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Abstract. The space of testing functions for tempered distributions is charac-
terized in an abstract way as the maximal space in a certain class of locally convex
topological vector-spaces. The main characteristic of this class is stability under the
differentiation and multiplication operators.

The ensuing characterization of tempered distributions may readily be generalized
to the case of infinitely many dimensions, and a certain class of such generalizations
is studied. The spaces of testing elements are required to be stable under the action
of the canonical field operators of the quantum theory of free fields, and it is shown
that extreme spaces of testing elements exist and have simple properties. In fact,
the maximal space is a Montel space, and the minimal complete space is a direct sum
of such spaces.

The formalism is applied to the problem of extending the canonical field ope-
rators, and a number of extension theorems are derived. In a forthcoming paper*
the theory of tempered distributions in infinitely many variables will be applied
to a structurally simple linear operator equation.

1. Introduction

Quantum theory has motivated the study of families of linear

operators, which

(i) are defined in a linear space with a scalar product, and

(ϋ) are required to satisfy specified algebraic relations (self-adjoint-

ness, commutation relations, etc.).

The two-fold canonical family of self-adjoint operators pί9 p2, . . . and

#ι> #2> > which satisfy the canonical commutation relations

fcPί» P*\ = fe> ?*] = 0 , fa, qk] = - i δ, a.,

is perhaps the best known example.

* Added in proof: KRISTENSEN, P., L. MEJLBO, and E. THUE POULSEN: Tem-
pered Distributions in Infinitely Many Dimensions. II, Displacement Operators.
Math. Scand. 14, 129—150 (1964).
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Since a scalar product is required to exist in the underlying linear
space — the carrier space — most investigations have naturally been
concerned with the situation, where the carrier space is taken as a Hubert
space. It is then easily seen that the conditions stated above do not
suffice to determine the canonical family uniquely, and the problem most
extensively studied has been how to formulate weak additional conditions
which ensure uniqueness.

For the case of a finite number of pairs p and q such conditions have
been given by several authors [3, 5, 6, 13, 16, 17, 20].

The case of an infinite (countable) number of pairs p and q has proved
to be much more involved. From the early days of the quantum theory
of fields one solution — the so-called canonical solution, for which a
vacuum element exists — was known. A rigorous mathematical analysis
of this solution was given by COOK [2]. To the surprise of most physicists
it was shown by VAN HOVE [11], FRIEDRICHS [7], FTJGLEDE [unpubl.],
and others, that there exist several sensible solutions which are not
unitarily equivalent. A complete characterization of all solutions satis-
fying the canonical commutation relations (and further weak conditions)
was then given by GARDING and WIGHTMAN [10] (see also WIGHTMAN and
SCHWEBER [22]).

A slightly different version of the problem of infinitely many pairs of
operators is this : Let x and y denote real variables (or points in a Euclidian
space). A pair of operators is called a pair of canonical field operators if

(i) They are defined as distributions from a space of testing functions
to a space of linear operators in a carrier space (a linear space with a
scalar product).

(ϋ) They satisfy commutation relations, the symbolic versions of
which are [p(^ p(y)} = [Q(χ)>

(in) They are self -adjoint on real testing functions.
A motivation for the study of such mathematical structures also

arises in non-linear functional analysis. Taking for the carrier space some
space of (non-linear) functionals, defined on ordinary functions f(x) of
a real variable, the operations

constitute, in a formal sense, a representation of the canonical field
operators. We have here adopted the notation ό/<5/(#) for the first
Volterra derivative, viz.

Φ[f + 9} - Φίf] = -g(x) dx + o(g) ,
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where these symbols of course do not have a well defined meaning until
appropriate topologies are chosen.

The present paper is primarily concerned with describing an alter-
native approach to the study of such a pair of canonical field operators.
One of the main difficulties of the classical theory is that even though the
theory of Hubert spaces is extremely well developed and in most respects
very simple, operators satisfying the canonical commutation relations
cannot be bounded and everywhere defined, as shown by WIELANDT [21].
Consequently, when several such operators are involved, difficult questions
concerning their common domain of definition arise.

Instead of requiring the carrier space to be a Hubert space, we require
the operators to be everywhere defined and continuous, and then we
analyze the structure of the possible carrier spaces. When we require
the operators to be continuous, we imply in particular that the carrier
space has a topology, and, in fact, we require the carrier space to be a
locally convex vector space.

For applications it is desirable to have a theory which, in the end,
can deliver numerical results expressed by means of continuous linear
functionals, and it is well known that a topological vector space can be
given a locally convex topology such that the continuous linear functionals
are the same in the two topologies. In the case considered here, ultimately
the relation between theory and physical reality will be established via an
interpretation of certain quantities, expressed in terms of bilinear forms,
as expectation values. Obviously the topology determined by the totality
of all such expectation values is a locally convex topology on the carrier
space (the expectation values are semi-norms), and all desired continuity
properties hold for this topology. Hence, from the point of view of appli-
cations, the assumption of local convexity is no essential restriction. On
the other hand, for the present investigation — as well as for the purpose
of quantum theory in general — Hubert space seems to be an uncom-
fortably wide structure.

It turns out that the choice of a carrier space which in a sense is
smaller than Hubert space, offers an additional advantage to the facili-
tation of the algebraic manipulation with the operators:

In the formulation of the algebraic properties of the operators p
and q, the assumption of self-adjointness is essential. We replace this
assumption with the requirement that they be symmetric with respect
to the scalar product on the carrier space. This scalar product induces
a natural embedding of the carrier space in its dual space, which is larger
than Hubert space. In quantum theory as well as in non-linear functional
analysis, representations of a pair of canonical field operators are desired
as tools for the investigation of linear operator equations (linear varia-
tional equations). The natural way to impose boundary conditions on

12*
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equations of this nature is to require the solution to be an element of some
linear space. To take this space as Hubert space is in most cases so restric-
tive that only trivial manifolds of solutions are obtained. Thus, to give
an example, the structurally extremely simple "gradient" equation:
P(x)Φ = 0, possesses no proper solutions with the boundary condition
that Φ be an element of Hubert space, but it does have a solution in the
dual of our carrier space.

It is well known from the study of the canonical commutation
relations that for technical reasons it is convenient to work with the opera-
tors

*<= yjf (P<

and their adjoints

Correspondingly, for the case of the field operators, we introduce

a = ±(P-iQ)

As α and α* are operator valued distributions, a space of testing
functions for these distributions has to be decided upon. In most appli-
cations it is requested that differentiation and other ' One-particle
operations" can be given a meaning on the field operators. To make such
operations possible, we have chosen as a space of testing functions for α
and α* a space of type &*, whereby we understand a space with the f ollow-
ing properties:

(i) The space is a locally convex space with a continuous scalar
product.

(ii) There exist operators b and δ*, which are continuous linear
mappings from the whole of the space into itself, which are adjoint with
respect to the scalar product, and which satisfy the canonical commutation
relation [δ, δ*] = 1 .

(iii) In the space there exists a normed element y0, which verifies
the equation bψ0 = 0, and which is cyclic relative to b and δ*, i.e. RψQ is
dense in the space, where R denotes the algebra of all polynomials in b
and b*.

As is known from the works quoted above on the finite-dimensional
problem in the framework of Hubert space, the condition (iii) has here been
given an unnecessarily strong formulation. As shown by MEJLBO [15],
the condition (iii) is in a certain sense also too strong in the framework of
locally convex spaces. However, as we are mainly interested in the extent
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to which the topology of spaces of type £f is determined by the required
properties, we have tried to make life easy in other respects.

Obviously such a set of requirements comes close to a characterization
of a subspace of Hubert space which bears essentially the same relationship
to Hubert space as does SCHWARTZ' space (£P) of rapidly decreasing
infinitely often differentiable functions to L2. The precise situation is
explained below.

An analysis of spaces of type &* is given in Section 2, where also the
corresponding problem for the case of several operators b and b* is con-
sidered. Apart from some technical material needed in later sections, the
main results are :

There exist a minimal space & and a maximal space £f ', both oj type £f,
such that if Sf** is any space of type & ', then

& ςy- ς se

algebraically and topologically. The space &* is dense in ^?, and ^? is
dense in SP . We further prove that the topology of the maximal space £f
is determined by a sequence of increasing norms || ||r, r = 0, 1, 2, . . .,
where \\φ\\% = {99, (bb*)rφy. The maximal space may be identified with that
subspace ύ of I2 which consists of all sequences c — {cn}, which are rapidly
decreasing with respect to the index in the sense that all the norms

\\c\\r ~ Σ \cn\*(n + l)r are finite. Finally, we prove that the maximal space

£f can be identified with SCHWARTZ' space
Thus, the space of testing functions for tempered distributions may be

characterized uniquely up to unitary equivalence as a subspace of
abstract Hubert space in this way: (^) is a maximal space of type £P .

For the case of n pairs of canonical operators we define spaces of type
£fn in a similar way and obtain corresponding results.

For the investigation of the canonical field operators we have in this
work chosen the abstract space ff* as the space of testing elements.
Precisely speaking, we have investigated spaces of type Θ which we define
as spaces with the following properties :

(i) The space is a locally convex space with a continuous scalar
product.

(ϋ) There exist operator valued distributions a and α* which are
continuous linear mappings from £P into the space of continuous linear
mappings from the whole of the space of type <& into itself. This space of
continuous linear mappings is here equipped with the topology of uniform
convergence on bounded sets. Further, a(φ*) and a*(φ) are adjoint and
satisfy the commutation relations

[<%*), α(ω*)] = [a*(φ)> α*(ω)] = 0 ,

[α(φ*),α*(ω)] = (φ, ω>
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for all elements φ, ω of £f. Here 99* denotes the conjugate of the element
φ ζ^ in the sense of the natural conjugation in £f .

(iϋ) There exists an element ΨQ9 called the vacuum element, which
verifies the equation a(φ*)ΨQ — 0 for all φ £ «9 ,̂ and which is cyclic
relative to a and α*, i.e. RΨ0 is dense in the space, where R denotes the
algebra of all polynomials in all a(φ*) and all a*(φ).

(iv) To every self-adjoint operator Jc ζ~R there exists a self-adjoint
continuous mapping K from the space of type & into itself, such that

Here, by the condition (iϋ) we single out the particular (canonical)
solution for which a vacuum element exists. This greatly facilitates the
analysis and also leads to a case of interest for quantum physics. How-
ever, this might not be the only interesting case. The condition (iv) is
well motivated in the quantum theory of free fields (K is the bi- quanti-
zation of k).

An analysis of spaces of type <& is given in Section 3. The main results
are: There exist a minimal space ©', a minimal complete space @, and a
maximal space 0 of type 6>. The topology of the maximal space is deter-
mined by a sequence of seminorms 1 1 1 1 1 |r, where 1 1 1 Ψ\ \ \* = ((Ψ, Hr ϊ7)). Here
{{.,.)) denotes the scalar product in 0, and H is the mapping which
according to (iv) corresponds to the operator b δ* ζ R. All spaces of type @
have so-called FOCK representations [4], in which the elements are rep-
resented as {^(0), ψM, . . .,^n), . . }, where the n'ih coordinate is an
element in the symmetric part of a space of type ^n. In this represen-

tation 1 1 1^1 1 1? = Σ \\Ψ(n)\\ϊ Tne Fock representation of the extreme
~ ~ n==0

spaces <§>', Θ, and <5 are characterized explicitly, and it is shown that they
all have simple topological structures.

In the final section the dual spaces of Θ and <S are studied. In the
FOCK representation β* consists of all sequences T = {T^} of symmetric
tempered distributions, while Θ* consists of sequences T, which in a certain
sense are of at most polynomial growth with respect to n. Furthermore we
have the situation

algebraically and topologically, and each of these spaces is dense in each
of the spaces it may be imbedded in.

As Θ is the counterpart of SCHWARTZ' space £f for the case of in-
finitely many dimensions, elements of 6* may be looked upon as tempered
distributions in infinitely many dimensions.

Finally it is shown that the canonical field operators have unique
continuous extensions to various dual spaces, the main result being : The
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operator α* has a unique continuous extension from £f* into the space of con-
tinuous linear mappings from & into (5*. The operator a has a unique
continuous extension from £f* into the space of continuous linear mappings
from β into <δ.

Thus, for any tempered distribution T ζ <$?*, a*(T) and a(T) have
well defined meanings. In particular, if T is the Dirac-measure ό^concen-
trated at the point x, we give a well defined meaning to the field operators
at the point x. Observe that by the results above a*(T)a(T) is well defined,
but a( T) α* (T) has no meaning. This situation is well known.

We also consider ordered multiple products of the type α* (9^) . . . a (φs},
so-called normal products (WiCK-products), and it is shown that normal
products have unique continuous extensions from έ?s* into the space of
continuous linear mappings from <S into 0*. Similar results hold when <S
is substituted by Θ.

The important question of convergence of series of normal products
is just barely touched upon in a final remark of Section 4.

It is our hope that some of the material will be of interest to physicists.
With this in mind, some results from the theory of locally convex spaces
are compiled in the Appendix A, where also the meaning of various no-
tions used in the text is explained.

The maximal spaces all belong to a general class of spaces studied in
Appendix B. We have collected this (well-known) material in an appendix
for the convenience of the reader, and for the purpose of being able to refer
to these results in a forthcoming paper, where a simple linear operator
equation will be studied.

2. Spaces of type &n

Definition. By a space of type £f nwe understand a locally convex space
SP1* with the following properties:
(2.1) There exists a continuous scalar product {. , .) on ̂ ?.
(2.2) There exist transformations b^ bf , i = 1, 2, . . . , % , in L(£f?, έ?1),

such that bi and bf are adjoint with respect to the scalar product, and
such that

(2.3) [bi,bf-\ = btbf-bfbi=δti,

(2.4) [b{, bj] = [δf , bf ] = 0 .

(2.5) There exists an element ̂ 0, ||ψ0|| = 1, called the cyclic element, in ̂ ?

such that
biψo = 0 for i = 1, . . . , n, and

(2.6) RψQ is dense in ^?, where R denotes the subalgebra of
generated by all the operators b^ and bf .

Concerning the concepts involved in (2.1) and (2.2) we refer to
Appendix A.
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Let ^? be any space of type £fn, and let Nn denote the set of all
n- tuples v = v^v^ . . . vn of non-negative integers. For v ζ Nn we define ψv,
called the Hermίte elements in ^? as

6?Vl . . . δ*Vn

(2 7) ^ ^_
and denote by ^ the linear subspace of Sf* generated by all the
elements ψv.

From (2.4) it follows that

(2-8) b f ψ V l t f t V i t m m V n = 1̂ 7+^̂ ...̂  + !)...%'

and from (2.3) and (2.5) that

This shows that ̂ ? = Rψo, so that (2.6) can be formulated: <9^? is
dense in <^?. Using (2.7), (2.2), (2.9), and the fact that ||y0|| = 1, one
proves

(2.10) (ψt»ψμy = δvιμ1δvιμι...δvnμn>

so that the elements ψv form an orthonormal basis for ^?.

In particular, then, every element φ ζ ̂ ? has a unique representation
as a finite linear combination of the elements ψv, viz.

φ= Σ'Wv,

where the prime indicates that the sum is actually finite.

The minimal space ύn

For each v ζ Nn, let Cv denote a copy of the complex field, and define

«»= Σ

as the direct sum of the spaces Cv. Thus, algebraically, δn is the space of

all multiple sequences c = fc}

with only a finite number of coordinates cv different from zero. We give
ύn the direct sum topology as explained in Appendix A.

We define a scalar product in ύn by

/ O I T N /Γ> Γ"\ — V'ϊr'r"\£.LL) \C , C } — 2^ cv Gv j

vζN"

and operators 5^ and bf by

if Vi = 0

,„-,,..,. ^,>o
It is then easily checked that όn is a space of type £Pn.
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Let ^? be any space of type £fn and let £?** be the dense subspace
mentioned above. The mapping J defined by

(2.14) J:c-+ Σ'c,ψ,
vζNn

is then an algebraic isomorphism of ύn onto ^?. By the properties of the
direct sum topology, J is continuous. Furthermore, J preserves the scalar
product and „ commutes" with the operators l>i and δf in the respective
spaces in the sense that

(2.15) btJ = Jbi9 bfJ = Jbf.

Thus J preserves the type-^n-structure, and hence it is justified to
call Zn a minimal space of type £fn.

The maximal space ύn

If e^? is any space of type £fn, then all semi-norms || ||fc defined by

are continuous, where E as above denotes the algebra generated by all
bj and b f .

Let y denote the topology on ^? determined by the semi-norms
|| la, k ζ R. Then y is the weakest topology on ̂ ? such that all bi and
bf are continuous.

Before discussing the existence of a maximal space of type ^n we
prove

(2.16) Theorem. The topology 3~ on ̂ ? is determined by the sequence
of norms || ||r given by

(2.17) HI? = (φ, h"Ψy ,
where

A = Σ *<δf.
ί= 1

The norms || ||r satisfy

(2.18) ll?ΊI?^»l9ΊI?-ι.
Proof: First note that (2.18) follows from the identity

Furthermore, since

\\hsφ\\* for r=2s

\\bfh8φ\\* for r= 2s + I ,Ml? -
ΐ = 1

all norms || ||r are continuous on Zf- with respect to the topology^".
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In order to prove that the norms || |] r determine the topology &" on 5^?,
we must prove that all semi-norms || || k, k ζ E, are continuous with re-
spect to the topology determined by the norms | ||r (lemma A. 2), or,
equivalently, that all the operators k ζ R are continuous in the topology
determined by the norms || ||r. On the other hand, in order to prove this,
it is sufficient to prove that bi and bf are continuous in this topology, and
this follows from the identities

6, A' = (A +!)'&„

which give

Σ II &* ?> 1? = (φ, (A -h i
ί

For certain applications it is sometimes convenient to observe that
(2.18) implies that the norms || ||r, r even, determine the topology 3~

The space ύn is now defined as the completion of όn in the topology 3~.
Then, since the scalar product {., .} and the operators l>i and bf are

continuous on όn in the topology ^", they have unique continuous
extensions defined on ύn. For these extensions the algebraic relations
(2.2), (2.3), and (2.4) hold, and (2.5) is of course also fulfilled in ύn, the
cyclic element of ύn being also the cyclic element in ύw, so that RψQ= 3n,
which is dense in ow.

Hence, ύn is a space of type £Pn.
Before proceeding, we give a concrete representation of the space ύn

as a space of fast decreasing multiple sequences.

(2.19) Theorem. The space ύn can be identified with the space of those
multiple sequences c = {cv}vζχn (with Nn defined as above), for which all
the sums

where \v — Vι + -f vn9 are finite. The topology of ύn is determined by
the norms \\ \\r defined above, the scalar product by (2.11), and the operators
^ and bf by (2.12) and (2.13).

Proof: Trivial, since hψv = (\v\ + n)ψv in ύn.

We shall now prove that ύn is a maximal space of type ̂ n.
If y? is any space of type &>n, and J is the mapping defined by (2.14),

it follows from (2.15) and the fact that J preserves the scalar product

that J"1 is a continuous mapping of ^? into ύn, when 3n is given the

topology 3Γ. Since όn is complete and ^? is dense in ̂  , the mapping
J~l has a unique continuous extension J' which maps ̂  into ύn.
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Clearly J' maps the normalized cyclic element in ̂ ? into the normal-
ized cyclic element in ύn, it preserves the scalar product and by continuity
it follows from (2.15) that

biJ' = J'bt, bfJ' = J'bf.

Hence J' preserves the type- .^-structure.

In the sequel we shall use the symbols £fn and Sfn to denote an

arbitrary minimal resp. maximal space of type £fn — any two spaces £fn

or £fn having of course isomorphic type- ̂ -structures.
With this convention, if Sfi is any space of type ^?n

ί we may write

sϊn ς ̂  ς yn

algebraically and topologically, where &n is the space formerly denoted

^?, but provided with the topology of ύn, while £fn denotes the com-
pletion of Sf in the topology ̂  .

If the element φ ζ £f n corresponds to the multiple sequence {cv} in the
copy ύn of &*n

9 we shall often find it convenient to write

φ = Σ cv%>
vζNn

where ψv is the Hermite element with index v in £fn. It is clear, from the
definition of the topology, that this sequence converges unconditionally
to φ in £?n.

Representation of &?n as SCHWARTZ' space (£P) in n dimensions

SCHWARTZ' space (&*) over the ^-dimensional space En is the space of
those infinitely often diίferentiable functions on En for which all the
semi-norms

sup \PDI*φ(t)\
are finite, where

The space (5^) is given the topology determined by these semi-norms.
It is clear that if we put

__ _ . a

then the operators bi and bf satisfy (2.2), (2.3), and (2.4), the semi-norms

tζ.En

are continuous in the topology of (&} for all operators Jc £ E, and the
topology of (&*) is determined by these semi-norms.
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It is well known that (SP) C L2 (with respect to Lebesgue measure)
and that the L2 - norm || || can be estimated by

IMl ^ c\\<p\\f\
where

* = (i + Σ «?)•
ί = l

with 4s > n.
On the other hand we have

(2.20) Sobolev's lemma ([19]). // s is an integer with s > y, then

there exists a constant K suck that

Sup\φ(t)\^K(\\ψ\\ + Σ b?' 2#>ll)

for all φ ζ
It now follows from the lemma (A. 2) that the topology of (£f) is

determined by the system of semi- norms

so that the topology of (SP) is in fact the topology
It is well known that the Hermite functions

where

are elements of (^), that they constitute a complete orthonormal system

in L2, and that (2.5) holds. Let (&*) denote the linear subspace of (£f)

spanned by the Hermite functions. Evidently, (SP) can be identified

algebraically with £fn. Since (£f) has the topology y of the maximal
space £fn and is complete, it follows that (^) contains a maximal
space £fn.

On the other hand, for any element φ £ (^), the norm \\hrφ\\ = \\φ\\zr
is finite, since hrφ is an element of (&*}. Now, if

φ= Σ cv%
v£Nn

in I>2, then
<y,, Λr^> - <Λr^, ^> = (|v| + w)rcv,

and hence, by Parsevals formula,

Σ (M + »)a'|c,|«=|Mif<oo.
vζNn

Thus, (£P) may be identified with a subspace of the maximal space ̂ n.
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Hence we have the result: SCHWARTZ' space (£P) in n dimensions is
a copy of the maximal space £Pn.

We remark that the algebraic and topological isomorphism of
SCHWARTZ' space (SP) with the space ύn of fast decreasing sequences is
well known (cf., for instance, SCHWARTZ [18]).

The remaining part of this section contains material needed in the
sequel.

A conjugation in the space SP

In the sequel SP will always denote the maximal space SP = ^>1

) which,
as discussed above can be represented as a space of sequences or as
SCHWARTZ' space (SP) over the real line.

If we interpret SP as SCHWARTZ' space of rapidly decreasing testing
functions on the real line, then there is defined a natural conjugation

φ -> φ* in SP by φ*(t) = φ(t).
It is easily verified that ψ* = ψQ and (6*99)* = — 6*99*, and hence,

in the sequence representation,

ψn being the Hermite elements in SP .

The tensor product ^n® = &> <g> ̂  ® ® &> as a space of type <9*n

Let SPn® denote the τι-fold algebraic tensor product

i.e. SPn® is a vector space having the family of ordered π-ics of the form

φ = φl . . . φnί φi ξ SP for i = 1, . . . , n ,

as generators.
We define a scalar product on SP*1® by putting

for the generating n-ics and then extending by linearity.
Let b and δ* denote the operators δx and bξ in ,̂ and define

6? (^ . . . ψi . . . φn) = φI . . .

It is clear that if we determine a topology on ^n® by means of the
norms \\ \\r defined by (2.17), then ^n® is a space of type £fn, and if we
think of ζPn® as a subspace of £Pn (which as we know is permissible), then
the topology of £Pn® is exactly the topology induced from £fn. Observe
that <?n® is not a complete space for n > 1.
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The symmetric spaces £fnj® and £f\

We add a few remarks on the symmetric parts of the n-ί old algebraic
tensor product 3*n® and of «$"».

On the generating elements of <?n® we define an operator sym by

sym^i ...φn)=— Σ ψπ(i> ψπ(n) ,
n' π€5Λ

where Sn denotes the symmetric group of degree n, and extend sym by
linearity to the whole of <?n®. It is easily verified that sym is an ortho-
gonal projection in <?n® with respect to the scalar product in <?n®.

Furthermore, if k is any linear operator in £f , and if we define "ki by

M^i ...φi...φn) = φ1... (kφt) . . . φn

on the generating elements of <?n® and extend by linearity, then

== — kW sym ,

where

(2.21)

Hence

and if we define

then £fn® is invariant under k^ for any operator k in £P.
In particular, ^^Φ is invariant under the operator hW, which we

earlier denoted h, and which determines the topology of £fn and
It follows that for ζ^n® and r = 2s

\\hW φ\\ = \\φ\\r,

which shows that sym is continuous on <?n® in the topology of £fn.
Consequently, sym has a unique continuous extension to £fn we shall

also denote this extension by sym — it is of course a projection in £fn,
and its effect in any of the two standard representations of Sfn is exactly
what one would expect.

Finally, let us prove the following useful lemma.
(2.22) Lemma. // T is a linear transformation from £fn® into some

vector space V, and if

T(φn) =T(φ...φ) = 0 for all φ ζ & ,

then T(ω) = 0 for all ω ζ 3*n

+® .
Proof: It is sufficient to prove that T(sγm(φl . . . φn}} = 0 for all

generating elements φ^ . . . φn in <?n®. By assumption we have for all
complex numbers cly . . . , cn

»)n = 0 .
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The left hand side is a polynomial in c1? ..., cn, and since it is
identically 0? all coefficients must be 0. In particular, the coefficient to the
term cλc^ . . . cn must be 0, and this coefficient is n\ T((sym.(φ-L. . . φn)).

(2.23) Corollary. The elements of the form φn, φ ζ&, generate ^^®.

3. Spaces of type Q

Definition and analysis

Definition. By a space of type β we understand a locally convex space
<3? with the following properties:
(3.1) There exists a continuous scalar product^-, •))on <S? (the correspond-

ing norm is denoted by 1 1 1 1 1 1 ) .
(3.2) There exist continuous linear mappings a and α* from &* into

jL(β?, Θ?), such that a(φ*) and a*(φ) are adjoint with respect to the
scalar product in & for all φ ζ <$?, and such that

(3.3) [«(?*), «*(ω)] = <^ω>,

(3.4) [a(φ*)9 o(ω*)] - [a*(φ), α*(ω)] = 0 .

(3.5) There exists an element ΨQ of norm one, called the vacuum element,
such that a(φ*)ΨQ = 0 for all φ ζ ̂ , and

(3.6) RΨQ is dense in 0?, where R denotes the subalgebra of L(β?, β?)
generated by all operators a(φ*) and a*(ω).

(3.7) To every self-adjoint operator Ic ζR C L(S?, £?) (cf. (2.6)), there
exists a self-adjoint operator K ζ£(<S?, 6>?) satisfying

(3.8) [a(φ

(3.9) [K,

The space L(<S?, <S?) is provided with the topology of uniform con-
vergence on bounded sets as explained in Appendix A.

In this section we shall prove results completely analogous to the
results of Section 2 concerning the existence of a minimal space Θ',
a minimal complete space 0, and a maximal space <S of type <S.

Let <S? be any space of type β, and let Ψn[ψι. . . φn] denote the
element

Ψni<h « y»] = j7=f «*(^) «* W^O

in (£?

? where φi ζ £f for ί = 1, . . ., n.
It is clear that ψn can be extended to a linear mapping from £fn®

into 6>?. Let (S? denote the linear subspace of <S? generated by ΨQ and
all elements Ψn [y(Λ>], ^(w) £ ̂ ®, w = 1, 2, . . .

Now we have

(3.10) α*(9?) yn[ft . . . φn] =
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and from (3.3) and (3.5) we get for n > 0

(3.11) a(φ*) Ψn[φ1...φn\=^ Σ <<P> Ψi> SWpi - - <Pi-ιψi+ι ψnl
]/n i = ι

Just as in Section 2 we conclude from (3.10), (3.11), and (3.6) that

Θ? is dense in <S? .

Before we proceed to discuss the scalar product and topology of <S?,
we note that because of (3.4) the mappings ψn are invariant under per-
mutations of the factors in £fn®^ viz.

(3.12) Ψn[ψ(n}] = ^[sym(y<«>)] for all y(«>

By assumption (3.2), the operators α* (φ) and a(φ*) are adjoint. Now,
consider two elements in 6>? of the form Ψn [φn] and Ψm [ωm], φ, ω ζ £f.
From (3.10) and (3.11) we get

{φ,

As in the proof of (2.10) we conclude that

f 0 if m

snce
It follows from the corollary (2.23) that if φ^ ζ SΓ^ and

then
if m

(3.13)

where {9?^), α)ίn)) denotes the scalar product in
Thus Ψn is an isometry from y*_® into Θ?, and, furthermore, when

(3.12) is taken into account, we have
(3.14) Theorem. Every element Φ in <S? has a unique representation

as a finite orthogonal sum

Φ = φmψ0+ Σ SWI,
n= 1

which we shall write in the form
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with

where, for convenience, we let ̂ ^ denote the complex field.
We shall now investigate the consequences of the requirements

(3.7) — (3.9), but first we need the following lemmas.
(3.15) Lemma. The set of equations

a(φ*)Ψ=Q for all φ ζ &>

have in €>? the only solutions

Proof: A solution orthogonal to ΨQ is easily seen to be orthogonal to
all of @?, which, however, is dense in S>?.

(3.16) Lemma. // k is any linear operator in £?, then there exists a
unique linear operator K in Θ? satisfying the conditions (3.8), (3.9), and

(3.17)

The operator K is given by

(3.18) Kψn [φW] = ψn [*(»> φW] for all φW ζ ^®, n > 0 ,

where k^ is defined in (2.21).
// there exists a continuous operator in <S? satisfying (3.8) and (3.9),

then there exists a unique one satisfying (3.17).
Proof: Assume that K satisfies (3.8). Then, by (3.15)

Since the operator cl commutes with all a(φ*) and all a*(φ), it
follows that if there exists an operator satisfying (3.8) and (3.9), then
there exists one which in addition satisfies (3.17).

Assume now that K satisfies (3.9) and (3.17), and write (3.9) in the
form

j£a* (φ) = α* (φ) K + α* (k φ) .

By successive application of this formula to ΨQ, Ψ^φ], . . . , Ψn [φn], . . .
we get

From the corollary (2.23) it follows that K is actually given by (3.18),
and the statements concerning uniqueness of K follow. Finally, if for a
given operator k we define K on <S? by (3.17) and (3.18), then it is easily
verified that K satisfies (3.8) and (3.9).

For any operator k in £f both the operator K defined on <5? by
(3.17) and (3.18) and its continuous extension to <S? (if it exists) are
called the normalized bi-quantization of k.

Commun. math. Phys., Vol. 1 13
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The minimal space β' and its FOCK representation

We define the space 0' as the direct sum

and we shall write elements Φ ζ Θ' in one of the forms

φ = {9?(»)}=={9?(o),yd),...}.

The theorem (3.14) can now be formulated:
CO

(3.19) The mapping J : {φ(n)} ~> JΓ" Ψn[φW\ is an algebraic iso-
~ n==S

morphism of & onto the dense subspace & of any space & of type @.
Furthermore, if we define a scalar product in <&' by

((Ω,Φ))= j

then this scalar product is continuous (lemma (A. 13)), and by (3.13) the
mapping J preserves scalar products.

We now show that Θ' can be organized as a space of type <&.
As we want the operators a*(φ) and a(φ*) to "commute" with J,

we find from (3.10) and (3.11) how they must necessarily behave. It is
of course sufficient to define these operators on elements χ £ <?n® £ <§'.
From (3.10) we find

(3.20) a*(φ)χ = ] / w + l e y m ( y χ) , χ

which we now take as the definition of the linear operator α* (φ) on <§'.
Similarly, (3.11) leads to the definition

(3.21) a(φ*)χ = ]/n (ψ, χ>ω , χ ξ &»* ,

where {99, .)(X) denotes that linear mapping from <?n® into ̂ n~V) ®, which
on the generating elements of <?n® is given by

(φ, φ^... φny(l} - {φ, φ^ φ2 . . . φn.

Finally, the normalized bi- quantization K of an operator k £ R must be
defined by

as follows from (3.18).
It is obvious that the linear operators a, α*, and K thus defined

satisfy the correct commutation relations. Consequently, all we need
verify is the continuity of these operators.

We first consider α*. To prove that a*(φ) £ !/(<§', <§') it is sufficient
to show that a*(φ) ζ£(^Θ, «S^ + ι>®) (cf. (A. 14)). Since sym is continu-
ous, it is enough to prove that the mapping
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is continuous from £fn® into £f(n+V®. That this is the case follows from
the identity

llr = <φχ, (*ι + + **

0.22) =<^.ί(;)

Next, we prove that the mapping a* : &* ^* L(<S>', ©') is continuous.
As SP is metrizable it is sufficient to prove that for every bounded set A
in SP and every bounded set B in ©' the subset α* (A) B of ©'is bounded
(lemma (A. 7) and lemma (A. 10)). If B is a bounded set in β', then
(lemma (A. 16)) there exists a number N and bounded sets J50, J5X, . . .,
BN in ̂ ®, y^, . . ., <S^Θ respectively, such that

N

Σ

Hence, it is sufficient to prove that if -B is a bounded set in some
space yj.® and A a bounded set in £P > then a*(A)B is bounded in

î (n + ι)® j and ttis follows from (3.22).

Consider next the operator a. If SCHWARTZ' representation of £fu is
used, one has

where G is the non-negative Hubert- Schmidt operator defined by

βφ(x) = // χ(x, z) χ*(y, z) dzφ(y) dy .

Since (99, Gφ} -^ \\φ\\2 trace 6 ,̂ we have the inequality

From this we get

lls

(3.23)

This shows that the mapping (φ, )(X) is continuous from £Pn® into
^(rc-D® It is clear that it maps ̂ ® into ^-ι)®? and by an argument

analogous to that given above, we conclude that a is continuous

^^ £(©',<§).
13*
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Finally we prove that for any operator Ic ζ L ( £ f , £f}> the normalized
bi- quantization K of k defined on <§>' by

Kχ = Ic^χ for all χ ζ

where k^ is defined by (2.21), is continuous and satisfies (3.8) and (3.9).
Furthermore, K is self-adjoint if and only if k is self-adjoint.

The only thing requiring proof is the continuity of K, and as above,
it is sufficient to prove that the restriction k^ of K to each of the spaces
^Θ is continuous.

First, consider the operator kn on <?n®. Every element χ ζ £fn® can
be written in the form

where ψv runs through the Hermite elements of e^(w~1>®? while the φv are

elements in £f. The norms of χ are given by

V

V

/ V V1

v

 V) s = o V*

112
v\\r—89

so that also

(3.24) \\knχ\\%= 2

Since k ζL(^} &*), there exist constants C(r) and q(r) ί> r such that

for all φ ζ «$" and all s g r. It then follows from (3.24) that

\\knχfr g 2-(7(r)22: <V« (A<

/o oκ\ 9r/ r > ί/V\2/Λ / (dι(t
\& +j*j) — *•* v V / \/Γ? \ V

Clearly, for χ ζ £fnj® we have

II Z. v|| — HI. v l l —l l^ iZII — I I ^2% II —

and hence we get from (3.25) and (2.18)

(3.26) ^ A ( r ) < <

Thus, K is continuous, and we conclude that <S' is a space of type (S.
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(3.27) Theorem. & is a minimal space of type Θ, i.e. Θ' is of type Θ,
and if <2? is any space of type Θ, then there exists an identification mapping
J of Θ' onto a dense subspace <S> ? of <2 ?, which preserves the type-Q -structure.

By this last statement we mean that J preserves scalar products, that
it maps a normalized vacuum element into a normalized vacuum element,
and that it "commutes" with all operators a(φ*) and a*(φ) as well as
with all normalized bi- quantizations K of self -adjoint operators Jc £ E.

Proof: The identification mapping J" of the theorem is of course the
mapping defined by (3.19). Obviously, all we need prove is that / is con-
tinuous. Here it is sufficient to verify that the mappings Ψn from (f*1®
into Θ? are continuous (lemma (A. 14)). By assumption, α* is continuous
from £f into L(& ', <5?). Then it is easily seen that

Ψ»[ψl Ψn] = w^«*(9Ί) - - 0,*(φn)Ψ0

is continuous in each variable φ{ separately from £P into <S?. It now
follows from results due to GROTHENDIECK [9] that Ψn is continuous
from <?n® into Θ?. However, in the present case, a proof may also be
given by elementary means. We here give the proof for the case n = 2.
The general case presents no new problems.

We first prove that if ί7? is any neighbourhood of 0 in <£?, then there
exists a neighbourhood

Kr,a={ψζy \\ψ\\r<σ}

of 0 in & such that

φ £Kr>σ,ψ £Kr,ΰ^ a*(φ) a*(ψ) Ψ0ζW.

Assume the contrary, then there exists a sequence of pairs φn, ψn,
such that 1 X

\\ψn\\n<- > \\ψn\\n<-
and

(3.28)

Now, since ψn -> 0 in £?, the set {ψn} is bounded in ̂ , and hence the set

B - {ψ I ψ = α* (<φn) Ψ0 for some n}

is bounded in <S?.
On the other hand, since <pn -> 0 in £f, a*(φn)Ψ tends to 0 in &

uniformly on every bounded set, but that contradicts (3.28).
The continuity of the mapping Ψ2 now follows from
(3.29) Lemma. Let K% σ denote the subset

κr,a = {χ I χ = φψ, φ $ κr,o, ψ 6 κr,σ}
of έ?2®. Then the convex hull conv(^)(7) contains a neighbourhood

Fρ = {χ|lχ|,r+.<e}
of 0 in
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Proof: We first remark that \\χ\\$8 ^ <χ, A{A|χ> in ^2®. Thus, for aU
elements χ of Fρ,

, it is of the form

Λ

X= Σ Ψiψn+i, Ψiζ^, i = l , . . . , 2 r a ,
i= 1

for some integer n. Consider the at most 2 ̂ -dimensional space E spanned
by ψl9 . . ., ^2w, and let P# be the projection on E with respect to the
scalar product {•, }r = {•, /&r ). Further, let hE = PEhίPE denote the
projection on E of the operator Λ4, and let κμ, μ = 1, . . ., dim^ ^ 2n,
be a system of eigenf unctions of hE, orthonormal with respect to {•, }r.
Thus

s* Σ

Obviously, we may assume that the eigenvalues λμ do not decrease with μ.
By the well known maximum -minimum properties of the eigenvalues of
self -adjoint operators, we conclude that

the number on the right hand side being the μ'th eigenvalue of the ope-
rator &4. For the application to the present case it is of course essential
that the operator which enters the scalar product {•, }r commutes with Λ4.

If we expand χ in the form

then

Thus, we have the upper bound

\tμv\ < ρμ-*v~*.

Further, as ||« |̂]r = 1, we have, choosing a < σ,

άimE
v — V t A-ΊV £% ~ Zj lμvθ xμκv>

μ,v^\

where κμ ζ KrtG. The proof of the lemma is now completed by use of the
estimate

»
10-2 <

 π gv\v <• 35 ΛZ



Tempered Distributions in Infinitely Many Dimensions I 197

The minimal complete space Θ

We define the space <& as the direct sum

δ= Σ y\
n = 0

with the same convention as above : 9\ is interpreted as C. Elements in <S
are represented in the same way as elements in β'.

It is easily seen that Θ is a complete space — in fact, that it is the
completion of <§>'. In particular, §' is dense in Θ, so that every continuous
linear transformation from & into some complete locally convex space S
has a unique continuous extension from & into S.

If we apply this remark with S = Θ, it follows that <S is of type <S,
and if we apply it with 8 = 6 ? , where <S ? is any complete space of type 6,
we get

(3.30) Theorem. Θ is a minimal complete space of type <3.
This statement is to be interpreted in the way elaborated in the

formulation of the theorem (3.27).

The maximal space <S and its FOCK representation

We define the space @ as the completion of <S' (or, equivalently, β or
any space β? of type <2) in the topology 2Γ determined by all semi-norms
of the form j 1 1 1 1 \T) where

for operators T in the algebra generated by all a(φ*) and a*(φ) and all
normalized bi- quantizations K of self -ad joint operators k ζ R.

By exactly the same line of reasoning as was applied in Section 2 one
proves

(3.31) Theorem. <5 is a maximal space of type <&.
There is only one detail in the proof of this which is not obvious,

and that is the fact that the operators a and α*: Sf ̂  L(Q, β) are con-
tinous. The proof of this is postponed until later (lemma (3.42)).

First, we prove that Θ is metrizable by exhibiting a sequence of semi-
norms which determine the topology of 0.

(3.32) Theorem. The topology of the maximal space <& is determined by
the sequence of semi-norms ||| \\\r given by

\\m\o =\m\\
|||Φ|||*=«Φ,H'Φ»/or r >0 ,

where H is the normalized bi-quantization of the operator h — bb* in <5Λ
For r > 0, these semi-norms are increasing, and they are not norms.

Proof: Let ^' be the topology on Θ' determined by the semi-norms
H I |||r, r = 0, 1, 2, . . . We shall prove that ZΓ' = 2Γ , and just as in the
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proof of the theorem (2.16) we note that it is sufficient to prove that all
operators a(φ*) and a*(φ) as well as all normalized bi-quantizations K
of self -adjoint operators k £ R are continuous in the topology 3~' .

We first note that if

then we have for r > 0

(3.33) «Φ,H'Φ»=f »?<">!?.
n = l

It then follows from the theorem (2.16) that for r > 1

IIIΦIIIH f IIΛ2

We divide the remaining part of the proof of (3.32) into three separate
lemmas.

(3.34) Lemma. The operator a(φ*) on & is continuous in the topology
3~' for every φ ζ Sf.

Proof: Assume that φ ζ <9* and that

Then, we get from (3.21)

a(φ*) Φ = {(φ, φV}, j/2 {φ, ̂ )>ω, . . ., |/W <y, ̂ )>ω, 0,

whence by (3.23) and (2.18) (for r even)

(3.35) |||«(

(3,36) Lemma. TΛe operator α* (99) o?^ ©' ^s continuous in the topology
3~' for every φ ζ <$?.

Proof: First, note that

(3.37) l l K M Φ l l i 2 - l i μ ( ^ ) Φ i i | 2 + i |^ i | 2 i i |Φ| | | 2

by (3.2) and (3.3).
Next, by (3.9) we get

(3.38) Hsa*(φ) = Hs~la*(hφ) + Hs~la*(φ)H

= Σ (λa,*(Wφ)H-i.
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The formulas (3.37), (3.38), and (3.35) give

(3.39) \\\a*(φ)Φ\\\,s=\\\H'a*(ψ)Φ\\\

^ Σ §\\\a*(Vφ}H*-<Φ\\\
i — 0 x '

(3.40) Lemma. The normalized bi-quantizatίon K of any operator
k ζL(&*, ^) is continuous on & in the topology έΓ'.

Proof: An immediate consequence of (3.33) and (3.26).
This completes the proof of theorem (3.32).
(3.41) Theorem. The maximal space Θ can be identified with the space

of all sequences

for which all semi-norms ||| |||r defined by

are finite, the topology being determined by these semi-norms.
Proof: Identical with the proof of the theorem (2.19).
For elements Φ ζ @, the sequences {φW} are rapidly decreasing with

respect to n in virtue of the inequality (2.18).
(3.42) Lemma. The operators a and α* are continuous from SP into

Proof: As £f is metrizable, it is sufficient to prove that when φ runs
through a bounded set in £f and Φ through a bounded set in @, then
a(φ*)Φ and a*(φ)Φ run through bounded sets in β (lemma (A. 7) and
lemma (A. 10)). This is an immediate consequence of the estimates (3.35)
and (3.39), which in view of the theorem (3.41) are valid not only in @',
but also in Q.

4. The dual spaces 6* and S*

The dual spaces <¥n* and 3>n*

As a preparation for the discussion of the dual spaces of the extreme
spaces of type <S, we first make a few remarks concerning £fn* = L(&)n, C),
which, as we know, may be identified with SCHWARTZ' space of tempered
distributions.

The space &)n may be identified with the space ύn of all rapidly
decreasing multiple sequences c = {cv}v^Nn. Hence, the dual space £fn*
may be identified with the space όn* of all multiple sequences T = {tv}Vζ Nn,
which are tempered in the index. By this we mean that for each element T
there exists a polynomial p such that

1^1 ^P(v)9 for all v ζNn.
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Thus, there is a natural embedding of ΰn, and of ύn, into ΰw*, and hence of

&n and &>n into ff**. Let T be an element of <^n*. It is easily seen that

the sequence of elements Tk £ £Pn, k = 1,2,. . . , obtained by truncating T
in the obvious way, converges to T uniformly on any bounded set in <$fn.

Hence, under the mentioned natural embedding, £?n, and a fortiori also
&n, is dense in <¥n*.

The operators b^ δf , i = 1, . . ., n, sym, and the conjugation can be

defined on £fn* as the continuous extensions of these operators in £fn or
£fn. With this definition, bi9 δf , and sym in <5^n* are the duals (cf. Appen-
dix A) of the operators δf, bi9 and sym respectively in £fn. Also, for the
dual S^* of ff\ = sym^, we have

^n* = sym^n*.

The space <3*

It follows from the definition of Q that the dual space @* may be
identified with the space of all sequences

(4.1) T =

with the topology of coordinate- wise convergence. By this identification
the formula oo

holds for all elements Φ = {φ^} of Θ.
For ϊ7^)^ &γ we define ^[ΓW] as that element of &* which is

defined by

Then, for any T = {T(n>} ζ δ*, we have

(4.2) Γ= ί !Pn[!Γ(Λ)]
_ w = o

in @*.
It is now easily seen that β is dense in <§*.

TOe θ^αce β*

Since § C 0 algebraically and topologically, and since @ is dense in 0,
we have <S* C @* Thus, also elements of Θ* may be written in the forms
(4.1) and (4.2). However, obviously not all sequences (4.1) belong to @*.

(4.3) Theorem. The space ©* consists of those sequences T = { JW} of
symmetric tempered distributions for which the series

(4.4) Σ (τ(n)> Ψ(n)>
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is convergent for all elements Φ = {φW} of 0, and then^T, Φ^is equal to
the sum of this series. Moreover, the series (4.2) is convergent in 0* with
the sum T.

Proof: Since 0 is a complete metrizable space, the principle of uniform
boundedness holds. Hence, if the series (4.4) is convergent for all Φ ζ 0,
the partial sums are equicontinuous, and from ABZELA'S theorem it
follows that (4.4) converges uniformly on compact sets.

It is easily seen (cf. the lemma (B. 2)) that bounded sets in 0 are
relatively compact, and hence (4.2) is convergent in 0*.

Since 0 is a complete metrizable space (an jP-space), and bounded
sets are relatively compact, & is a so-called Montel space (M -space).
Such spaces are known to be reflexive. Thus, we have

(4.5) Theorem. The space 0 is reflexive, i.e. the second dual space 0**
may be identified algebraically and topologically with 0.

We remark that
0 C β C <S* C <§>*

algebraically and topologically, where each of the spaces is dense in each
of the spaces it may be embedded in.

For the benefit of the reader we give a direct proof of the theorem (4.5)
in Appendix B.

Extensions of the mappings α* and a

Since & is complete and 0 is dense in 0*, every mapping A of 0 into
0 which is continuous with respect to the topology induced on 0 by the
topology of 0* has a unique continuous extension from 0* into 0*.

The definition of the semi-norms in 0* shows immediately that if A
has an adjoint A*, which is continuous from 0 into 0, then A is con-
tinuous on 0 with respect to the topology of 0*.

It follows that we have
(4.6) Theorem. The mappings a*(φ) and a(φ*)9 φ ζ &*, have unique

continuous extensions from 0* into 0*.
Let us note
(4.7) Lemma. // S is a reflexive locally convex space9 then the mapping

of L(S, S) into L(S*, S*) is a conjugate linear isomorphism and a topo-
logical homeomorphism.

Proof: This follows from the definition of the dual operator and the
topologies of the various spaces.

We shall prove below (lemma (4.9)) that the mapping a* from SP
into L(0*, 0*) is continuous when £f is given the topology of £f*. Since
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for all φ £ £?, it follows from the lemma (4.7) and the reflexivity of <5 that
the mapping a from Sf into L(Q, Θ) is continuous when £P is given the
topology of ^*. Since L(&9 6) is complete (theorem (A. 1)), L(&, 6*)
is also complete by the lemma (4.7). Thus we get:

(4.8) Theorem. The mappings a and α* from ff> into L(<&, Q) and
L(&*9 &} respectively have unique continuous extensions to £f*. These
extensions are also denoted a and α*5 and they are given in the Fock represen-
tations of <S and Θ* by formulas completely analogous to (3.21) and (3.20).
The operators a*(T) in Θ* and a(T*) in Q are dual for every T ζ ê

?*.
(4.9) Lemma. The mapping α* from £f into L(<S*, <δ*) is continuous

when £f is given the topology of £f*.
Proof: Let p be one of the topology- determining semi-norms in

L(&, <£*), that is, p is denned in terms of a bounded set B* in @* and a
bounded set B in @. For an element φ £ Sf we have

sup |«α*(y) T5
T€J5*

If

Σ

is the Fourier development of φ with respect to the Hermite elements,
then we have

(4.10)

= ;
v = 0

in view of the continuity of a as a mapping of £f into £(Θ, S).
We shall prove below that there exist constants M (r) = M (r;

r = 0, 1, . . ., such that

(4.11)
V

for aU T £ 5* and all β ζ jB. Consequently,

is an element of & for all T ζ B* and all Ω ζB, and these |'s run through
a certain bounded subset A of £f.

It then follows from (4.10) that

p(a*(φ))= sup I <φ, !>[ ,
!€4

and this proves the theorem.
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In order to prove (4.11) we first note that in view of the boundedness
of J5* in 6>*, it is sufficient to prove that the set

Br - {(v + l)pα(V*)fl 1 Ω ζ B,v = 0, 1, . . .}

is bounded in 0 for every r.
Now, let Ω = {α>W} ξ 6. As (v -f l)φ* = /^*, we have in the Fock-

representation

(y + I)ra(Ψ*)Ω = {|AΓ+T<V,, AίωO+^ω}

with the notation {̂ r, }(X) of Section 3. Hence, we find by (3.23)

where the inequality (2.18) has been used in the last step.
It follows that Br is bounded in 6 for every bounded set B.
Since continuity properties of mappings into and from the spaces <§

and 0* can be determined by looking only at the summand-spaces £f\
and the factor-spaces £??£, the following theorems are easier to prove
than the corresponding theorems above. We state them without proofs.

(4.12) Theorem. The mapping a has a unique continuous extension
from £f into L (&*,&*).

(4.13) Theorem. The mapping a has a unique continuous extension
from £f* into L(§>, Θ).

(4.14) Theorem. The mapping α* has a unique continuous extension
from y* into -L(Θ*, Θ*).

The mappings a*n® <S> am® and their extensions

It is clear that if S? is a space of type <S, then the mapping

<Pι Ψnψi Ψm — «* (ψι) - «* (ψn)a(ψί) »

can be extended to a linear mapping α*n®<g> am® from

By exactly the same reasoning as in the proof of the theorem (3.27)
we conclude that this mapping is continuous from ̂ n + m) ® into L ( & ? , Q ? ) .
Thus, if L(β?, @?) is complete, and, in particular, if @? = Θ or @? = S,
then α*n® ® am® has a unique continuous extension from <$fn+m into

Observe that now the element ψn [φW ] of Θ may be written

S/.Mn)]=-ί7='nl
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and that — corresponding to (3.14) — we have

Φ= Σ
n = o

a relation, which also holds for Φ ζ @, the series being convergent in Θ.
(4.15) Theorem. The mapping a*n® <8> am® has a unique continuous

extension from £f(n + m)* into L(Θ, Θ*).
Proof: This may be proved in essentially the same way as the lemma

(4.9). However, utilizing results of the Appendix B we here give a some-
what simpler proof.

Let Ψ = {ψn} and Φ = {φn} be elements of @, and let χ and ω be
elements of &. When the explicit formulas (3.13) and (3.21) are used, an
easy calculation givesy * ((Φ,a*(χ)na(ω)™Ψ))

= Σ
where (χn, }(w) denotes the w-fold repetition of (χ, •}<!). Hence, by the
corollary (2.23) and by continuity, we find for all elements ωw wξ

LI — ΪLi
-J ψf+n(x> z}u>nm(x> y)ψt + m(y> Z) dxdydz ,

where a; ζ JS7W, ι/ ζ ̂ w, z ζE* and c2#, (iί/, ^2 denote the respective volume
elements, and where, for convenience, SCHWARTZ' representation has
been used. It is easily verified that hr, r = 0, 1, . . . , has a unique contin-
uous inverse h~τ in L(£fn> ^n), n = 0, 1, . . . If further the following
triangular version of Cauchy- Schwartz inequality

Ifψ^x^x^γ^x^x^ψ^x^x^dx^x^dx^ ^ HyJ \\ψ2\\ \\ψz\\
is taken into account, one finds (with small obvious and convenient
changes of notation)

φt

this inequality being valid for any natural number r. Here K Γ is a positive
constant, and || ||_2r denotes the norm given by ||ω||_2r== ||Λ-rω||.
Finally, we make use of the inequality (2.18), and obtain

(4.16) |«Φ, a*n® 9 am® (ωnm)
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r = 0, 1, . . . Lete^f ULJj^ denote the Hubert-space obtained by completion
oί <?n+m in the norm || ||_2r The inequality (4.16) proves the existence
of a unique continuous extension from ̂ n_^f into L(ξ>, <&*) (lemmas
(A. 7), (A. 10), and (A. 11)) for every r = 0, 1, . . . Since &*"+"»* is the

inductive limit of the Hubert-spaces ̂ f^t^j r = 0, 1, . . . (cf. Appendix B),
the theorem follows.

The proof of the following theorem is simpler (cf. the comments
before the theorems (4.12) — (4.14)).

(4.17) Theorem. The mapping α*n®<g> am® has a unique continuous
extension from <?(n + mϊ* into Z/(0, Θ*). For any family of elements

,m = Q9l,...,the series

Σ
n,m

is unconditionally convergent in L(<&,

Appendix A

Locally convex spaces

In this appendix a selection of notions and results from the theory of
locally convex topological vector spaces is given. For proofs we refer to
the many excellent textbooks, some of which are found in the references
[1, 8, 12, and 14].

Let S be a vector space over the complex field C. A real function || ||
on 8 is called a semi-norm iff

||a?|| ^ 0 for all x ζ 8 ,

\tx\\ = \t\ \\x\\ for all t £ C and all x ζS ,

||ίc -f y\\ ί=ί ||#|| + \\y\\ for all x, y ζ 8 .

A semi-norm is called a norm iff

\\x\\ = 0 =» x = 0 .

Let P be a family of semi-norms on S. By the topology determined
by P we understand the translation-invariant topology on 8 characterized
in the following way: a subset U of S is a neighbourhood of 0 iff there
exist semi-norms || ||r, r = 1, . . ., k, in P and a positive real number ε
such that

It is easily proved that every semi-norm || || in P is continuous with
respect to the topology determined by P.

By a locally convex space (more correctly, a locally convex topological
vector space) one understands a vector space equipped with a topology
determined by some family of semi-norms.
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(A. 1) Lemma. If 8 is a locally convex space whose topology is deter-
mined by a family P of semi-norms, then a semi-norm \\ || is continuous
on 8 iff there exist semi-norms \\ ||r, r — 1, . . . , k, in P and a positive real
number K such that %

Ml ^ κ Σ Mir f°raU x €# •
r = l

(A. 2) Lemma. Two families P and P1 of semi-norms determine the
same topology on S iff each semi-norm in one of the families is continuous
with respect to the topology determined by the other family and conversely.
In particular, the topology of a locally convex space S is determined by the
family of all continuous semi-norms on S.

Bounded sets

A subset B of a locally convex space 8 is called bounded iff it is absorbed
by every neighbourhood of 0, i. e. iff for every neighbourhood U of 0 there
exists a real number K such that

BQKU .

(A. 3) Lemma. // B is bounded, then every continuous semi-norm on S
is bounded on B. Conversely, if every semi-norm in some topology-deter-
mining family of semi-norms is bounded on B, then B is bounded

(A. 4) Lemma. // B is a bounded subset of a locally convex space 8,
then the closure B of B and the convex hull conv(.B) of B are bounded.

The space L(8V 82) of continuous linear transformations

(A. 5) Lemma. // $t and 82 are locally convex spaces and T is a linear
transformation from 8^ into $2, then T is continuous with respect to the
topologies of S1 and 82 iff the semi-norm p2T defined by

(p2T) (x) = p2(Tx) for all xζS^

iscontinuous on 81 for every continuous semi-norm p2 on S2, or, equivalently,
if this holds for every semi-norm p2 in some topology-determining family P2

of semi-norms on $2.
(A. 6) Corollary. // T is a continuous linear mapping of /S^ into $2,

then the image T(B1) of a bounded set B1 in 81 is bounded in 8%.
It follows that the vector space L(81}82) of all continuous linear

mappings from 81 into $2 can be given the topology of uniform convergence
on bounded sets, i.e. the topology determined by the semi-norms || ||jjlf2,a

definedby

for all bounded sets Bt in /Sx and all continuous semi-norms p2 on 82

(or, equivalently, all semi-norms p2 in some topology-determining family
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of semi-norms on $2). In the present work we always assume that
L ($1? $2) is given this topology.

In particular, the dual space 8* = L (8, C) of a locally convex space 8
is given the so-called strong topology determined by the semi- norms

\\f\\s = sup |</, x)\
xζB

for all bounded subsets B of 8. Here / ζ 8*, and {/, #) denotes the value
of f Άtxζ8.

Note that we define the scalar multiplication in 8* by

<tf,xy = **</,*>,
where t* denotes the complex conjugate of t. It follows that the natural
embedding of a space with a scalar product into its dual space is linear
instead of conjugate linear.

(A. 7) Lemma. Let ̂  and 82 be locally convex spaces. Then a subset B
of L(8lt 8 2) ^ bounded iff B(B1) is a bounded subset of 82 for every bounded
subset Bl of 8V

Metrizable spaces

A topological space is called metrizable iff the topology can be defined
by a metric.

(A. 8) Lemma. // the topology of a locally convex space 8 is determined
by a sequence of semi-norms, then there exists a translation invariant metric
on 8 giving the topology (more correctly, the topology may be determined by
a pseudo-metric, since two distinct points may have distance 0 — this pos-
sibility, however, will be disregarded in the sequel) , and conversely.

It is clear that one can always assume the topology of a metrizable
locally convex space to be given by an increasing sequence of semi-norms.

(A. 9) Lemma. A semi-norm p on a metrizable locally convex space is
continuous iff it is bounded on bounded sets.

Proof: Let || ||r be an increasing topology-determining sequence of
semi-norms on 8, and assume that p is not continuous. Then, by the
lemma (A. 1), for each positive integer r there exists an element xr ζS
such that

By the lemma (A. 3), the sequence {xr} is bounded, and on the other
hand p is not bounded on this sequence. The other half of the statement
is a consequence of the lemma (A. 3).

(A. 10) Lemma. A linear transformation T from a metrizable locally
convex space 8± into a locally convex space 82 is continuous iff it maps
bounded sets in $j into bounded sets in 82.

Proof: Apply (A. 6), (A. 5), and (A. 9).
Commun. math. Phys., Vol. 1 14
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(A. 11) Theorem. // 81 is a metrίzable locally convex space and
$2 a complete locally convex space, then L(8V $2) is complete.

Proof: Let {Tλ}, λ ζ Λ, be a Cauchy net in L(8l, $2), i.e. assume that
for every bounded set B1 in 8^ and every continuous semi-norm p2 on 82

1 2V- 2VblfJ,.= sup f t(2Vα- ΪVα)->0
zζBi

as λ'9 λ"-+oo in A
Then, in particular, since every point x ζ 81 is a bounded set, and S2

is complete, the net {Tλx} in $2 converges to a limit Txίoτ every x ζ 8^
It is easily seen that T is a linear mapping from 8l into $2, and that it
maps bounded sets into bounded sets. Hence, by the lemma (A. 10),
T is continuous. Finally, it is easily proved that Tλ ->• T in L(81, $2), and
the theorem is proved.

(A. 12) Corollary. If 8 is a metrizable locally convex space, then
8* is complete.

Direct sums

Let N be any index set, and assume that Sn is a locally convex space
for every n ζ N. By the direct sum

S= Σ ®n
nζN

we understand the set of all functions x on N with the properties

xn — 0 for all but a finite number of indices n ζ N .

It is clear that 8 is a vector space with the vector operations defined
pointwise on N, that S contains a canonical copy of Sn (namely the set of
functions x for which xm — 0 for all m Φ n), which will also be denoted 8W

and that these subspaces 8n generate the whole space 8.
Now, let Pn be a topology-determining family of semi-norms on Sn.

For every combination of semi-norms || \\n ζ Pn, n ζ N, and for every
real valued positive function a (n) we define a semi-norm || j| on 8 by

|[*D = Σ «W Ikin
nζN

By the direct sum topology we understand the topology on 8 determined
by these semi-norms.

(A. 13) Lemma. A semi-norm \\ || on 8 in continuous iff its restriction
to each of the spaces 8n is continuous.

(A. 14) Lemma. A linear transformation T from 8 into a locally convex
space 8f is continuous iff its restriction to each of the spaces 8n is continuous.

(A. 15) Lemma. A convex subset U of 8 is a neighbourhood of 0 in 8
iff its intersection with each of the spaces 8n is a neighbourhood of 0 in 8n.
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(A. 16) Lemma. A subset B of S is bounded iff there exists a finite
number of indices nv n2, . . ., nkin N and bounded subsets Bn. in each of
the spaces Sn., i = 1, 2, . . . , & , such that

(A. 17) Lemma. A sequence {#(*)} in S is convergent iff there exists a
finite subset Nf of N such that

χti> = o for all n $ N' and all i ,

{x$} is convergent in Sn for all n ξ N' .

(A. 18) Lemma. S is complete iff each of the spaces Sn is complete.
It is easily seen (applying in particular the lemma (A. 16)) that
(A. 19) Lemma. The dual space S* of a direct sum

S= Σ Sn
nζN

can be identified algebraically with the product space

x-s*
nζN

consisting of all functions f on N with f (n) £ S* for all nζN.
The strong topology of S* is the product topology, i. e. it is determined

by the family of all semi-norms of the form

sup |</,*>|,

where Bnί nζN, runs through all bounded sets in the canonical copy of
Sn in S.

Scalar products

By a scalar product in a complex vector space S we shall understand a
positive definite Hermitean sesquilinear form { , } on S. We shall take
it to be linear in the second variable, conjugate linear in the first.

We shall say that a scalar product { , } on a locally convex space 8
is continuous iff it is continuous in both arguments simultaneously, or,
equivalently, iff the norm || || defined by

II γ II 2 _ /γ γ\

IFII — \x> x/

is continuous.
Two linear operators T and T* on 8 are called adjoint with respect to

the scalar product < , ) iff

(Tx, y} = <x, T*yy for aU x, y ζ 8 .

14*
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Dual operators

If S is a locally convex space and T ζ L(S, 8), then we define the
dual operator T* ζL(8*, S*) by the formula

<T*/,*>=</, TV)

for all / ζ 8* and all x ζ 8.
In the literature T* is usually called the adjoint of T, but we use the

name dual of T in order that no confusion should arise between this
concept and the concept of an adjoint with respect to a scalar product.

Appendix B

A class of sequence spaces

As we have seen, £fn

+ may be represented as a space of multiple
sequences. Hence, @ may be represented as a space of sequences too, and
it follows from the theorems (3.41) and (2.19) that this space as well as all
spaces £fn and £f\ belongs to the class of spaces 8 characterized as
follows:

Let ρ = {ρn} be a non-decreasing sequence of positive real numbers
with ρn-> oo for n -> oo. Denote by 8 (=$(ρ)) the locally convex space
of all complex-valued sequences x — {xn} satisfying

= r= 0 , 1 , 2 , . . . ,

with the topology determined by the norms || ||r, r = 0, 1, 2, . . . One
proves easily

(B. 1) Lemma. 8 is a complete metrίzable locally convex space.

Denote by Hτί r real (not necessarily positive), the Hubert-space of
all complex valued sequences x, for which

The triple of spaces 8 C H0 C 8* is essentially a Gelfand space -triple
(cf. GELFAND and VILENKIN [8]), except for the fact that 8 need not be
nuclear (8 is nuclear if and only if there exists a positive real number r
such that Σ Qήr < °° ^ follows that each of the spaces £fn and £f\ is
nuclear, as is also well-known, while the space β> is not nuclear). Further-
more, each space 8 is a perfect countably Hilbertian space in the termino-
logy of GELFAND and VILENKIN [8]. The results below are all contained
in the book by GELFAND and VILENKIN, and they are collected here
simply for the purpose of convenient reference.
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Obviously, if rr < r", then Hr> D Hr» algebraically and topologically,
and we have

or, better, algebraical] y and topologically, S is the projectίve limit of the
spaces Hr, r -> oo.

(B. 2) Lemma. Every bounded set B in S is relatively compact.
Proof: Since S is complete and metrizable, it is sufficient to prove

that every bounded sequence has a Cauchy subsequence. Since every
bounded sequence is coordinate-wise bounded, it has a subsequence for
which all coordinate-sequences are convergent. Now, assume that {#(*)}
is a bounded sequence and that {x$} is convergent for each n. Since

V nr IT |2 < />""! |M|2Zj Qn \xn\ ^ QN IFIIr + l >
n>N

for all x ζS and ρN-+oo for jV->oo, {#(*)} is a Cauchy- sequence with
respect to each of the norms || || r .

It is well known that
(B. 3) Lemma. Every continuous linear functional f ζ H* can be

represented in the form
00

</> *> = Σ ln*n
n=l

for some sequence f = {/n} ζ H_r.
Since every continuous linear functional / ζ 8* is continuous with

respect to some norm || ||r, and since 8 is dense in every Hr, we have
(B. 4) Lemma. Algebraically, 8* = U H_r, or, better, 8* is the

inductive limit of the spaces H_r) r -> oo.
(B. 5) Lemma. A subset B of 8* is bounded iff there exists a number r

such that B C H_r and B is bounded in H_r.
Proof: Let B be a subset of S*, and assume that for every r = 1, 2, . . .

there exists an element f^ζB such that

/(r) I I 2 _ y n-r|/(r)|2
~ Qn |/ra I— r

Determine N(r) such that

ZΓ2 _ y n-r|/(r)|2 >JV £u ^n \!n \ —
n = 1

Now, define α;ίr) = {x^} by

for n > N(r) .

Then, clearly, α;(r> £ fiί, and
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For s ^ r we have

so that the sequence x^, r = 1, 2, . . ., is bounded in 8.
On the other hand

</C), χ(r)y = Kr^r,

so that B is not bounded on the bounded subset (#<r)} of S. Hence, B is not
bounded in S* (lemma (A. 7)).

It is easily seen that if B is bounded in H_r, then B is bounded in $*,
and the lemma is proved.

If ξ = {ξn} is any sequence of complex numbers, we define Pkξ as the
sequence determined by

(ξn for n ̂  k

(B. 6) Lemma. For every f ζ 8*, the sequence {Pjcf} converges to f in S*.
Proof: If / ζH_r, then ||(/ - PΛ)/||_r-> 0, and the result follows from

the Cauchy- Schwartz inequality.
(B. 7) Lemma. A convex subset U* of S* is a neighbourhood of 0 in 8*

iff U* r\ H_r is a neighbourhood of 0 in H_r for every r. Thus, also topolo-
gically, S* is the inductive limit of the spaces H_r) r-> oo.

Proof: The "only if" part of the lemma follows immediately from the
definition of the topology of S* and the fact that the bounded subsets of S
are precisely those which are bounded in every space Hr.

Now, assume that U7* is a convex subset of 8* such that U*Lr

= U* r\ H_r is a neighbourhood of 0 in H_r for every r. It is clear that
we may assume zU* C U* for all complex numbers z with \z\ ^ 1.

Define

_
and Br=Brr\S.

It is easily seen that Br is the closure of Br in Hrί and that

9 Br = n Br
is a bounded subset jB of 8.

We shall now prove that

whence the lemma follows.
Assume that / $ 17*, and choose an integer r0 such that / ζH_ro. For

every integer r ^ r0, we have / ^H_r and / $ Z7?Lr, and by the Hahn-
Banach theorem there exists an element xr ζ Br, such that

</,*,> S .
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Then, since s > r ̂  r0 => xs ξ Bs C Br , the sequence {#s} is bounded
in S, and by the lemma (B. 2), {xs} has a subsequence which converges to
an element x ζ S. Since each of the sets Br is closed in the corresponding
Hr, it follows that

and since / is continuous, {/, #} ̂  -̂  , so that

(B. 8) Theorem. 8 is reflexive, i.e. 8** can be identified algebraically
and topologically with 8.

Proof: It is clear that the function Fx defined on 8* by

{Fx, /> = </, x)

is an element of $** for all x ζ S, and that the mapping x ̂  Fx is one-to-
one and linear from 8 into $**.

Now, let F be any element in 8**. Then, by the lemma (B. 7), F is
continuous on every H_r, and hence there exists an element x^ ζHr = H*Lr

such that

for all

Since #_r is contained in H__s and is dense in H_s for r < s, it follows
that x^ — x^ . Thus, all χ(rϊ are equal to an element x ζ Π Hr = 8, and
consequently F = Fx for some x ζ S .

This shows that 8 and $** can be identified algebraically. That the
topologies coincide follows from the fact (familiar from Hubert space
theory) that

11*11,= sup K/,*>|
ll/ll-r^l

together with the characterization of bounded sets in 8* given in (B. 5).
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