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Abstract. The generalization of the isoparity (Cr-parity) for an arbitrary internal
symmetry group is the problem of adjoining appropriately the charge conjugation
operation, thereby extending the group. A complete solution to this problem is
given, and explicitly detailed_f or the_ four families of compact, simple and simply-
connected Lie groups (SUn9 ^2fc+ι> ^2/0 an(i Spn)

The extended isoparity is shown to depend upon the structure of the groups in
question, and the required structure is developed and summarized. The properties
of the extended isoparity are discussed and two special cases — 'strong £r-parity'
and 'weak Cr-parity1 — are treated in more detail.

I. Introduction and summary

The charge conjugation operation, ,̂ — more properly "matter-
antimatter conjugation" — is a symmetry operation of quantum
mechanics which briefly put, reverses the sign of all (generalized) charges
for all states :

where ηA indicates the intrinsic charge conjugation parity of the state
μt> and |ifc| = 1.

We suppose moreover that there exists a continuous compact Lie
group which acts on the states \Ay. For the special case where only
ordinary charge and the isospin group are considered the operation of
charge reversal, i.e., reflection in a plane containing the charge axis, can
be combined in the well-known way [1] with a rotation (C) in isospace
to yield a reflection operator reversing all directions in isospace this is
the usual one of the two possible isoparity operators (the G parity [2]
(see also references in [2]) to use the customary but less descriptive term)
defined as G = ηACΉ.

The present paper is concerned with the problem of generalizing the
concept of the isoparity operator from the special example of the isospin
group of internal symmetries to the larger class of internal symmetries
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given by the unitary, rotation and symplectic families of groups (more
accurately their covering groups). Although only a very few cases of
these groups are seriously considered in the literature at present (notably
S U3, 8 ?74 and 8 U6) it is none the less desirable to see the general features
of the isoparity problem. This is particularly valuable since the isoparity
problem may be seen itself as a special, and instructive, example of the
more general problem of group extensions discussed by MICHEL [3] in his
Istanbul lecture (1962) in more physical language this is the problem of
determining inter-relations between the generalized charges, spins and
discrete operations. The isoparity problem is very much simpler than this
general problem in that only the compact internal symmetry groups are
considered (complications of the Poincare group do not enter for ex-
ample) and only a single operator (G) is adjoined (rather than the com-
plete set of all possible discrete in variances). Owing to these simplifica-
tions a complete and explicit answer can be given.

Let us first note that a particular basis in the compact continuous
group can always be chosen such that, on the group itself, the operation
of charge conjugation can be represented by complex conjugation. We
may exploit this by explicitly associating charge conjugation ̂  with the
involutary operation of complex conjugation (K0) for all discussions
relevant to the group itself. We are thus led first to the technical problem
of determining the charge conjugation matrix C for the various groups
under discussion (see Appendix I).

Although the matrix C is completely specified (once definite phase
conventions have been stated) there are in general several distinct
operators which can equally well be called "the" isoparity G. Only after
enumerating the complete set of all discrete in variance operators, in-
cluding physical associations, can a decision as to the "right" isoparity
operator be made. In the following we shall only enumerate all of the
possible isoparity operators.

We are now in a position to specify the problem more precisely. Given
an internal symmetry group ^, the charge conjugation operation induces
an involutary automorphism on ^. Two questions then arise naturally:

a) What are the extended groups, ^ext, each of which includes both
the original group ^ and the charge conjugation operation ?

b) Are there new quantum numbers connected with these extensions ?
We may rephrase the first question in this way: Given ^ to find all

possible groups ^ext such that ^ext/^ = <72, where the C2 group (the
cyclic group on two elements) corresponds to the involutary auto-
morphism on ̂  produced by complex conjugation.

The solution to question a) is developed in Sections II, III and IV and
summarized in the Table. Representations of ̂ ext are given in Section V.
Extensions by involutary operations other than charge conjugation also
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exist and are of importance in discussing the complete set of discrete
extensions. We shall only sketch the answer fo this case, giving the
results in the Table also.

II. The adjunction of an involution

(introductory example)

The problem we seek to solve here has been posed in Section I : Given
a symmetry group ^ (assumed to be a compact simple Lie group) to
determine all groups extended by an involution, R, such that ^ext/^ = C2,
where C2 consists of E and the identity.

Quite generally the elements of the group ^ext may be written in the
form (α, r ) where a belongs to ^ and r is either the identity E or the
involutary automorphism R. The product of two elements of ^exfc can be
shown to follow the law

where af is the element α2 of ^ transformed by the automorphism
associated with r19 and the four elements (/#,#, /#,#, /#,#, /#,#) belong to

.̂ Associativity implies fEtE = fEtR = fRtE = E in &. Two things need
then to be determined.

a) the effect of the automorphism a -* aR in ̂
b) the element of ̂  associated with fRt R.
In order to simplify the notation let us write

(α, E)=A
(E, R) = R

(fR,R)E) = Z = R*
then since E = RR~l = R~1E it follows that f%tR = fR}R and
R~l = (fR*R> R) and since

RAR~l^AR and (A*)* = A

it follows that fRtR belongs to the center of ̂ . Then also R~1A R = AR.
The fact that the internal symmetry group is a Lie group is not

essential to the logic of the construction to follow and, for clarity, we may
schematize the essentials of the argument by considering an elementary
example using the finite cyclic group (74, as the "internal symmetry
group" .̂ Adjoining the involution R to <74 produces a new group ^ext

with 8 elements. There are only 4 finite groups of order 8 with the prop-
erty that (74 is a normal subgroup and ^ext/(74 = <72 these yield specific
examples of all possible extensions.

a) There are two involutary automorphisms of <74 namely
1. AR = A the trivial automorphism
2. AR = A-1.
b) What are, in these two cases, the allowed values of fRi R ?
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1. If the automorphism is trivial, define

R' = (z, R), where z belongs to (74

Rf defines the same extension as R but

ίn,R = z*in,n -

This defines two classes of fR) R leading to inequivalent extensions :
Class α : fR> R can be written as a square in the group (74.
Class β: fRtR cannot be written as a square in the group (74.
2. In the second case, where AR = -4"1, the conditions fR)R = fRR

= fR*R imply that fR>R is a square root of unity in the group 04.
Let us next construct the four possible extensions :
Method 1) the direct product:

U4 : A* = E

C2:R* = E, RAR~l = A

^ext = σ4 ® c'2 .
Method 2) the direct 'Schreier product' [4], [5] :

^ext = CB .

Method 3) the semi-direct product (denoted

0 : A* = E

Q^ Q Q^ _, β^ (Dihedral group of the square) .

Method 4) the semi- direct Schreier product :

(74 : A* = E

= Q (the quaternion group).

(Note that when fR>R Φ E, C2 is not a subgroup of ^ext but simply a
quotient group.)

The essential point for the present paper is the fact that these four
techniques (suitably interpreted) for an involutary extension exhaust the
possibilities. All four techniques can be combined into two statements:

(a) find all the involutary automorphisms a -> ar of Ή . They may be
inner or outer i.e. of the form

ar = 9oa9^1

(where g0 belongs to ^) or not of that form, respectively.

(7) find all possible central elements of ^ which can be identified
with fR>R (remembering that fR)R = fR)R).
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The operation R is physically motivated to be a specific symmetry
operation (charge reversal) and hence (as discussed in Section I) must
act as a complex conjugation on the group; thus we must take E = J5^?

where B is any automorphism such that E is involutary. This requirement
is not necessarily unique, and there may be several suitable operators R,
depending on the group Ή.

One simplification in this general problem exists. We may use the
fact that automorphisms R and R' which differ by an inner automor-
phism (Rr = g0R or R = (g0, R) in a more precise notation) do not
define different extended groups. We may thus restrict attention to only
those operations R which define distinct groups this means that various
possibilities for R differ by outer automorphisms. In case ̂  itself induces
an inner automorphism (conjugation by g0 say) we may use this fact to
write the extended group as a direct product (possibly of the Schreier
type). Then using the fact that R involves complex conjugation one finds
that for the fundamental unitary representation, the central elements
are carried into their inverses this implies that

fn,R — /R,R = ΪR^R

and that fRtR is the square root of unity in the center of the group .̂

The problem of extending ^ has thus been reduced to two specific
tasks: (1) the determination of all outer automorphisms of & and (2) the
determination of the centre of ^ both are classical problems in the
mathematical literature. They are discussed in Sections III and IV.

Before leaving the finite group examples, however, it is useful to
consider the question: what is "isoparity" for these examples ? Since ̂
is the only non-identical automorphism for (74, and is equivalent to
A -> A1 = A-1, it follows that the only extensions containing ^ are:
^ext = D4 (method 3) or ^ext = Q (method 4). The isoparity operator G
is then just the operation R itself, i.e., G = (£. Since G does not commute
with all elements of ^ext the isoparity is diagonal only for certain re-
presentations of ^ext; in both _D4 and Q there are four one-dimensional
representations for which G = ± I and in both one two-dimensional
representation for which G is not diagonal (G parity not defined). This
behavior (G parity = ±1, or not defined [which we shall call "weak
^-parity"]) is typical of many of the cases that follow.

III. Involutary outer automorphisms of SUn, Rn, Spn

The problem of determining the involutary outer automorphisms of
the Lie groups S Un, Rn (the covering group of the rotation group) and
Spn can be put in this way: to determine all transformations g -> g' of
the given group ^ which leave invariant all defining relations of the
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group, and which are not of the form g -> g' = g^lgg0 (an inner auto-
morphism).

This problem may be transferred to the Lie algebra of the group by
noting that every automorphism of the group is an automorphism of the
algebra, with infinitesimal inner automorphisms corresponding to deri-
vations of the algebra. Conversely, every automorphism of the algebra
corresponds to an automorphism of the covering group. Since the auto-
morphisms of the algebra are given in Ref. [7], our procedure will be to
give the explicit transformations for the groups in question, and appeal
to the general results for the algebra to prove completeness1.

Consider first the unimodular unitary groups SUn which have the
vector diagram An_^ for their algebra. The operation of charge conjuga-
tion is the automorphism,

g = exp (i φ X) -> g' — exp (i φ Xc)

where XC

A — —X-A. This is an automorphism, since the Lie algebra:

[XA, Xβ] = Σ (A B °) XG is invariant under the operation XA -> XC

A
c

=—X-A Since 8Un is simply connected it follows that this auto-
morphism of the algebra is an automorphism of the group. Moreover the
operation is clearly involutary since the classes are not invariant under
^ (except for S U2) it follows that the automorphism is outer for n ̂  3.

From Ref. [7] it is shown that for SUn, n ^ 3, the algebra has only
one outer automorphism, which is of period 2 this then completes the
discussion for S Un.

For the groups R2k+1

 an^ ®Pn> i e > the Lie algebras Bk and Cn/z

respectively, there are no outer automorphisms. This simplifies the
extension problem, and shows that ^ carries all representations into
themselves.

The remaining family of Lie groups, with the covering group B2k,
 au<

have at least one involutary outer automorphism; the discussion below
show that there are three cases to consider:

1 The results given in Kef. [7] can be understood immediately as symmetry
operations of the Schouten-Dynkin diagram, which conserve both the type of
weight and the connections between them. The Dynkin diagram is composed of the
positive simple root vectors, with connections specifying the angle (no connection
= 90°; single line connection == 120°; double line = 135°; triple line == 150°)
between the joined root vectors (see reference for a full discussion). For the classical
groups one has the diagrams:

S Un+1 => An 0—0—0— 0—0
^2n+l => Bn = 0 — O— 0 — 0

Sp*n =>Cn Q = • —• — - — • — φ

O
Km => Dn \ O—O— O—O

O
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a) the groups Rίe

b) the groups R^+z and
c) the highly exceptional (and therefore very interesting!) ease R8.
Consider first the case R^. The charge conjugation operator, as we

shall see in Appendix I, induces the transformation: ^-1D^^
= C~1D^C on the fundamental (spinor) representation Z>(2Ό of

e
dimension 2 ,̂ where C — IΊΓ2i_v The charge conjugation matrix C

i = l

therefore is a product of an even number of J\ matrices; using the fact

that Γi Γj = exp ί ~ ΓiΓΛ and the mapping

~~i Γ Γ -* 7?— 2~ ± i± j-> J ί i j

(the abstract generators of the R±.e group) one sees that the charge con-
jugation matrix may be written, in general case, as a product of group
elements :

It follows that the charge conjugation operation induces an inner auto-
morphism on the group R^ . The Dynkin diagram shows there exists an
outer automorphism for the group: exchange of the two left-hand
circles; it is easily seen that this automorphism is generated by the
reflection operator, P — Γ^Γ^+l.

Let us consider next the rotation covering groups of the form R^ +2.
Just as above we examine the explicit charge conjugation matrix and
see that now C consists of a product of an odd number of Γi operators.
In this case the charge conjugation matrix must be written as a product
of a rotation (i.e., group element) and the reflection operator P; that is:

where P = Γ^+2Γ^+3. The charge conjugation operation ^ is there-
fore an outer automorphism for the group R±e +2, and from the Dynkin
diagram, the only such. _

Finally let us examine the exceptional group R8. It follows from the
earlier discussion of R^ that the operation ̂  is an inner automorphism.
From the Dynkin diagram

Ό 2

it is clear that the outer automorphisms of the group RB (each cor-
responding to a symmetry of the diagram) form the symmetric group
on 3 objects, $3. The group $3 may be generated by 2 operators P12 and
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P23, each operator corresponding to the interchange of the numbered
circles in the Dynkin diagram. It is quickly seen that one of these opera-
tors is the reflection operator, i.e., P12 = ΓSΓ9. There are then three
involutary outer automorphisms in Rs, generated by the operators

* 1 2 » -* 23 aΠ(* * 1 3 — ^23^12'

PAIS [8] has examined this unusual case in some detail and (extending
an earlier idea of TIOMNO [9] see also [10]) based a dynamical scheme
for elementary particles upon its properties. Briefly put the " threefold
symmetry" of R8 allows one to consider the two projected spinors P+Ψ

and P_Ψ where P± = -^ (1 + P12) , each having eight components, as

basis vectors equivalent to the basis vectors of the defining 8 x 8
representation. This is a "triality" principle which defines a unique
trilinear interaction.

For the present purpose the case R8 offers and unusual freedom of
defining very many (ten!) inequivalent isoparity operators.

IT. The centres of the groups Sl7n? Sn and Spn

The remaining task is the determination of the central elements of the
various groups. This is easily done if one notes that on every representa-
tion the central elements are diagonal, and that on the fundamental
representation (the faithful representation of lowest dimension) all
central elements are distinct.

For the 8 Un groups, the fundamental representation is n x n the
central elements are of the form e^l, and to be unimodular φ must be
(2πkjn). The centre is therefore Cn and is generated by the element:
gc ~ e2πίln. A general irreducible representation is contained in the
product of the fundamental representation taken M times, where M is
the total number of boxes in the Young diagram characterizing the
irreducible representation. The generating element gc of the center is
obtained by multiplying gc M times, thus

Gc = exp(2πiM/n) <g> 1 .

We have thus determined the explicit form of the centre of 8 Un evaluated
on every irreducible representation. We see in particular that this
element separates the representation into n types specified by M modulo
n. This is the generalization of the triality type of $£73 [11], [12], [13].

The condition on the possible choices R2 = Z = fRiRζ Centre is
shown (in section II) to be R-^ZR = Z. Under the operation E = <%
for 8Un the diagonal generators reverse sign; it follows that R~lgcR
— g~l and hence the only admissible elements Z must be of period 2.
This greatly simplifies the extension problem for 8Un and shows that
R2 = E for 8 Uzk+l and E2 = E or R* = Z (Z* = E) are the only two
choices for 8U2k.



On Generalizations of Isoparity 239

Let us turn next to the covering group of the rotation group, Rn.
There are two cases : n even and n odd. For the n = odd case the centre
has, for the spinor representation, the central element gc — exp(πΓlΓ2)
= —E which is of period 2. (This result is seen immediately from the
fact that no element other than the identity commutes with all ΓiΓj.)
Since E~λgcR = <7cjboth gc and E are suitable choices for E2.

For the group E2k the centre is more complicated. From the funda-
mental representation one sees that the operators E and Γ2k+l commute
with all the generators ΓtΓji^j, ij = 1 ... 2k. Hence the centre contains

the four elements ±E, i/^fc+i? wfth ^Πifc + i = ( — ̂ )fc One must verify
that these elements can be written as group elements in general, i.e.,
in the form exp(^ X). For [—E] one may use simply exp(7Γ/\/τ

2);
for jΓ2fc+1 one may use:

2Jc k

To simplify the discussion to follow let us denote the group element
exp(πΓ1Γ2) ->• exp(2τu E12) by A, and the group element Γ2k+l

Jc __
= U(expiπ E 2 j _ l ί 2 j ) by B. Then one sees that for E^, {A}®

__
generates the ,,Vierergruppe" C2 Θ C2, while for E^+2, the single element
B generates C4.

In order to decide which of the elements of the centre are admissible
for the square of E, that is (confer Section II), the condition: E2 = Z ζ
ζ Centre -> E~1ZE = Z, one must next examine the effect of the auto-
morphisms on the centre. There are three cases :

a) E±f : (E8 excluded).
The effect of charge conjugation # is given by the charge conjugation

matrix (7. For E^ we recall that C is a group element, hence ̂  leaves
every element of the centre unchanged. Since all elements have period 2,
it follows that every element of the centre is admissible.

For the remaining automorphism P, one sees that :

P-.A-+A
B-+AB

Thus if we take E to be the automorphism generated by Ή P, only the
element A (and of course E) is admissible as the square of ΉP.

b) £8:
We have two additional involutary outer automorphisms, P23 and

P13. It is easily seen that the effect of these operations is given by.

P1 2=P: B^AB
P23: AB^A
P13: A^B

Commun. math. Phys., Vol. 2 17
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For each operation there is only one admissible element of the centre
(besides E) : A for ^P12 = R, B for ^P23 and A B for

C) ^4tf + 2 :

For this case charge conjugation itself generates the only outer
automorphism and one finds that under ^ the centre {B} — £74 trans-
forms as ̂  = >̂ B -> B-1. Thus one sees that the only admissible elements
of the centre are E and B2 = A.

For the symplectic group 8pn one may use the operators S .̂)
(k = 1, 3, . . ., n — 1) as the generators of the fundamental n x n re-
presentation, and thereby explicitly obtain the elements of the centre.
The only diagonal matrices which are group elements are the identity
and the element gc = exp(2πiSfa): the centre is the group C2. Both
elements of C2 are easily seen to be admissible for E2.

It is helpful to assemble the results of this section in tabular form.
This is given in the table. In this table we have also included results for
the exceptional groups (?2, jP4, EQ, E7 and E8.

Table. Involutary automorphisms R, centres, admissible elements Z for fB>R = Z,
types of parities

Groups

$77

Rzk+l

( fc>0)

Rίf + 2

(^>0)

Rw
2 φ ^ > 0

7?ns

Spn

β.

Ft

E.C/6

E ,

E.

Centres

n _ !Δ\
^n K1;

C,= {A}

Γ f R\υ4 — |±ί)

F4 - C2 x Cz

= μ> x {B}

F4 - C2 x C2

- {A} X {B}

C2 = {A}

E

E

n — ίA\
^3 l^1/

C2 = {A}

E

Charge
conjugation
belongs to

X (S Uz only)
X (except SU2)

X

X

X

X

X

X

X

X

X

X

R

inner
outer

inner

inner
outer

inner
outer

inner
P12 (outer)
P23 (outer)
P13 (outer)

inner

inner

inner

inner
outer

inner

inner

Z - IR.R

E,A*ι*
E,Anl*

E,A

E,B,B*
E,B2

E,A,B,AB
E,A

E,A,B,AB
E,A

E,B

E,AB

E,A

E

E

E

E

E,A

E

Number
of inequi-

valent
parities of
each type

lor 2
lor 2

2

3
2

4
2

4
2
2

2

2

1

1

1
1

2

1
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V. The representations of the extended groups

In the preceding three sections we have developed the necessary
technical information to carry out explicitly the most general possible
adjunction of charge- conjugation ^ to an internal symmetry group;
the extended group ^ext is thus completely defined from these results.
It is helpful, however, to carry out these results in detail, in order to
obtain a clearer view of the isoparity operator G. This is most con-
veniently done by explicitly constructing the representations of ^ext.

Let us assume that the representations of the simple Lie groups2 S Unί

Rnί 8pn are all explicitly available (this is certainly true for 8 Un, and
essentially complete for the other cases). Denote these representations by
DW(g). Under the action of the automorphism E these representations
will be carried into another representation which we denote as the
conjugate representation D^ (g), to within an equivalence transformation.
We have defined as the " charge -conjugation matrix" the matrix C in the
equation: R~lD(a)R = C^D^C, (noting that only f or E = # (the most
important case) is this the matrix C of Appendix I.) Finally we denote
by Zt an admissible distinct element of the centre such that R2 = Z.

In every case we may then write the representations of the extended
group as :

»
If £>(«) acts on ψ, &A^ acts on ( ^} .

There are two possibilities :
(a) If (a) Φ (α) (that is, a non-self-conjugate representation of ^),

then &A\ above, is irreducible. Denote such representations by @1A>W.

(b) If (a) = (a) (self-conjugate representation of &) then 2^A^ is
reducible and is the sum of two inequivalent representations &A+1 and

-]9 These two representations have the explicit form:

, (3)

, (4)

, , (5)

-1 (fir, r) = -eC-iDM (g)C C^ , (6)
i^

where e = + (ZCa)2 ί£* = E.

2 One many discuss (in the physical case, baryonic charge say) the Un group
instead of SUn, but then the only self-conjugate representations are those with
mnn = 0, i.e., S Un.

17*
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These results are obtained using the transformation matrix
i cfa

provided (74 = E (which is the case for charge conjugation).
(Let us note once again that the matrices Z, C are functions of the

specific representations involved [i.e., the labels (a)] and moreover C
depends upon the automorphism (R).)

The above set of representations is easily seen to define the complete
set of irreducible representations of ^ext. There are three types of
representations denoted by [A, 0], [A, +] and [A, — ].

What now is the extended isoparity operator G ? It is clear from these
representations that the isoparity operator 6rext is to be defined now as
£eχt = Qβ rjY^g Operator is diagonal only for self-conjugate (in &)
representations. For the remaining representations, the (?exfc parity is
not defined (that is, 6rext cannot be made simultaneously sharp along with
the complete set of observables of &). To summarize:

(α) = (a) : <?ext -> ± 1 for ZC* = E (7)

-> ±ί for ZC* = -E (8)

(a) Φ (a) : #ext not defined . (9)

The implications of #ext -> ±i have been discussed in reference [14]
(see also [15] and the more general discussion of [16]).

VI. The properties of the G parity

In the preceding sections we have explicitly established the complete
set of irreducible representations of the extended group, and have thus,
in effect, defined the meaning of G parity in the extended group. The
purpose of the present section is to examine the G parity so defined more
closely.

There are two possibilities that arise — which we shall call "weak"
and "strong" G parity.

(a) Strong G parity.
The simplest possibility occurs for those cases (and only those) where

charge conjugation is an inner automorphism (Spn> ^2fc+ι> ^4<?)> which
means that all representations are self-conjugate. Taking the operation
R to be inner then shows that every representation of the extended
group is of the form given in Eq. (V. 3. . . 6), and hence the G parity is
well defined:

It is easily shown, using the explicit representations, that this G
parity is a conserved multiplicative "parity". This is quite clear in the
cases where ε2 = ZC2 = + 1, for in these cases the extended group is a
direct product, ^βxt = (72 ® ,̂ and the G parity is just the group (72.



On Generalizations of Isoparity 243

(This corresponds to the usual G parity for the isospin group, where
G = C-Ί-Ή and G2 = + 1. This latter implies that E2(= tf2) = C2 = Z,
that is, the centre of the isospin group Z = e2πij is used to make the
eigenvalues ±1.) Depending upon whether or not the centre of the
symmetry group possesses one or more elements ε2 of period 2 (see the
Table) — (remember that C2 is always an element of the centre of
period 2) one may define other G parities (G -> ± ε) in which G-> ± i as
well as G -+ ±1. These parities are also multiplicatively conserved,
although this is probably less obvious now since the extended group is no
longer a direct product but rather a direct Schreier product (Method 2,
Section II). (Recall that ε2 = ZC2 is a function of the specific representa-
tion JD<α) of & and whether or not ε — +i or +1 if fully determined
from the representations of ^). The possibility of such a direct Schreier
product exists for the G parity in the isospin case half -integer isospins
correspond to G = ±i and integer isospins to G = ±1.

(b) Weak G parity
As was seen already in the finite group example of Section II, the G

parity may be well defined only on certain representations of the original
group ,̂ namely those representations which are self -con jugate. For
such representations, the extended representations are of the form of
Eqs. (V. 3, ... 6), and correspond to a sharp (strong) G parity
G\[A ±]> = ±ε|[X ±]>, where ε = ε([A]). For the non- self -con jugate
representations a strong G parity is not defined.

The crucial question now is this: Is it possible to define a weak G
parity which is conserved multiplicatively ? One such definition whose
suitability we shall examine in a particular case, is this :

(1) For self -con jugate representations such that tr<7 Φ 0 assign a
weak G- parity ε by

which is identical in this case to the strong G parity.
(2) For self conjugate representations such that tr(7 = 0 and for non

self conjugate representations, assign as a weak 6r-parity the value zero.
To determine the suitability let us consider all direct products in S £73

of the systems db ε, 0. It is easily established (using the traces of the
representations in Section (V) — note that for 8 £73, tr(7 does not equal
zero for self -con jugate representations) that

(a) the direct product, [A, 0] <g> [B, 0], contains only representations
with G' = 0 and/or equal numbers of representations G' — + ε and
G' = — ε. The direct product, [A, 0] ® [jδ, ±], also behaves in precisely
the same way.

Thus the representations with G' = 0 behave somewhat like a zero in
that the G parity of the product adds to zero.
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More difficult to establish, and more interesting, is the rule for a
direct product of non-zero G parities. Let us state the rule.

(b) The direct product [A, %] ® [B, ε2], where ε^ = ± ε contains
representations having 8^=8^8^ and, in addition, the possibility of
equal numbers of representations with ± εx ε2> as well as representations
with G' = 0.

These rules for the properties of "weak G parity" are not very satis-
fying from the point of view of defining a quantum number, and show
that the most interesting case is probably that of strong G parity. Never-
theless weak G parity does represent a parity-like restriction on the
extended group —- for one sees that the rules, (a) and (b), state that the
weak G parity is conserved in the sense that the product of weak G parities
is conserved as a sum of weak G parities. This is a new kind of quantum
number which behaves neither additively nor multiplicatively but rather
mixes both behaviors. Weak G parity exists formally, as these examples
show — whether or nor it is a useful classification remains to be seen.

It is useful to note explicitly that the isoparity in 8 £7|xt is necessarily a
weak G parity, with the F and D couplings of octets having ε = + and
8 = — respectively.

A further discussion of these rules is given in the Appendix II.
Let us note in concluding that in S U± already a very much more

complicated behavior occurs, since self-con jugate representations with
tr C — 0 exist. A weak 6r-parity completely analogous to that of 8 C73

can however, be defined for the factor group S UJZ±.
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Appendix I

The determination of the charge conjugation matrix

From the discussion in Section I it follows that the effect of the charge
conjugation ΐί on the group & is, in a particular basis, the same as the
effect of complex conjugation. We shall assume the complete set of
(unitary) irreducible representations of 9 to be known; let us denote
one such representation (a) by D^(g}. Since (E, &)-l(D(*\ E}(E, V)
= (£>*(«), E), or in a looser notation #-1.D<«)# = £*<«), and D*(α> is
an irreducible representation it must be equivalent to one of the repre-
sentations in our complete set; we denote this conjugate representation
by (a). (If (a) = (a) the representation is self conjugate.) Expressing this
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equivalence in symbols, we have :

which defines (though not uniquely) the general charge conjugation
matrix C.

There is an alternative, but fully equivalent, view of the matrix C
given by the theorem: the matrix C is the Wigner (I?') (0^_^o for $ U2)
symbol for the representation ZK°) of ,̂ that is, the matrix linking states
of conjugate representations to form an invariant (scalar) direct product.
Note that since the definition, above, of the matrix C is unchanged by
a complex phase e1^ (which can depend upon the representation), it is
clear that conventions are required to make C unique.

The charge conjugation matrix has been discussed for the rotation
groups (strictly speaking the covering group of the rotation group) by
PAIS [17]; his results are explicit for the fundamental representation.
The charge -conjugation matrix for all representations of all the uni-
modular unitary groups (SUn) has been given recently by BAIED and
BIEDENHARN [18]. For these groups we may simply take over their
results.

For the charge- conjugation matrix of the symplectic group — which
is simply connected — one may most economically use an idea due to
RAG AH and embed Sp(n) in the n x n representation of S Un and thereby
obtain the charge conjugation matrix C for the fundamental representa-
tion.

Consider the unimodular unitary group 8 Un. The representations are
uniquely labelled by a Young frame with n — 1 rows that is, by the n
integers, (mltn, m2>n, . . . , mn_ltn, 0), with mϊ>n ̂  mi+1,n. The states of an
irreducible representation of 8 Un may themselves be labelled uniquely
by a Young tableau (filling in the Young frame lexically but allowing
repetitions), or equivalently by a Gelfand pattern:

where (m) denotes (m^ ) and mi}j+1 ^ mitj ^
 mi+ι,j+ι

The conjugation operation acting on a representation (mί>n) carries it
into a representation equivalent to the representation (mi)n), with

™i,n = mι,n—mn-ί+ιtn The state ( m i f j ) is carried into the state
™ί,3 = 'mι,n—mj-ί+ι,j (Note that (m) is unimodular.) It is shown in
Ref. [18] that the matrix C is given by

(n + 1) (n + 2) n(n + 1)
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n-l j
where ρ [(m)] = Σ Σ mt,j (Note that C is arbitrary to an over-all sign

j = i ΐ = i
which may be interpreted as an intrinsic G parity. With the convention
chosen here, the states belonging to the centre of the weight diagram of
the adjoint representation (8Un) have always (7=1.)

The formal properties of matrix C are now seen to be :

(7* = C

(Note that in general 0 connects states of different representations.)
For the adjoint representation (211 ... 10), which is self-conjugate,

the matrix C can be considered to act on the generators themselves.
That is, introducing the generators XA,

C-1 exp(iα X)C = exp(— ia X*) .

Since this is true for every aA, it follows that:

G^XAG = -X'A = —X_A .

This relation, which is independent of the phase conventions on G for
self-conjugate representations, can be taken as the defining property —
instead of defining G to be the Wigner "(I/)" symbol.

The matrix (7, considered as a (Ij) symbol, has the property mentioned
earlier that it defines an invariant product of wave functions. Let
ψ1 ζ (m) and ψ2 6 W = (m') Then the product:

is an invariant under the action of the group generators, XA (assuming
commutation of the ψ's). The matrix G is itself an invariant, in the sense
that :

C' s 8*08 = G

for all $, S = exp(ΐα X) that is, for all unitary transformations of the
group S Un. (These results follow immediately from Ref. [6]).

It is interesting to note that if ̂  = ψ2 (and hence we have a self-
conjugate representation), then the invariant vanishes identically for

G* = —G. For this condition to hold, we must have (— ) ~2n(n~l) mι n = (_),
which in turn requires: (a) w^ = odd integer and (b) n = 2, 3 mod4, as
well as (c) n = 0 mod 2 (from the requirement that (in) = (m)). Hence
we see that there exists no non-vanishing invariant, (ψ* <7ψ), for the
representations (fn,) = (m), mltn = odd in SUίk+2. This is a familiar
property of the half -integer representations in S U2.

Let us next extend this result to the defining representation of rota-
tion and symplectic groups. In order to use the results obtained above
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let us use the technique of embedding -R2fc+ι ^n $^2fc+ι an(i $£>2fc ^n

S U2k. The generators of S Un (n = 2k or 2 k + 1) are maps of the specific
generators defined in the n x n representation. Rather than the Weyl
form XA let us now use Racah's form [19] based on the tensor operators
g^ (1c = 1,2, . . . , n — 1) defined on the ^-dimensional angular momen-

n _ ^turn space having j = — H — [The operators S§.) are (to a constant factor)

the matrix operators given by the Wigner coefficients CJ

m ^ 4> acting in
the n x n dimensional space of the fundamental representation.]

Now the charge conjugation matrix C is defined for a definite group,
and exists as a specific matrix for each representation. But different
groups may have representations (reducible or irreducible) of the same
dimensionality, and for this case the possibility arises of investigating
the action of different charge conjugation matrices on the same abstract
space. This possibility thus affords an interesting method of splitting a
group into a subgroup, as the following example shows.

Under the action of the 8 Un matrix C we have the relation :

just as before, (since χA are simply specific matrices, the XA for n x n
representation). Now let us ask: what is the effect of the SU2 charge-
conjugation matrix (7(2) in the representation of dimension n on the

generators χA1 Since £4 = 8 ,̂ it is clear that we seek: C
Now the charge- conjugation matrix in SU2 is simply
= ( — )j~m(5^'m, as follows from the general results earlier3. One cannot

conclude that, for the mapping S^)<-> \k, #>, the phase is (— ) f c~ f f, since
the consistency of the XA phase relations and the S^ phase relations
must be established. The required phase relation is that :

and hence :

In order that this transformation be an automorphism for a Lie

algebra generated by the S .̂), it is then required that ( — )k = — 1. We
have thus extracted from the S Un group the subgroup4 generated by the

(n — 1 n = even
operators {SίW , k = 1, 3, . . . { Λ Ί Ί For n = 2k, this is the

*• ( )} [n — 2 n = odd .
symplectic group Spkι for n = 2k -f- 1 this is the rotation group ^2fc-n

3 Actually ( — }}+m results, but the difference is unimportant for what follows.
4 This stems from BACAH [19], who obtained it by direct computation from the

commutation relations. The method used above shows that the underlying principle
is more general.
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It is now unnecessary to calculate the explicit matrices G for the
defining representation of the J£2fc+i an^ &Pk group8 — since this matrix
is simply the matrix (7(2) of appropriate dimension, n = 2j + 1. It is
clear also that the matrices C have precisely the desired general proper-
ties:

and C

(where now χA refers to the Cartan form of the E2k+ι or $Pk generators).
For the particular case of the fundamental (n x n) representation,

we have the result:
0*=(— )*-*C

using n = 2j + 1.
Hence for the rotation group B2k+ι we ge^: C* = C and for the sym-

plectic group, (7* = — C. The significance of the matrix C as defining an
invariant now shows that the defining representation involves a quad-
ratic symmetric real form for the rotation group, and antisymmetric,
real form for the symplectic group. The E2k result also follows, by
embedding it in Λ2fc+ι

Rather more interest attaches to the spinor representations of En.
The charge conjugation matrices for these can be obtained by appro-
priately specializing the general results. It is precisely these cases, how-
ever, that have been treated by PAIS [17], and we can avail ourselves of
his results. PAIS finds that: for n = 2 £ and n = 2 /+ 1, the 2^ compo-
nent spinor representation ψ of En is transformed according to

Γμ = 8-*ΓμS
The matrix C is again defined in such a way that

and (φ*Cιp) is invariant.
Choose a representation of Γμ such that Γμ = Γμ and /Iμ-i = f2μ

I\μ = — Γ2μ. Then one gets for (7:

1, ί7*=(-) 2 G
α = l

α=l

-1 = H'/ϊ, α = 1 . . .
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Let us note for clarity, that — as PAIS has discussed — the spinor
representation for n — 2 / is not irreducible if the group does not contain
reflections, (the reflection operator can be taken as -^l/V-fi)- ^n tne

absence of reflections, the spinor representation of dim 2^ splits into two
representations of dimension 2e~l (conjugate under reflections).

Appendix II

We shall prove here the validity of the "weak G parity" conservation
rules only for the S Us case, since this is typical of the considerations
that enter.

One needs only to consider explicitly the direct product of the group
element (e, r) belonging to ^ext. For the representations having
0' = ±e = ε L (which requires that [A] = [A] the element (e, r) cor-
responds to a matrix whose trace is

tr(&A "l(e, r)} = ε1 tr(C~l) .

(The matrix C has been explicitly given in Appendix I.)
Using the fact that every self -conjugate S U3 representation has the

form: [A] = [2k k 0], we find that

(This result can be interpreted — aside from sign — as the number of
self -conjugate states belonging to the representation.)

Consider next the direct product ([A]^[2kkQ] and [B] = [2 < /O]) :

e9 r) ® &B><*1(e, r)]

= (tr @lA *J(e, r)) (tr &B Ά (e, r))

To proceed further we must recall that for SU% the direct product
[2k kQ]<8> [2//0] contains the self -con jugate representation [2m m 0]
with m = &-{-/, k + f — ! , . . . , & — { with the corresponding multi-
plicities 1, 2, 3, . . . , / + 1, / , . . . , 2, 1.

Since the non-self-conjugate representations contained in the direct
product have zero trace (for the element (e, r)), we must satisfy the
equation (taking k^^):

1) ('+ 1) - Σ em(-)w(m+ 1) ,
m = Tc-e

with
repetitions

where the repetitions correspond to the multiplicity given above. By
induction, one shows that the solution is given by sm ( — )m = ea ε2 ( — )* + ̂
for the first occurrence of the representation [2 m m 0] with the remaining
occurrences taking the signs — εm, + εTO, . . . .
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Thus the terms in the sum caned in pairs, and only the representa-
tions with odd multiplicity survive, each once. The result is the identity,
familiar from the addition of angular momenta, that:

= ** +/(-)*

= (~)k+^fΣ (i- ̂ + 1 + 2ί) = (_)* +'ε/(i +
ΐ = 0

Thus £f = £^2, i.e., the /£/•<$£ occurrence of the representations [2m m 0]
have the same 6r parity, which is conserved multiplicatively for these
representations. The remaining representations have either G parity = 0
or contain equal numbers of G parities ± ε1 ε2.

This establishes rule (b) of Section (VI) for the S Us case, and thus
completes the proof of the weak G parity rules for the extension ^ext of
$C73. (The (τ-parity for SU3 has also been discussed in reference [20].)
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