i V) is a monomial in the -~— , 1 g i ^ n, of

degree

^.(w) satisfies (5), BW satisfies (7) and Cί$(oι,τ) is rational in the α,τ,
homogeneous of degree 0 in the α and uniformly bounded in (3.1) for
r ^ 0.

We now incorporate another Δy(xit/ — a?Λ/), where Z' £&(!) — Jf*
Let e^ = -f-1 for i — iv, ei — — 1 for i = fv and ei == 0 otherwise. For the
convolution in ^-space we have to integrate over k £ J?4

PI (-»i^) exp [iβ^ίfc2 - mf, + ie) + ΐrn+1fc]fn+ι = 0 (3.18)

multiplied with an expression similar to (3.16) but with pt replaced by

Pi + βik. Then (3.16) times Pv ( — i-* ) exp[— ioLι>(w$— i ε ) ] operates
\ ΰrn+l/

on
/ dk exp [i («,. + Σ Λ^e^) F + i (2 Σ 4f p,e, +

+ ZC'l!|)eίrfc + rn+1)i!]r==0.

The Gaussian integral (3.19) can be evaluated by using the identity for
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α > 0 :

lim Γ dkexp[iaJc2 + ipk - η(lc% + Jfc8)] = -ί^-exp [-*χ-l . (3.20)

Then one obtains again an expression of the form (3.16) with IjDj~2

j^-Jt
multiplied by D^~2, where

A- =(«*- + 27 4?V,). (3.21)
Furthermore

P(n+i) (- i F) = P<«) (- i F) Pr (- i -3-?—) (3.22)
\ Orn+\f

(3.23)

»/ι> = 5$ - I A-1 f Σ1 Cίϊ^C&e
Li,ί'

1 [Σ Cftet] (3.24)

, i ^ 4 ^ w ,

Γ*(n + ϊ) __ Γ)— 1 \^ Δ(n) o /o oκ\
^in + l — "~ ^r 4j Άij es ' (ό.άδ)

i

Since A^ is positive semidefinite, D^ ̂  α^ satisfies again (3). Since
I' ζ&(I)-Λ, α r^ αz for all lζ^±(I) by Lemma 2.4. As f̂ is
majorized by (3.5) for some cn < oo and Ώv ̂  αr, D^T1 A$ is uniformly
bounded in (3.1) for r ̂  0 and A^ + ̂  satisfies (5). The positive semi-
definiteness of A(n + V follows from the inequality

^ A"1 f Σ AWxtXjAfrfaer- (Σ^x^λ ^ 0. (3.26)
Lΐ.ΐ',?,?' \ΐ,7 / J

Similarly one checks that J5j^ + 1> satisfies (7) and that the 0||+1) are uni-
formly bounded in (3.1) for r ^ 0, rational in α, τ, and homogeneous
of degree 0 in α. Therefore Π ^^(ϋ (I, i)) Π At has in ^-space the

form (3.13) with (3.16) and rf=&(I)-Jl, n=\&(I)\ inserted
instead of P<r> exp [. . .]. We set A$ - A$, E%k = Bίf , D1 = Π A"2

Finally we carry out the r-differentiation. The only terms which
survive after setting all rk — 0, have in (3.13) P(n)(—i p) replaced by a
sum of terms

Q(*,τ)P{p)S*(&)9 (3.27)

where Q is a polynomial in the Cl$9 P (p) a monomial in the pi9 V i ζ ̂ 0 (I),
of degree z (I) and ^(jB1) a polynomial in the B\ι of degree y ( I ) with

)]+ Σ ^ . (3.28)
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The inequality (3.28) holds, since every ^-differentiation of

exp[ίΣ BkiWi + iΣ ^ikPΛ]

brings down factors like Bklrk and Cikpi. Each Bklrk has to be differen-
tiated again in order to survive for rk -> 0. Thus άegP(p) -j- 2 άegSl(Bl)
= z(I) + 2y(I) ^ degP<Λ>.

Let σ(U(I))= — 1. If we apply the operation (— -M"), we obtain
instead of Q(oc, τ) P(p) 8l(Bl) exp[ί Σ A\jPipj\ a sum of terms of the
form

Qi (α, τ) P1 (p) Rl (A1) Sl (B*) . (3.29)

Here P I ( p ) satisfies (1), and is zero for z(I) > v(I) and otherwise of degree

2x(I) + z(I) <v(I). (3.30)

Furthermore Ql satisfies (2) R\ (4) and ffl, (6). In the case a(ϋ(I)) = + 1
we use for the remainder of the Taylor series of f(xv . . . xm) around
(0, ... 0) up to order n the expression

...τxm). (3.31)
0

This leads to (3.4) with χ(I) ^ [[y(/)~^(/) + 1 ]] . Q.E.D.

Lemma 3.2: Let 3e#(Vv . . . Vn) = Σ &T(YI> - - - Vn) hold as above
T

in (3.1). Then the α-integrand of every ^T(VV . . . Vn) is, together with
all ^-derivatives, absolutely integrable for r j 0.

Proof: Let λ = (2L)~l. If we use Lemma 3.1 for J^ (£/(/)), then

Π DΓ1 Π Π αf"1 (3.22)

is locally integrable in (3.1) for r | 0. As exp[— ΐJΓ ^(mf — iε)] is
strongly decreasing at infinity for ε > 0, we have only to show that in
every bough U (I)

Π\ Π A"(1+Λ)1 ί Π ^-^^'(A^&'iB^^Ti (3.33)
r^i Ue^cn-^r 1 [i€^(D 1

remains continuous and bounded f or r j 0.
We use induction with respect to the length s ( I ) of the longest

chain of branches contained properly in U (I) and make the following
assumption for any U(I), 0 ̂  s ( I ) < s:

(1) If <r(Z7(/)) = 0, then Ti - 1.
(2) If a(ϋ(I)) == + 1, then (3.33) is of the form

Jpi(α,τ)6P(α,τ), (3.34)

where Fl and Gl are tempered continuous functions in (3.1) for r | 0.
Fl is homogeneous in A}'^ U(Γ) ζU^I) and αz, lζJ%±(I) of degree

•i- [2α;(/) + »(/) - v(/)] - λ|^f0(/)|], which is ̂  0 by (3.7).
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(3) If σ(U (/))=-!, then (3.33) multiplied with any Hl(<x,τ) is
tempered and continuous in (3.1) for r j 0. Here Hl (α, τ) is homogeneous

of degree ~ [v (I) - 2x (I) - z (I)] + λ \<&0 (I)\ (^ 0 by (3.8)) in the variab-

les A}j, ϋ (I) ζ Ht (/) w H! (/') . . . w Hi (/*), and αz, Z £ uί^ (/) w
• w .̂ (.P), where U(Ik) is the bough of maximal order containing
U(I) and Z7 (/*):> - - O £/(/'):> Z7(/) the chain of twigs between J7(/)
and U(Ik). These assumptions are satisfied for 5 = 0. Consider a branch
17(7) with s(I) = s > 0 and write (3.33) in the form

Π A~(1 + Λ) Π ocp-^R^A^S^B1) 77 T<7 * > ( α , τ ) . (3.35)
lζ&(I)-Λf l£Jt(l) (I,i)€^

By induction assumption each T(/'*)(α,τ) is of the form F^^((x,,τ) x

x (?CM>(α, τ), if σ(Z7(7)) = + 1, with degί^O - ~[2»(/, <) + z(I, i) -

Let C7 (/) be a bough and assume that

Π DΪ+-* Hofr-tiRtiAηS^B*) Π FV,V(κ,τ) (3.36)

is of the form
^(α,τ)^(α,τ) Π HVΛfaτ) (3.37)

a(U (I,i))= -1

with F1,!!^1^^ as in (2), (3), and ^continuous and tempered in (3.1) for
r I 0. This is sufficient for performing the induction step, since for all
twigs ϋ (/, ί) the HV *> can be used by (3) to make bounded the TV *> (the
bough of maximal order containing Z7(J, ί) is U(I)). Now

Π FV.*>(x,τ) (3.38)

is homogeneous in A $ j , U ( I ' ) ζ ' U L(I), and αz ? l^^^(ΐ], since for
σ ( ϋ ( I ) ) = + 1 U^I, i) cUiCO The degree of (3.38) is

s(/) +
•*> -*(*•*> - λ J?β(I, (3'39)

By (3.7) and (3.8)

»(/) ̂  ̂ î  + I ̂  ̂ f^ + A |*β(/)| , (3.40)

Z1 [2*(/, i) + 2(1, i)] - 2y(J) , (3.41)
5" (I)

and (3.39) is larger than

<I,<)€^
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We remark that |τT0(7)| - |uT(7)| -l=Σ tl^o(^ *)l ~ 1] Therefore
we obtain from (3.3)

,(/) = Σ *(I, i) + Z1 (n + 2) - 4μf(7)| . (3.43)
•

Using (3.43) and the relation \&0(I)\ - \&(I)\ = Σ \&o(I> *)| one trans~
forms (3.42) into

- μT(7)|] + x(I) + ~ -

(3 44)
- λ|J?0(7)|

Therefore we can split off from (3.38) a factor ̂  yj HV **. The

remainder ^(α, τ) is homogeneous of degree ^y(I) -}- (1 + λ)
- |uT(7)|] in A{^5 Z7(7') ζZli(7) and αz, / ^^(7). By Lemma 3.1 these
^4{j are of the order of the αz, Z ζ ̂ f1(7). Therefore by Lemma 2.4 Z/1 can
be used to make bounded the divergent part of (3.36)

Π Drl-W(B*) (3.45)

of degree y(I) + (1 + λ)

Finally let σ(U (/)) = — 1. Then it follows from the induction hypo-
thesis that

) Π F(!^(^ r) HI(OC, τ) (3.46)
cr(BΓ(I,ί))=l

is homogeneous in oct) I ζ^(I'), and A\^ where U(Γ) £1^(7) w
• w H!̂ ). By Lemma 2.4 and 3.1 one can use (3.46) to make bounded
the divergent term ΠDj~l~λSl (B1) and to produce a factor

Π HV.O(κ9τ),
σ(U(I,i)) = —I

which depends on the right A}p <Xj for the induction step. A power
counting as before shows that the degree of (3.46) is high enough for
these operations. Q.E.D.

We remark that in every bough the coefficient of exp [. . .] in (3.4) is
homogeneous of degree > — \^Q(I)\ + 1 in α.

4. Renormalization

We have now accumulated enough information to discuss the limits
ε I 0 and r j 0 in the ^-operation and to turn to the properties of the
sum of all graph contributions in the perturbation expansion of

Ei) . . . φm(xm)yτ.
Commun. math. Phys., Vol. 2 22
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Let us assume that lim lim^^f(F1, . . . Vn) exists in the topology
ε j O rjO

of &"(R*n). For r, ε>0 the subtractions in 2%r&(V^ . . . Vn) corre-
sponding to partitions of {F1? . . . Fw} different from {Fj}, . . . {Fn} lead
to functional

HP)
(4.1)

which vanish identically on a certain subspace ^?

N(E4:n) C ̂ (Rίn). Here
JY ^ 0 is determined by the {v(V{, . . . V'm)} &*N(R*n) consists of all
φ £^(jR4w), for which D φ (xl9 . . . xn) = 0 whenever some α^ = #,,•,
]. ^ ί < j ^ n, for all differential monomials D in the djdx% of degree
^ JΫ. ^^r(^4n) is a closed subspace of £f(R^n) with the induced topology.
It follows from (4.1) that

lim lim ̂ (F1; . . . Fw) = lim lim 77zl^ (4.6)
ε|0 ί jO e j O r jO

holds on 6^N(R4:n). Therefore [6] 77 /If is a continuous linear functional
&

on ^N(R^n) and lim lim ̂ f (F^ . . . Fn) is its continuation to
ε|0 r |0

By Lemma 3.1 ̂ ?e(F1? . . . Vn) is in ^-space a sum of terms

P(P) Q(*> r) exp [< S^ί^ίft - ̂  «ϊM - <fi) (4.3)Z Pi)
ί = i /

integrated over all 0 ̂  r(/) ^ 1 and over a sector (3.1). By Lemma 3.2
the Aij = A^ (α, τ) are continuous in (3.1) for r | 0 and homogeneous of
degree + 1 in the α. P (2?) is a monomial in pl9 . . . pn-± Q (α, τ) is rational,
homogeneous of degree d ^ (— _£ + 1) in α, tempered and locally inte-

grable in (3.1) for r | 0. Therefore lim^V(Fι, . . . Fw) exists in the
r J O

ordinary sense and is (apart from δ(Σ Pίΐ) a function in ΦM(R^(n-^).

We could have chosen a more general regular ization for Af(p)

2ί'ε(p) = Pl(p) JdocfQ(oc) expLiα^ - mf + ie)] , (4.4)
o

where /ρ(α) is continuous and vanishes of sufficiently high order for
α |0 for all ρ in, say, 0 < ρ ̂  1, where |/ρ(α)| < c(l + |α|) ̂  for some
c, -ZV < oo uniformly for all 0 ̂  ρ ̂  1 and 0 ̂  α < oo and where
/ρ(α) -> 1 pointwise for ρ | 0. Then one obtains for an obviously defined

l i m ^ t F i , . . . Fn) = hm^ε(F1? . . . Fn) (4.5)
ρ j O r|0

by the Lebesgue dominated convergence theorem.
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The limit ε \ 0 of ̂ ε(F1? . . . Vn) in 9" (R*n) has been discussed in
[1], [2]. Unfortunately the argument relies on a splitting of the testing
functions φ ζ^(jft4 n), (see [1], (4.39)), which is in general impossible.
But the limit can be expressed directly in terms of elementary distri-
butions. For the proof we discuss a more general situation: We restrict
in (4.3) the (p^ . . . pn-ι) to some m-dimensional linear manifold,
0 ^ ra ̂  4(n — 1), by setting

&=Σ <V,4«-D+^ l ^ ί ^ r c - 1 , 0 ^ ^ 3 , (4.6)
7 = 1

where rank (Cjk) = m. For any γ £ £f (Rm) we study

F.(V) = I dqτ . . . dqmψ(ql9 . . . q J / . . . / Πdτ(I) / . . . / Πd^ X
0 0 αi^ αiz^O

x P'(0) ζ)(α, τ) exp
Γ m i 1
\i Σ A'itfito ~ * 27 «ι W - *e)
Li,; = l ? = 1 J

Here P'(ςr) = P(p(g)) and Σ ^q.q^ Σ ^ijp(q)ip(q)j. If h
ε 1 0

exists for all ^ ξ 5^(jRw), then [3] the mapping w -> lim ̂ ε (w) is a distri-
6|0

bution in ̂  (Rm) and is the strong limit f or ε j 0 of ̂ ε(Fl5 . . . Vn)
with the coefficient of δ(Σ Pi) restricted in #>-space to the manifold (4.6).

For ε > 0 we can freely interchange integrations in (4.7). After the
coordinate transform

= λ^ (4.8)

we first integrate (4.7) over 0 ̂  λ«χ>. This leads to the Feynman
integral.

F8(ψ) = f...fΠdτ(I) / ... f Πdβld(l-Σβl)Q(β,r)Xi .. Q.
o o is/Sh& ftiao (* y)

χFe(ψ,β,τ)

Since Q(β, τ) is locally integrable, it is sufficient to show that
lim Fε (ψ, β, τ) exists and is continuous in β and τ in the compact region

of integration in (4.9). Since mf > 0, 1 ̂  I g L, the singular support of
(4.10)

(4.11)

is an analytic manifold in (ql9 . . . qm) for fixed β and τ. Thus
lim Fε (ψ, β, τ) exists and is in local coordinates expressible in terms of

22*



322 K. HEPP:

derivatives of ό-f unctions and principal values. As the A^(β9 τ) are
continuous in the region of integration in (4.9), the intersection of (4.11)
with any compact subset of Em varies continuously with β and τ. This
proves the continuity of lim Fε (ψ, β, τ) in β and τ, since w is strongly

β|0

decreasing at infinity, where (4.11) is well-behaved.

We now return to the Gell-Mann Low expansion (1.1) of

. . . φm(xm)yτ, where we define ^T φ{(x1) . .^l(xn)yτ by a sum of

lim lim <^V(F1? . . . Vn). The integration over xm+ί9 . . . xn in (1.1) cor-
s j O rjO

responds in ^p-space to a restriction to a 4 m-dimensional linear manifold
in jR4w. The preceeding argument applies:

Theorem: The pertubation-theoretic Green's functions

• ψm(xm)y^ι) °f order n defined by the ^-operation are in ^-space
(up to δ(Σ Pίΐ) Lorentz covariant boundary values in ^'(J?4^-1)) of
sums of Feynman integrals, which are analytic in plt . . . pm-ι without
natural boundaries.

Remark: The analyticity properties in ^)-space follow from (4.3).
Landau rules for these renormalized Feynman amplitudes can be
worked out, but will not be discussed here.

The combinatorial structure of the subtractions in the ^-operation
and their relation to formal counter terms in 3? ϊ (x) have been lucidly
treated by BOGOLIUBOV and SHIRKOV [10]. It is noteworthy that the
^-operation can also be applied to theories, which are conventionally
considered as non-renormalizable. The distinction of the renormali-
zable theories in the restricted sense follows from the usual power
counting theorem [7], [10], by which these theories have counter terms
to 3tfl(x), which involve only a finite number of WICK polynomials in
the φ\ (x) uniformly for all orders n.

Example: As an illustration of the method of BOGOLIUBOV and
PABASIUK we shall discuss the quartic self -interaction of a neutral scalar
field. It is generally believed that the ^-theory [9] is in perturbation
theory up to order n uniquely characterized by renormalizing

(4.12)

A : ψ^(yY : + B Π : φlW '+0: φl(yγ: .

Here g is the physical coupling constant and φl (y) is a neutral scalar

using counter terms to $Fl (y) = — — : φl (y)4 : of the type
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free field with the physical mass m and

, (A Λ0\
i Γ dpexpt—ιp(χι — #2)] yx.io)

The "renormalization constants"

n n n

A = 2

are determined by three conditions on the Green's functions τ (xl9... #m)(ζ)

for 2 ̂  k ̂  n : (A, B): The 2-point function τ (pv p^k)= & (Pi + ̂ 2) ^ ( P ι ) ( t i )
must have a pole at p\ — m2 with residue (2π)~2

= l for pf = m2 . (4.14)

((7) : The 2-body scattering amplitude

<Ά, pT* I - ft, - ??><« - <ft, pi? I - ft, - 2>ί>(fc)
(4.15)

m*) τ(pv . . . Pt)fa

is normalized at f̂ = m2, (pi + p^ = - , £ < 7', to

The conditions (4.14), (4.16) are satisfied in order n < 2, but not for

general r&, if we define r(xv . . . xm)(n) ^y tne ^-operation of section 1.
The remedy is to use the freedom of the choice of the point around
which the Taylor expansion is taken in (1.9). The results of the pre-
ceeding sections remain valid, if one defines a more general ^-operation

[10] by adding recursively to any — M&r^(V{, . . . V'm) a distribution

&g>(V'ι . . . F^), which is in £>-space of the form δ(Σ Pi) P(Pι> - Pm)
with a covariant polynomial P of degree ^v(V[, . . . V'm) depending
only on the structure of G(V[, . . . F ,̂ &).

Theorem: In the ^-theory there exists a choice of the finite renormali-
zations consistent with (4.14) and (4.16), and any such choice leads to the
same renormalized Green's distributions τ(α;1, . . . xm)^n) for all m, n.

Proof: In the (^-theory v(V[, . . . V'm) = 2 or 0 for subgraphs
6r(F{, . . . V'm, &) with two or four external lines, respectively. Other-
wise no over-all subtractions are necessary.

We can always enforce (4.14) and (4.16), since the renormalized
Feynman amplitudes for the self energy (SE) and vertex (V) parts are
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analytic around p\ = m2 and the Chew-Mandelstam point, respectively.
Furthermore in any order n ̂  2 there exist SE- and V-parts, which
require a new over-all subtraction, e.g. the graphs of Fig. 7. In second

:χ
Fig. 7. SE- and F-parts

order the finite renormalizations are uniquely determined by (4.14) and
(4.16), since there is only one divergent SE- and V-part. In third order
the following SE-parts require an over-all subtraction:

Fig. 8. Independent £.E-parts in 3rd order

Only the sum of the counter terms, a polynomial Ay -f Br$BP\> is
uniquely determined. We shall see that this "renormalization gauge"
leaves the renormalized Green's functions (4.12) invariant.

Consider all graphs ®m>n of nth order in the Wick expansion of
(4.12). The analytical contribution of each graph is defined by the
^-operation, where the combinatorics of the counter terms is determined

tf/ V2 V2

Fig. 9. Typical terms in ®y(Vlt V2> {V3, V,, V6})

by the internal vertices Fl5 . . . Vn. For any partition

of {F1? . . . Vn} into s < n generalized vertices a certain subclass
/!, . . . Us) of ©TO>n requires a subtraction. This set falls into equi-
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valence classes ©y(Dι, . . . Us)9 where two graphs 6rl5 G2 ζ ©y (?/.,_, . . . Us)
differ only in the structure of the internal lines and vertices in U^ . . . Us.

Example: Graphs belonging to the same ©y(F l5 F2, {F3, F4, F5}).
The Wick expansion of {TφI(xl) . . . ̂ I(yn)}τ contains all possible
connected contractions, where the m lines from xl} . . . xm and the 4%
lines from yl9 . . . yn connect different vertices. Thus ®γ(U1} . . . Us) is
either empty or contains exactly once all possible contractions between
the 4r(?) lines from the r(j) vertices in U3 , 1 ̂  j ^ s, which connect
different vertices and lead to IP! SE- or V-parts, respectively.

The analytical form of the sums of counter terms for all graphs in
®γ(Uv . . . Us), which arise from the subtractions associated with the
generalized vertices U19 . . . Us, is for r, ε > 0 in ^-space of the form

δ(Σ Pi) fdk,... dkt Π %•'(!') Π (4>(ϊ) + 3%?'") /7C?β , (4.17)
conn Uί\SE TJy.V

where &15 . . . kt are loop momenta, the q' , q" are linear combinations of
the kv . . . kt and the external momenta pl9 . . . pm, fj extends over all

conn

lines which are not contained in Ult . . . U8, fj over all SE-parts C^ and
ϋi'.SE

77 over all V-parts U3 (with r(j) > 1) of the partition Ϊ7l5 . . . Us. The
Uj:V
essential observation is that the SE- contributions Ar

r fa+ B* faq"2 in
(4.17) are exactly the same as the sum of all over- all subtractions in

fflj/τ&i, #2)(r(ΐ)) from or(ier r ( i ) and similarly for Cr

r fa in any V-part Uj.

We know that A%8, B%ε, C%ε are uniquely determined by (4.14),
(4.16) for n = 2. Assume that the same holds in orders 2 ̂  k < n, n ̂  3,
and consider all graphs contributing to (TφI(xl] φI(x2) ^I(yι) - -
. . . ̂ I(yn)yτ The sums of subtractions associated with all partitions
Uί9 . . . U8 of {Fl5 . . . Fw}, s > 1, are uniquely determined by (4.17)
using the induction assumption. The sum of the over-all subtractions for

©({Fi> - - F^}) of the form δ(Pl + pz) Δr> (ώf\Ay + B& rf] is then
uniquely determined by (4.14), and similarly Cy by (4.16). Furthermore
this construction is independent of the regularization (4.4).

This proves in the <p4-theory that the "universal" subtraction proce-
dure of BOGOLITJBOV and PAKASIUK together with the adjustment of
three parameters in any order n leads to unique time-ordered distribu-
tions.

The author is greatly indebted to Professor A. S. WIGHTMAN, whose penetrating
lectures on renormalization theory were a continuous challenge for his students.
Without his encouragement and criticism this paper could not possibly be written.
For many clarifying discussions I am grateful to Professors and Doctors J. CHALLI-
FOUR, F. J. DYSON, H. EPSTEIN, A. JAΓFE, A. S. WIGHTMAN, C. N. YANG and W.
ZIMMERMANN. It is a pleasure to thank Professor J. R. OPPENHEIMER for his kind
hospitality at The Institute for Advanced Study.
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