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Abstract. The space of testing functions for tempered distributions is charac-
terized in an abstract way as the maximal space in a certain class of locally convex
topological vector-spaces. The main characteristic of this class is stability under the
differentiation and multiplication operators.

The ensuing characterization of tempered distributions may readily be generalized
to the case of infinitely many dimensions, and a certain class of such generalizations
is studied. The spaces of testing elements are required to be stable under the action
of the canonical field operators of the quantum theory of free fields, and it is shown
that extreme spaces of testing elements exist and have simple properties. In fact,
the maximal space is a Montel space, and the minimal complete space is a direct sum
of such spaces.

The formalism is applied to the problem of extending the canonical field ope-
rators, and a number of extension theorems are derived. In a forthcoming paper*
the theory of tempered distributions in infinitely many variables will be applied
to a structurally simple linear operator equation.

1. Introduction

Quantum theory has motivated the study of families of linear
operators, which

(i) are defined in a linear space with a scalar product, and

(ii) are required to satisfy specified algebraic relations (self-adjoint-
ness, commutation relations, ete.).

The two-fold canonical family of self-adjoint operators py,p,, . . . and
41, 99 , which satisfy the canonical commutation relations

fcPi> Prl=fe> %1 =0, fa, W%l= — i0i%s

is perhaps the best known example.

* Added in proof: KrisTENSEN, P., L. MEJLBO, and E. THUE Poursen: Tem-
pered Distributions in Infinitely Many Dimensions. II, Displacement Operators.
Math. Scand. 14, 129—150 (1964).
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Since a scalar product is required to exist in the underlying linear
space — the carrier space — most investigations have naturally been
concerned with the situation, where the carrier space is taken as a Hilbert
space. It is then easily seen that the conditions stated above do not
sufficeto determine the canonical family uniquely, and the problem most
extensively studied has been how to formulate weak additional conditions
which ensure uniqueness.

For the case of a finite number of pairs p and ¢ such conditions have
been given by several authors [3, 5, 6, 13, 16, 17, 20].

The case of an infinite (countable) number of pairs p and ¢ has proved
to be much more involved. From the early days of the quantum theory
of fields one solution — the so-called canonical solution, for which a
vacuum element exists — was known. A rigorous mathematical analysis
of this solution was given by COOK [2]. To the surprise of most physicists
it was shown by VAN HOVE [11], Friepricus [7], FUGLEDE [unpubl.],
and others, that there exist several sensible solutions which are not
unitarily equivalent. A complete characterization of all solutions satis-
fying the canonical commutation relations (and further weak conditions)
was then given by GARDING and WIgHTMAN [10] (see also WIGHTMAN and
ScHWEBER [22]).

A slightly differentversion of the problem of infinitely many pairs of
operators is this : Let x and y denote real variables (or points in a Euclidian
space). A pair of operators is called a pair of canonical field operators if

(i) They are defined as distributions from a space of testing functions
to a space of linear operators in a carrier space (a linear space with a
scalar product).

(ii) They satisfy commutation relations, the symbolic versions of

whichare [P (@), P ()] = [Q().Q)] =0,
[P), Q] =—1dx —y).
(in) They are self-adjoint on real testing functions.
A motivation for the study of such mathematical structures also
arises in non-linear functional analysis. Taking for the carrier space some

space of (non-linear) functionals, defined on ordinary functions f(z) of
a real variable, the operations

Q) Plf1 = (=) PIfI,
. 80
P() ®[f] = —i 0,
constitute, in a formal sense, a representation of the canonical field

operators. We have here adopted the notation §/df(x) for the first

Volterra derivative, viz.
r ABTH

Olj+ 9 - Plf= “g(z)dz + o(g),

bl B
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where these symbols of coursedo not have a well defined meaning until
appropriate topologies are chosen.

The present paper is primarily concerned with describing an alter-
native approach to the study of such a pair of canonica field operators.
One of the main difficulties of the classical theory isthat even though the
theory of Hilbert spacesis extremely well developed and in most respects
very smple, operators satisfying the canonica commutation relations
cannot be bounded and everywhere defined, as shown by WisLaxoT [21].
Conseguently, when several such operatorsareinvolved, difficult questions
concerning their common domain of definition arise.

Instead of requiring the carrier space to be a Hubert space, we require
the operators to be everywhere defined and continuous, and then we
analyze the structure of the possible carrier spaces. When we require
the operators to be continuous, we imply in particular that the carrier
space has atopology, and, in fact, we require the carrier space to be a
locally convex vector space.

For applications it is desirable to have a theory which, in the end,
can ddiver numerical results expressed by means of continuous linear
functionals, and it is well known that a topological vector space can be
given alocally convex topology such that the continuouslinear functionals
arethe samein the two topologies. Inthe case considered here, ultimately
the relation between theory and physical redity will be established via an
interpretation of certain quantities, expressed in terms of bilinear forms,
as expectation values. Obvioudy the topology determined by the totaity
of al such expectation valuesis alocally convex topology on the carrier
space (the expectation values are semi-norms), and dl desired continuity
properties hold for this topology. Hence, from the point of view of appli-
cations, the assumption of loca convexity is no essentia restriction. On
the other hand, for the present investigation — aswell asfor the purpose
of quantum theory in general — Hilbert space seems to be an uncom-
fortably wide structure.

It turns out that the choice of a carrier space which in a sense is
smaler than Hilbert space, offers an additional advantage to the facili-
tation of the algebraic manipulation with the operators:

In the formulation of the algebraic properties of the operators p
and g, the assumption of self-adjointness is essential. We replace this
assumption with the requirement that they be symmetric with respect
to the scalar product on the carrier space. This scalar product induces
anatural embedding of the carrier space inits dual space, whichislarger
than Hilbert space. In quantum theory as well as in non-linear functional
analysis, representations of a pair of canonica field operators are desired
as tools for the investigation of linear operator equations (linear varia-
tiona equations). The natural way to impose boundary conditions on

12*
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equations of this nature is to require the solution to be an element of some
linear space. To take this space as Hubert space is in most cases so restric-
tive that only trivial manifolds of solutions are obtained. Thus, to give
an example, the structurally extremely simple ‘gradient’” equation:
P(z)®= 0, possesses no proper solutions with the boundary condition
that @ be an element of Hilbert space, but it does have a solution in the
dual of our carrier space.

It is well known from the study of the canonical commutation
relations that for technical reasons it is convenient to work with the opera-
tors

' .
b; = ﬁ(?i — 14y
and their adjoints
b == (B + i)
yz— Py q4) -

Correspondingly, for the case of the field operators, we introduce
1 .
“ = (P—1Q)
1
* ;
o 7 (P+i@).

As a and o* are operator valued distributions, a space of testing
functions for these distributions has to be decided upon. In most appli-
cations it is requested that differentiation and other ¢One-particle
operations” can be given a meaning on the field operators. To make such
operations possible, we have chosen as a space of testing functions for a
and o* a space of type &, whereby we understand a space with the f ollow-
ing properties:

(i) The space is a locally convex space with a continuous scalar
product.

(ii) There exist operators b and b*, which are continuous linear
mappings from the whole of the space into itself, which are adjoint with
respect to the scalar product, and which satisfy the canonical commutation
relation [0, 6*]=1.

(iii) In the space there exists a normed element g, which verifies
the equation by, = 0, and which is cyclic relative to b and b*, i.e. Ry, is
dense in the space, where R denotes the algebra of all polynomials in b
and b*.

As is known from the works quoted above on the finite-dimensional
problem in the framework of Hilbert space, the condition (iii) has here been
given an unnecessarily strong formulation. As shown by MEJLBO [15],
the condition (iii) is in a certain sense also too strong in the framework of
locally convex spaces. However, as we are mainly interested in the extent
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to which the topology of spaces of type #is determined by the required
properties, we have tried to make life easy in other respects.

Obviously such a set of requirements comes close to a characterization
of a subspace of Hubert space which bears essentially the same relationship
to Hubert space as does ScHWARTZ’ space (&) of rapidly decreasing
infinitely often differentiable functions to L2. The precise situation is
explained below.

An analysis of spaces of type % is given in Section 2, where also the
corresponding problem for the case of several operators  and b* is con-
sidered. Apart from some technical material needed in later sections, the
main results are:

There exist a minimal space & and a maximal space &, both of type &,
such that if £?is any space of type & ', then

SIS CS

algebraically and topologically. The space F is dense in P, and P! is
dense in &. We further prove that the topology of the maximal space &
is determined by a sequence of increasing norms | |,, r=0, 1, 2, .. .,
where |@|2 = {p, (bb*)" ). The maximal space may be identified with that
subspace U of I* which consists of all sequences ¢ — {c,}, which are rapidly
decreasing with respect to the index in the sense that all the norms
[el2 = X |ca|?(n 4+ 1) arefinite. Finally, we prove that the maximal space

n
S can be identified with SCHEWARTZ’ space ().

Thus, the space of testing functions for tempered distributions may be
characterized uniquely up to unitary equivalence as a subspace of
abstract Hilbert space in this way: (&) is a maximal space of type &.

For the case of n pairs of canonical operators we define spaces of type
&min a similar way and obtain corresponding results.

For the investigation of the canonical field operators we have in this
work chosen the abstract space ff* as the space of testing elements.
Precisely speaking, we have investigated spaces of type © which we define
as spaces with the following properties :

(i) The space is a locally convex space with a continuous scalar
product.

(ii) There exist operator valued distributions @ and a* which are
continuous linear mappings from & into the space of continuous linear
mappings from the whole of the space of type & into itself. This space of
continuous linear mappings is here equipped with the topology of uniform
convergence on bounded sets. Further, a(¢*) and a*(p) are adjoint and
satisfy the commutation relations

[a(g*), a(w*)] = [2*(¢),a*(w)] = 0,
la(g*), a*(w)] = {p, w)
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for all elements @, w of &.Here 99* denotes the conjugate of the element
@ €% in the sense of the natural conjugation in &

(iii) There exists an element ¥, called the vacuum element, which
verifies the equation a(@*)¥,— 0 for all ¢ € &, and which is cyclic
relative to a and a*, i.e. RW,is dense in the space, where R denotes the
algebra of all polynomials in all a(@*) and all a* (¢).

(iv) To every self-adjoint operator k € R there exists a self-adjoint
continuous mapping K from the space of type & into itself, such that

[, a*(p}] = a* (k) .

Here, by the condition (i0) we single out the particular (canonical)
solution for which a vacuum element exists. This greatly facilitates the
analysis and also leads to a case of interest for quantum physics. How-
ever, this might not be the only interesting case. The condition (iv) is
well motivated in the quantum theory of free fields (K is the bi-quanti-
zation of k).

An analysis of spaces of type & is given in Section 3. The main results
are: There exist a minimal space &', a minimal complete space &, and a
maximal space 0 of type . The topology of the maximal space is deter-
mined by asequence of seminorms ||| |||,, where ||| |\ [2 =¥, H™Y ). Here
{.,.) denotes the scalar product in 0, and H is the mapping which
according to (iv) corresponds to the operator b b* € R. All spaces of type &
have so-called FOCK representations [4], in which the elements are rep-
resented as {p©@, p®,. . ., p®, .} where the n’th coordinate is an
element in the symmetric part of a space of type . In this represen-

oo
tation |}||¥]]|Z = ¥ |y™|2 The Fockrepresentation of the extreme
n=20

spaces &', &, and & are characterized explicitly, and it is shown that they
all have simple topological structures.

In the final section the dual spaces of ® and & are studied. In the
FOCK representation &* consists of all sequences T = {T'™} of symmetric
tempered distributions, while ©* consists of sequences T, which in a certain
sense are of at most polynomial growth with respect to n. Furthermore we
have the situation

EcScorc és

algebraically and topologically, and each of these spaces is dense in each
of the spaces it may be imbedded in.

As & is the counterpart of ScHWARTZ’ space ¥ for the case of in-
finitely many dimensions, elements of 6* may be looked upon as tempered
distributions in infinitely many dimensions.

Finally it is shown that the canonical field operators have unique
continuous extensions to various dual spaces, the main result being : The
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operator a* has a unique continuous extension from *into the space of con-
tinuous linear mappings from & into &*. The operator a has a unique
continuous extension from F*into the space of continuous linear mappings
from & into &.

Thus, for any tempered distribution 7T € %#*, a*(T) and a(T) have
well defined meanings. In particular, if T'is the Dirac-measure J,,concen-
trated at the point x, we give a well defined meaning to the field operators
at the point x. Observe that by the results above a* (T") a (T')s well defined,
but a(T)a* (T) has no meaning. This situation is well known.

We also consider ordered multiple products of the type a* (¢). . . a(p,),
so-called normal products (Wick-products), and it is shown that normal
products have unique continuous extensions from S into the space of
continuous linear mappings from & into &*. Similar results hold when &
is substituted by &.

The important question of convergence of series of normal products
is just barely touched upon in a final remark of Section 4.

It is our hope that some of the material will be of interest to physicists.
With this in mind, some results from the theory of locally convex spaces
are compiled in the Appendix A, where also the meaning of various no-
tions used in the text is explained.

The maximal spaces all belong to a general class of spaces studied in
Appendix B. We have collected this (well-known) material in an appendix
forthe convenience ofthe reader, and forthe purpose of being able to refer
to these results in a forthcoming paper, where a simple linear operator
equation will be studied.

2. Spaces of type ™"

Definition. By a space of type F"we understand a locally convex space
F? with the following properties:
(2.1) There exists a continuous scalar product {., .y on &°.
(2.2) There exist transformations b, b¥, i = 1, 2, ..., n, in L(S?, F?),
such that b; and bf are adjoint with respect to the scalar product, and

such that

2.3) [b;, bF 1= b,bF — b}Fb, = 0,

2.4 [, b;]= [0, bf1 =0 .

(2.5) There exists an element pq, ||y, = 1, called the cyclic element, in F?
such that

byo=0 for i=1,...,n, and

(2.6) Ry, is dense in F*, where R denotes the subalgebra of L(5!, #1)
generated by all the operators b; and b¥.
Concerning the concepts involved in (2.1) and (2.2) we refer to
Appendix A.
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Let &? be any space of type *,and let N* denote the set of all
n-tuples v = 9,9, . . . v, of non-negative integers. For v ¢ N*we define v,,
called the Hermiteelements in &? as

V. v,
bF. L BET

27 Bl N
27 ¥ p'{:l:'...r,,:' Yo

and denote by :SP ? the linear subspace of &? generated by all the
elements y,.
From (2.4) it follows that

(28) b;lkwvl...v;...vn: l/ v+ 1 Yorooo i+ 1evavns
and from (2.3) and (2.5) that

—_ V;Tf%,...(w—l)...vn if vii} O
(2.9) bi'f"vl...w...v,, {0 if 1":: 0 .

This shows that &? = Ry,, so that (2.6) can be formulated: P is
dense in &?. Using (2.7), (2.2), (2.9), and the fact that |y,] = 1, one
proves
2.10) <w’” wl-‘>= 6”1#16”2 ﬂz---aVn.un’
so that the elements , form an orthonormal basis for #?.

In particular, then, every element ¢ € &? has a unique representation
as a finite linear combination of the elements v,, viz.
@ = 2 ’ WPy
vE N
where the prime indicates that the sum is actually finite.

The minimal space 3"
For each v €N", let C, denote a copy of the complex field, and define

as the direct sum of the spaces C,. Thus, algebraically, 37 is the space of
all multiple sequences ¢ = C{Qy‘OEN"

with only a finite number of coordinates ¢, different from zero. We give
3" the direct sum topology as explained in Appendix A.
We define a scalar product in 3” by

{211 & ey = 2Nt
vENﬂ
and operators b; and bf by

(2.12) B i = V¥ T 1l et 1)erns

0 if v,=20
2.1 b = .
(2.13} (72 P, {] /326, ety 9> 0.

It is then easily checked that 37 is a space of type #”.
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Let &? be any space of type &”and let & be the dense subspace
mentioned above. The mapping J defined by

(2.14) Jic— 3,

vENT
is then an algebraic isomorphism of 3% onto %?. By the properties of the
direct sum topology, J is continuous. Furthermore, J preserves the scalar
product and ,,commutes’’ with the operators b; and bf in the respective
spaces in the sense that

Thus J preserves the type-#"-structure, and hence it is justified to
call 5 a minimal space of type <™.

The maximal space ™
If &#? is any space of type 7 then all semi-norms || |, defined by

fele =gl , kcR,
are continuous, where £ as above denotes the algebra generated by all
b, and b¥.
Let J denote the topology on &? determined by the semi-norms

| Iz & €R Then.J is the weakest topology on #? such that all b; and
bf are continuous.

Before discussing the existence of a maximal space of type & we
prove

(2.16) Theorem. The topologyT on F? is determined by the sequence
of norms || |, given by

(217) lgl? = (o, W),

where

h= ‘Zﬁ’ b,b¥.
The norms || |, satisfy -l
(2.18) lel? = nl@l?-:.

Proof: First note that (2.18) follows from the identity

"
h=mn + 2 b‘t* bé.
i=1
Furthermore, since

|72 |2 for r=2s
_d =n
MIZ= 3 joregle forr=2 41,

=1

all norms | |, are continuous on &?with respect to the topology 7.
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In order to prove that the norms || ||, determine the topology 4 on &?,
we must prove that all semi-norms || |, £ €R, are continuous with re-
spect to the topology determined by the norms | |, (lemma A. 2), or,
equivalently, that all the operators k € R are continuous in the topology
determined by the norms || |,. On the other hand, in order to prove this,
it is sufficient to prove that b; and bf are continuous in this topology, and
this follows from the identities

bihr = (A+ ].)rbi,
b¥hr = (h — 1)BF,
which give
2 el = g, (b — 1) (R — n)g),

Zillb?‘ el2={p, (A+ 1rhp).

For certain applications it is sometimes convenient to observe that
(2.18) implies that the norms | ||,, » even, determine the topology 7~
on ST,

The space s™is now defined as the completion of 37 in the topology 7.

Then, since the scalar product <., .} and the operators b; and bf are
continuous on 37 in the topology .7, they have unique continuous
extensions defined on s”. For these extensions the algebraic relations
(2.2), (2.3), and (2.4) hold, and (2.5) is of course also fulfilled in 4™, the
cyclic element of 3" being also the cyclic element in 97, so that Ry,= 37,
which is dense in s”.

Hence, s is a space of type #~.

Before proceeding, we give a concrete representation of the space s”
as a space of fast decreasing multiple sequences.

(2.19) Theorem. The space s™ can be identified with the space of those
multiple sequences ¢ = {c,,},,e Nn (with N™ defined as above), for which all
the sums

2 (ol + nyrfel® = [ef?
veEN®

where \v. — v;+ -+ v,, are finite. The topology of <™ is determined by
the norms \\ |,defined above, the scalar product by (2.11), and the operators
b; and bf by (2.12) and (2.13).

Proof :Trivial, since by, = (\v\ + n)y, in 3%

We shall now prove that s” is a maximal space of type .

If &? is any space of type &*, and J is the mapping defined by (2.14),
it follows from (2.15) and the fact that J preserves the scalar product

that J! is a continuous mapping of &? into 3" when 37 is given the

topology 7. Since s” is complete and &? is dense in & , the mapping
J~1 has a unique continuous extension J’ which maps #? into s”,
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Clearly J’ maps the normalized cyclic element in &? into the normal-
ized cyclic element in s®, it preserves the scalar product and by continuity
it follows from (2.15) that

b J = J'b;,, bFJ'=Jb¥.
Hence J' preserves the type- % "-structure.

In the sequel we shall use the symbols %n and &"to denote an

arbitrary minimal resp. maximal space of type #*— any two spaces —y"
or ¥ having of course isomorphic type- #”-structures.
With this convention, if &?is any space of type <", we may write

g PP

algebraically and topologically, where P is the space formerly denoted

&?, but provided with the topology of 3%, while #"denotes the com-
pletion of &%in the topology 7.

If the element ¢ € " corresponds to the multiple sequence {c,}in the
copy 3" of &7, we shall often find it convenient to write

(p = Z CyYy,

vEN?

where v, is the Hermite element with index v in &1t is clear, from the
definition of the topology, that this sequence converges unconditionally
to @ in &£

Representation of #™ as SCHWARTZ’ space (&) in n dimensions

ScHWARTZ’ space (<) over the n-dimensional space E™ is the space of
those infinitely often differentiable functions on E” for which all the
semi-norms

sup [t*DPp (t)]
are finite, where te g
o ah a'ﬂu
DR = 0. A o P
The space (%) is given the topology determined by these semi-norms.
It is clear that if we put

. a
e =rve P el

1 . 1 .
b, =“V—§“(:Pe —igd, Of =“V“—L;'{Pc + gy,
then the operators b; and bf satisfy (2.2), (2.3), and (2.4), the semi-norms
|@]i” = sup |k¢|
teEn

are continuous in the topology of (%) for all operators k € R, and the
topology of (&) is determined by these semi-norms.
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It is well known that (&)C L? (with respect to Lebesgue measure)

and that the L2-norm || | can be estimated by
lel = olelt”,
where

with 4s > n.
On the other hand we have
(2.20) Sobolev’s lemma ([19]). // s is an integer with s >3, then

there exists a constant K suck that

suplw )| = K(lol + > P Prel)
i fu=28

14+ =
for all p €(F).
It now follows from the lemma (A. 2) that the topology of (%)is
determined by the system of semi-norms

bl = lkegl, ke¢E,
so that the topology of (&)is in fact the topology 7.
It is well known that the Hermite functions

b* LN b* ¥

= Vot Yo

where

are elements of (&), that they constitute a complete orthonormal system
in L2, and that (2.5) holds. Let (5") denote the linear subspace of (%)
spanned by the Hermite functions. Evidently, (%) can be identified

algebraically with &n. Since (&)has the topology 7 of the maximal
space #"and is complete, it follows that (&%) contains a maximal
space .

On the other hand, for any element ¢ € (&), the norm |A" | = |@|lz-
is finite, since A" @ is an element of (<). Now, if

@ = E Co Yy

vENT

(% hr(p> = <kr"/)w <P> = (t"’l +n)e,,
and hence, by Parsevals formula,

Z Al + 2o = [plE, < oo

in L2, then

Thus, (¢ )may be identified with a subspace of the maximal space .
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Hence we have the result: SCHWARTZ’ space (&) in n dimensions is
a copy of the maximal space #™.

We remark that the algebraic and topological isomorphism of
ScHWARTZ’ space (&) with the space s” of fast decreasing sequences is
well known (cf., for instance, SCHWARTZ [18]).

The remaining part of this section contains material needed in the
sequel.

A conjugation n the space &

Inthe sequel SPwill always denote the maximal space & = %1, which,
as discussed above can be represented as a space of sequences or as
ScHWARTZ’ space (SP) over the real line.

If we interpret SP as SCHWARTZ’ space of rapidly decreasing testing
functions on the real line, then there is defined a natural conjugation

@~ @* in & by p*(i) = @(F).
It is easily verified that & = g, and (b*@)* = — b*¢*, and hence,
in the sequence representation,

(chTPn)* = 2(_ l}ﬂgnwn’

¥, being the Hermite elements in &.

The tensor product ¥"'®= @ ¥ ® ® & as a space of type S
Let &"® denote the n-fold algebraic tensor product
FB— P @0 L,

i.e. #"®is a vector space having the family of ordered n-ics of the form

P=¢; ..., p;€Ffori=1,...,n,
as generators.
We define a scalar product on $"® by putting

{proe@us 010 wn) = I {gi 0

=1
for the generating n-ics and then extending by linearity.
Let b and b* denote the operators b; and b§ in %, and define

be(@r @i @) =@ .. D@ .. P,
62(Pr- - - @i - - Pr)=P1. .. (BT @) . . P

It is clear that if we determine a topology on .¥"® by means of the
norms \\ |,defined by (2.17), then ¥"®is a space of type #™and if we
think of #"*®as a subspace of & (which as we know is permissible), then
the topology of #"® is exactly the topology induced from #”.Observe
that #"®is not a complete space for n > 1.



188 P. KrisTENSEN, L. MEsLBO and E. THUE POULSEN: :

The symmetric spaces S%Pand "

We add a few remarks on the symmetric parts of the n-f old algebraic
tensor product #*® and of &~
On the generating elements of #*®we define an operator sym by

T
Sym(@y - - - @n) = - EZS Pr1) P (m)s

where §,, denotes the symmetric group of degree n, and extend sym by

linearity to the whole of #*®, It is easily verified that sym is an ortho-

gonal projection in #*® with respect to the scalar product in #7®,
Furthermore, if k is any linear operator in & and if we define k;by

kilpre o @i pu)=q1... (kps). .. @,
on the generating elements of #"® and extend by linearity, then

symk; = ,17 EMsym
where
(2.21) B =Jo -t &y
Hence
symit® = kit gym ,
and if we define
I8 = gym (),

then #*®is invariant under & for any operator k in &.
In particular, .9”ﬁ® is invariant under the operator A, which we
earlier denoted %, and which determines the topology of #”and ¥*®,
It follows that for € #"®and r = 2s

fsymel, = [A®*symep| < [® ¢ = |¢].,

which shows that sym is continuous on #*®in the topology of &".

Consequently, sym has a unique continuous extension to .#” we shall
also denote this extension by sym — it is of course a projection in &7,
and its effectin any of the two standard representations of #"is exactly
what one would expect.

Finally, let us prove the following useful lemma.

(2.22) Lemma. // T is a linear transformation from 9"®into some
vector space V,and if

Te=T(p...9)=0 forall p€ &,

then T (w)= 0 for all w € F"®.

Proof: 1t is sufficient to prove that T'(sym(g. . . ¢,)) = 0 for all
generating elements ¢, . . . @, in #*®, By assumption we have for all
complex numbers ¢, . . ., C,

T+ + @) = 0.
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The left hand side is a polynomial in ¢, ..., ¢, and since it is
identically 0, all coefficients must be 0. In particular, the coefficient to the
term ¢,¢, . . . ¢, must be 0, and this coefficient is n! T'((sym (gy .. . @,)).

(2.23) Corollary. The elements of the form ¢", ¢ € &, generate S"®.

3. Spaces of type &
Definition and analysis
Definition. By a space of type & we understand a locally convex space

&? with the following properties:
(3.1) There exists a continuous scalarproduct{-, -)»on&? (the correspond-

ing norm s denoted by ||| |||)-
(3.2) There exist continuous linear mappings a and a* from & into

L(&?, &), such that a(p*) and a* (@) are adjoint with respect to the

scalar product in & for all ¢ € &, and such that

(3.3) [a(p*), a* ()] = {p, 0},
(3.4) [a(p*),a(w*)] = [a*(¢), a*(@)] = 0.

(3.5) There exists an element ¥, of norm one, called the vacuum element,
such that a(p*)¥y= 0 for all ¢ € &, and
(3.6) RW,is dense in &, where R denofes the subalgebra of L(&?, &?)
generated by all operators a(p*) and a* (w).
(3.7) To every self-adjoint operator k € RC L(&, &) (¢f. (2.6)), there
exists a self-adjointoperator K € L(S?, &?) satisfying

(3.8) [a(g*}, K] = a({k*@)*)
(3.9) [K,a*(g)] = a* (k) .

The space L(&?, &?) is provided with the topology of uniform con-
vergence on bounded sets as explained in Appendix A.

In this section we shall prove results completely analogous to the
results of Section 2 concerning the existence of a minimal space &,
a minimal complete space 0, and a maximal space & of type &.

Let &? be any space of type &, and let ¥, [¢, .. . ¢,] denote the
element

¥, s -%]=V%a*(%) a* (n) ¥,

in &?, where ¢; L Ffori =1, .. .,n.

It is clear that ¥, can be extended to a linear mapping from #*®
into &?. Let &? denote the linear subspace of &? generated by ¥,and
all elements P,[p™], ™ £ F® n=1,2, ...

Now we have

(3.10) a* (@) Vulpr- - - @l =V +1¥ hipe ... eal,
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and from (3.3) and (3.5) we get for n > 0

.
@3.11) a(g*) oler... 9.l :;FEi 21 P ) Vnal@r - Pia@in Pl
7 =
Just as in Section 2 we conclude from (3.10), (3.11), and (3.6) that
&? is dense in &7

Before we proceed to discuss the scalar product and topology of &2,
we note that because of (3.4) the mappings ¥, are invariant under per-
mutations of the factors in %79 viz.

(3.12) Y o™= ¥, [sym(p®™)] forall @® ¢ 5@,

By assumption (3.2), the operators a* (p) and a (¢p*) are adjoint. Now,
consider two elements in &? of the form ¥, [¢"] and ¥, [w™], ¢, 0 € &.
From (3.10) and (3.11) we get

{97 o™y =
~ e sl Pl

B %‘((Wn_l [ =11, alg*) P o™ )

Y (> a2 L], W Lm0,
As in the proof of (2.10) we conclude that

f0 ifm+ n
(Falgm], P lo™h= 1 ¢

shee [[[Fl[f = 1.
It follows from the corollary (2.23) that if ™ ¢ #%® and wi™ ¢ Fne,
then

(3.13) (¥, [p®], P, [t ) = {

gy dHm=n,

0 ifm=+n
(g™, o®y  Hm=un,
where (@™, w™} denotes the scalar product in &#*®,
Thus ¥,is an isometry from &%% into &?, and, furthermore, when
(3.12) is taken into account, we have

(3.14) Theorem. Every element @ in &? has a unique representation
as a finite orthogonal sum

N
D = (p(o) Wo + 2 E[fn [(p(ﬂ)] ,
n=1
which we shall write in the form

D= 3, [gn]

e
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with
P PR,
where, for convenience, we let e5”(_’|_‘8’(2’enote the complex field.
We shall now investigate the consequences of the requirements
(3.7)— (3.9), but first we need the following lemmas.
(3.15) Lemma. The set of equations

a(p¥ ¥ =0 forall p€S
have in ©? the only solutions

Y=cW, ccC.

Proof: A solution orthogonal to ¥, is easily seen to be orthogonal to
all of &?, which, however, is dense in &?.

(3.16) Lemma. If k is any linear operator in &, then there exists a
unique linear operator K in &? satisfying the conditions (3.8), (3.9), and

(3.17) K¥,=40.
The operator K is given by
(3.18) KW, [p"]= ¥, [k™Mp"] forall p¢ S8 n >0,

where k™ is defined in (2.21).

If there exists a continuous operator in &? satisfying (3.8) and (3.9),
then there exists a unique one satisfying (3.17).

Proof: Assume that K satisfies (3.8). Then, by (3.15)

K'Y, =1V,

Since the operator ¢ commutes with all a(p*) and all a*(p), it
follows that if there exists an operator satisfying (3.8) and (3.9), then
there exists one which in addition satisfies (3.17).

Assume now that K satisfies (3.9) and (3.17), and write (3.9) in the
form

Ka* (p)=a*(p) K+a* (ko).

By successive application of this formula to ¥y, W1 [¢],. . ., Ple*], . ..
we get

K¥,[gn] = P [k g"].

From the corollary (2.23) it follows that K is actually given by (3.18),
and the statements concerning uniqueness of K follow. Finally, if for a
given operator k we define K on &? by (3.17) and (3.18), then it is easily
verified that K satisfies (3.8) and (3.9).

For any operator k in & both the operator K defined on &? by
(3.17) and (3.18) and its continuous extension to &? (if it exists) are
called the normalized bi-quantization of k.

Commun. math. Phys., Vol. 1 13
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The minimal space &’ and its Fook representation

We define the space &’ as the direct sum

&= 3 o8,
nee
and we shall write elements @ ¢ &’ in one of the forms

D= {p"}={p®, 9, .. }.
The theorem (3.14) can now be formulated

(3.19) The mapping J: {p™}— E Y. [p™]is an algebraic iso-

morphismof &' onto the dense subspace @7 of any space & of type &
Furthermore, if we define a scalar product in &' by

(@, &)= f (o, g,

then this scalar product is continuous (lemma (A. 13)), and by (3.13) the
mapping J preserves scalar products.

We now show that &’ can be organized as a space of type &.

As we want the operators a*(p) and a(p*) to ‘“‘commute” with J,
we find from (3.10) and (3.11) how they must necessarily behave. It is
of course sufficient to define these operators on elements y ¢ ¥2® ¢ &’.
From (3.10) we find

(3.20) a*(g)g=Vn+1lsym(p » . x €2,
which we now take as the definition of the linear operator a* () on &'.
Similarly, (3.11) leads to the definition

(3.21) alg¥)x=Vnip, Dw> x& IS,
where {@, .} denotes that linear mapping from #*®into F®~1® which
on the generating elements of #*® is given by

(P, Q1 P~ P> PPz - - P
Finally, the normalized bi- quantization K of an operator k ¢ R must be
defined by
Ky=1iky, x2€97%,
as follows from (3.18).

It is obvious that the linear operators @, a*, and K thus defined
satisfy the correct commutation relations. Consequently, all we need
verify is the continuity of these operators.

We first consider a*. To prove that a* (@) € L(&', &) it is sufficient
to show that a* (@)€ L (£, FL+D®) (cf. (A. 14)). Sincesymis continu-
ous, it is enough to prove that the mapping

r—ex
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is continuous from &*®into F**+1® That this is the case follows from
the identity

loxli = <oz it + husVor)
0.22) = <‘PX’§ C) Byt b o)

=3 () Vol bkt

Next, we prove that the mapping a* : & ~L(&’, &) is continuous.
As & is metrizable it is sufficient to prove that for every bounded set A
in SP and every bounded set B in &’ the subset a* (4) B of &’ is bounded
(lemma (A. 7) and lemma (A. 10)). If B is a bounded set in &', then
(lemma (A. 186)) there exists a number N and bounded sets By, By, . .
Byin V‘l@, .?h@’, e, y{® respectively, such that

]

N
BC.Z B,.

=1

Hence, it is sufficient to prove that if B is a bounded set in some
space &%® and A a bounded set in &, then a*(4)Bis bounded in
,Sﬂ(f +1® gand thifollows from (3.22).

Consider next the operator a. If SCHWARTZ’ representation of #*is
used, one has

Ko Dowl® = {(» G,
where G is the non-negative Hilbert-Schmidt operator defined by
Box) = // %@ 2) x*(y, 2) dzp(y)dy .
Since {@, Gp) < |@|?trace G, we have the inequality

<o 0wl = Tl Il -

From this we get

I<e, 2>wllls
= (g TR}, Dy (ha + 0+ B e P
(323 =g byt Bl 0w @ B+ 0 R DD
< fol® fha + - - + Bo)oy)
= lol® b3,

This shows that the mapping {p, Y@ is continuous from "% into
Fm=1® Ttis clear that it maps &2 into 1V, and by an argument
analogous to that given above, we conclude that a is continuous
& ~L&,8&).

13*
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Finally we prove that for any operator k € L(%,%),the normalized
bi- quantization K of k defined on &’ by

Ky=kmwy forall y¢F%%,

where k™ is defined by (2.21), is continuous and satisfies (3.8) and (3.9).
Furthermore, K is self-adjoint if and only if & is self-adjoint.

The only thing requiring proof is the continuity of K, and as above,
it is sufficient to prove that the restriction k™ of K to each of the spaces
&2 is continuous.

First, consider the operator k, on #"®, Every element y € #"®can
be written in the form

X =Z'Pv‘pw

where , runs through the Hermite elements of #®~1D® while the ¢, are
elements in %.The norms of y are given by

W2 =X v (b + -+ b)Y X w9,
=Y oy ¥ {Z) (BO-DPET X )

§=0

fi

z

a

()= winiz,

8
so that also

(3.249) it = 22 () il e lt-e.

Since k € L(&,), there exist constants C(r) and g(r) = r such that

lZple= C{) @]t
for all ¢ € & and all s < r. It then follows from (3.24) that

Mewzll?= 270 ()2 27 (s (RO-V)2 003 (g, B2 O )

(3 26) 2N (g, (RO 4 BP) )
< 270 lE -
Clearly, for y € S ®we have
Meull = Koot =+ = {haxl »
and hence we get from (3.25) and (2.18)
(e gl = n ko2l
(3.26) = A(r) s]xlatn

= A [2letn +e-
Thus, K is continuous, and we conclude that &’ is a space of type (S.
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(3.27) Theorem. &' is a minimal space of type ©, i.e. &' is of type S,
and if @? is any space of type &, then there exists an identification mapping
J of &' onto a dense subspace S? of &?,which preserves the type-G-structure.

By this last statement we mean that J preserves scalar products, that
it maps a normalized vacuum element into a normalized vacuum element,
and that it ‘“‘commutes’ with all operators a(p*) and a*(p) as well as
with all normalized bi- quantizations K of self-adjoint operators k € F.

Proof: The identification mapping J of the theorem is of course the
mapping defined by (3.19). Obviously, all we need prove is that J is con-
tinuous. Here it is sufficient to verify that the mappings ¥, from ‘f_’%®
into &? are continuous (lemma (A. 14)). By assumption, a* is continuous
from Zinto L(&? ', @?). Then it is easily seen that

1
olos  gul= ﬁa*(%) ca* (@) ¥,

is continuous in each variable ¢; separately from & into &?. It now
follows from results due to GROTHENDIECK [9] that ¥, is continuous
from #*®into &?. However, in the present case, a proof may also be
given by elementary means. We here give the proof for the case n = 2.
The general case presents no new problems.

We first prove that if U? is any neighbourhood of 0 in &?, then there
exists a neighbourhood

K, .={pcs lol. <o}

of 0 in & such that

¢ €K, 0 p€K, s =a*(p) a*(y) Yy € U".

Assume the contrary, then there exists a sequence of pairs ¢,, w,,

such that 1 X
“‘pn”n < w ”“/"n"n < r

and

(3.28) a®(p,) o (p,) ¥y ¢ U7

Now, since 9, = 0 in &, the set {y,}is bounded in &, and hence the set
B = {1 ¥ = a*(y,) ¥ forsome n}

is bounded in &°.

On the other hand, since ¢, — 0 in &, a*(p,)¥Ptends to 0 in &
uniformly on every bounded set, but that contradicts (3.28).

The continuity of the mapping ¥, now follows from

(3.29) Lemma. Let K% ,denote the subset

K72',a = {X I 1= Y, 0} € Kr,w ¢ eKr,d}

of 2. Then the convex hull conv (K2 ,) contains a neighbourhood

fO ] 923’ VQ:{Xl !le!2r+s< Q}
of U in .



196 P. XrisTENSEN, L. MEsLBO and E. THUE POULSEN:

Proof: We first remark that ||y[3,= {y, ki h§x) in F2®. Thus, for aU
elements y of V,,

WP RgT ) < g
As y € 29 it is of the form

n
X=.217/)i7/)n+is wléy: i=1:°'-’2n7
i=

for some integer n. Consider the at most 2 n-dimensional space E spanned
by v, . - ., Wan, and let Py be the projection on E with respect to the
scalar product {:, », = <, A" ). Further, let hz = Pgh*Pgdenote the
projection on E of the operator h%, and let %, u = 1, . . ., dim & < 2n,
be a system of eigenf unctions of &g, orthonormal with respect to (', h
Thus
oty Wty = by,
oty B850, = 2,0,

Obviously, we may assume that the eigenvalues /1,, do not decrease with u.
By the well known maximum-minimum properties of the eigenvalues of
self-adjoint operators, we conclude that

A= ot

the number on the right hand side being the u’th eigenvalue of the ope-

rator k% For the application to the present case it is of course essential

that the operator which enters the scalar product <+, », commutes with 4.
If we expand y in the form

dimE
x= th,uv",uxn
P =
then
dim ®
{ BHemt ey = 21 el A 2y << 02
Hy=

Thus, we have the upper bound
bl < Q=202

Further, as ||#,], = 1, we have, choosing ¢ < o,

dim E
_ + —24 A
%= Z;I'uvé xp”v’
By =

where k,, €K, .. The proof of the lemma is now completed by use of the
estimate
dim &
Y hldt< 2B

A2
frm] 362



Tempered Distributions in Infinitely Many Dimensions I 197

The minimal complete space &)

We define the space & as the direct sum
ol
&= 3y o
n=0
with the same convention as above: %9 is interpreted as C. Elements in &
are represented in the same way as elements in &'

It is easily seen that & is a complete space — in fact, that it is the
completion of &'. In particular, &’ is dense in &, so that every continuous
linear transformation from &’ into some complete locally convex space S
has a unique continuous extension from & into .S.

If we apply this remark with S = 6, it follows that & is of type &,
and if we apply it with § = &?,where &%s any complete space of type &,
we get

(3.30) Theorem. ® is a minimal complete space of type &.

This statement is to be interpreted in the way elaborated in the
formulation of the theorem (3.27).

The maximal space & and its FOCK representation

We define the space & as the completion of &’ (or, equivalently, & or
any space &? of type &) in the topology J determined by all semi-norms
of the form j|| |||z, where

@l = N7 2l 5

for operators 7 in the algebra generated by all a(p*) and a*(¢) and all
normalized bi- quantizations K of self -ad joint operators k € R.

By exactly the same line of reasoning as was applied in Section 2 one
proves

(3.31) Theorem. & is a maximal space of type ©.

There is only one detail in the proof of this which is not obvious,
and that is the fact that the operators @ and a*: & —~ L(&, &) are con-
tinous. The proof of this is postponed until later (lemma (3.42)).

First, we prove that & is metrizable by exhibiting a sequence of semi-
norms which determine the topology of 0.

(3.32) Theorem. The topology of the maximal space & is determined by
the sequence of semi-norms ||| |||,given by

1211l = [IlDI]l

NP7 = (D, H D)) for r >0,
where H is the normalized bi-quantization of the operator h — bb* in .
For r > 0, these semi-norms are increasing, and they are not norms.

Proof:1Let I 'be the topology on &' determined by the semi-norms
M e #=0, 1,2, ... We shall prove that ' = .7, and just as in the
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proof of the theorem (2.16) we note that it is sufficient to prove that all
operators a(p*) and a* (@) as well as all normalized bi-quantizations K
of self-adjoint operators & ¢ R are continuous in the topology 7.

We first note that if

G={g ...,¢M,0,.. )e&,

then we have for » > 0
N
(3.33) (P, H @)= 2 [o®l3-
n =
It then follows from the theorem (2.16) that for r > 1

¥
ez = 2 1ol

N
z 3 nlgtfsy
= [[1l]E--

We divide the remaining part of the proof of (3.32) into three separate
lemmas.
(3.34) Lemma. The operator a(p*) on &' is continuous in the topology
T for every ¢ € &.
Proof: Assume that ¢ € % and that
D= {p®, g®,, . ., o™ 0. 2¢&.

Then, we get from (3.21)

a(p*) @ = {{p, p))/2 (@, @D, - - -, YN p, ™), 0, ..},
whence by (3.23) and (2.18) (for » even)

N
(3.35) e @} PilF = 2 »[<p, 2™ 17

N
= X nlgl®le™f?

= olP P2 41

(3,36) Lemma. The operator a* (99) on &' is continuous in the topology
T’ for every @ € L.

Proof: First, note that
(337) llla* (@) D2 = [lla(@*) DI + |l2]l|2]]2
by (3.2) and (3.3).

Next, by (3.9) we get
(3.38) Hea* (p) = Hs1a* (ho)+ H~a* () H

=€ .—.% I:) a* (hi)He—",
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The formulas (3.37), (3.38), and (3.35) give
(3.39) [lla* (@) D||]2s= |||Ha* (@) D]

< 3 () illar gy o=
i—o\V’

8
= 3 () 19kt @lliz—n +12/llatep -
i=0

(3.40) Lemma. The normalized bi-quantization K of any operator
k€ L(S, &) is continuous on &' in the topology T
Proof:An immediate consequence of (3.33) and (3.26).
This completes the proof of theorem (3.32).
(3.41) Theorem. The maximal space & can be identified with the space
of all sequences
P = {(p(o:" qp(l), . (p(“), .. }

Jor which all semi-norms ||| |||, defined by

(LRI

are finite, the topology being determined by these semi-norms.

Proof: Identical with the proof of the theorem (2.19).

For elements @ £ &, the sequences {p™}are rapidly decreasing with
respect to » in virtue of the inequality (2.18).

(3.42) Lemma. The operators a and a* are continuous from & into
L&, @),

Proof: As &is metrizable, it is sufficient to prove that when ¢ runs
through a bounded set in #and @ through a bounded set in &, then
a(p*)®D and a*(p) P run through bounded sets in B (lemma (A. 7) and
lemma (A. 10)). This is an immediate consequence of the estimates (3.35)
and (3.39), which in view of the theorem (3.41) are valid not only in &’,
but also in &.

4. The dual spaces 6* and &*
The dual spaces S"* and S"*

As a preparation for the discussion of the dual spaces of the extreme
spaces of type &, we first make a few remarks concerning #**= L (%", C),
which, as we know, may be identified with ScEWARTZ’ space of tempered
distributions.

The space %™ may be identified with the space s™ of all rapidly
decreasing multiple sequences ¢ = {c,},y». Hence, the dual space FnE
may be identified with the space ™* of all multiple sequences 7= {t,}, qn,
which are tempered in the index. By this we mean that for each element 7'
there exists a polynomial p such that

lt,] < p(»), forallv €N~
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Thus, there is a natural embedding of 3%, and of 4™, into ¢™*, and hence of
&7 and & into ff**. Let T be an element of ™, It is easily seen that

the sequence of elements 7', ¢ k7% nk=1,2,...,obtained by truncating 7
in the obvious way, converges to 7 uniformly on any bounded set in #”.

Hence, under the mentioned natural embedding, #*, and a fortiori also
&7, is dense in ¥,

The operators b;, b¥, i = 1, . . ., », sym, and the conjugation can be
defined on $™*as the continuous extensions of these operators in Fror
& With this definition, b;, b¥, and sym in &"* are the duals (cf. Appen-
dix A) of the operators b, b;, and sym respectively in &”.Also, for the
dual S* of ff\ = sym <", we have

SE = sym S,

The space &*

It follows from the definition of & that the dual space &* may be
identified with the space of all sequences

“4.1) T={To,7T0,. .. I, )}, I'™mcsid,
with the topology of coordinate-wise convergence. By this identification
the formula o
(T, Pp= 27 (T™, pt9)
n=0

holds for all elements @ = {p™}of &.
For T ¢ % we define ¥ [T™] as that element of &* which is
defined by

CEIT™], &) = (T, gV .
Then, for any T = {T™} ¢ &*, we have

“4.2) T= )} ¥,[T™]
~ n=0

in &%,
It is now easily seen that & is dense in &+,

TOe space S*

Since & C & algebraically and topologically, and since Gisdensein 0,
we have &* C &* Thus, also elements of &* may be written in the forms
(4.1) and (4.2). However, obviously not all sequences (4.1) belong to &*.

(4.3) Theorem. The space &* consists of those sequences T = {T™} of
symmetric tempered distributions for which the series

4.4) > (T™, ™)

fo=0
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is convergent for all elements @ = {p™}of 0, and then { T, ®)is equal to
the sum of this series. Moreover, the series (4.2) is convergent in 0* with
the sum T.

Proof:Since 0 is a complete metrizable space, the principle of uniform
boundedness holds. Hence, if the series (4.4) is convergent for all @ €0,
the partial sums are equicontinuous, and from ARzELA’s theorem it
follows that (4.4) converges uniformly on compact sets.

It is easily seen (cf. the lemma (B. 2)) that bounded sets in 0 are
relatively compact, and hence (4.2) is convergent in 0*.

Since 0 is a complete metrizable space (an F-space), and bounded
sets are relatively compact, & is a so-called Montel space (M-space).
Such spaces are known to be reflexive. Thus, we have

(4.5) Theorem. The space 0 is reflexive,i.e. the second dual space &**
may be identified algebraically and topologicallywith 0.

We remark that

0CpC S &*

algebraically and topologically, where each of the spaces is dense in each
of the spaces it may be embedded in.

For the benefit of the reader we give a direct proof of the theorem (4.5)
in Appendix B.

Extensions of the mappings a* and a

Since & is complete and 0 is dense in &%, every mapping A of 0 into
0 which is continuous with respect to the topology induced on 0 by the
topology of 0* has a unique continuous extension from 0* into 0*.

The definition of the semi-norms in 0* shows immediately that if A
has an adjoint 4%, which is continuous from 0 into 0, then A is con-
tinuous on 0 with respect to the topology of &%,

It follows that we have

(4.6) Theorem. The mappings a*(p) and a(@*), ¢ € &%, have unique
continuous extensions from 0* into &%,

Let us note

4.7) Lemma. // S is a reflexive locally convex space, then the mapping

A A%

of L(S, S) into L(S*, S*) is a conjugate linear isomorphism and a topo-
logical homeomorphism.

Proof:This follows from the definition of the dual operator and the
topologies of the various spaces.

We shall prove below (lemma (4.9)) that the mapping a* from &%
into L(&*, &%) is continuous when s given the topology of &*. Since

a(p*) = (a*{g)*
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forall ¢ € &, it follows from the lemma (4.7) and the reflexivity of & that
the mapping a from &into L(&, 0©) is continuous when & is given the
topology of &*. Since L(&, 6) is complete (theorem (A. 1)), L(S*, &%)
is also complete by the lemma (4.7). Thus we get:

(4.8) Theorem. The mappings a and a* from ff> into L(&, &) and
L(&*, &%) respectively have unique continuous extensions to *. These
extensions are also denoted a and a*, and they are given in the Fockrepresen-
tations of © and ©* by formulas completely analogous to (3.21) and (3.20).
The operators a* (T)in ©* and a(T*) in & are dual for every T € F*.

4.9) Lemma. The mapping a* from SLinto L(S*, &%) is continuous
when Fis given the topology of F*.

Proof: Let p be one of the topology-determining semi-norms in
L(&*, &%), that s, p is defined in terms of a bounded set B* in &* and a
bounded set B in &. For an element ¢ € Swe have

p(a*{p)) = sup sup [{a*(p) T, L) .
TcB* Q¢ B

@ = fV,D €Wy

is the Fourier development of ¢ with respect to the Hermite elements,
then we have

La* (@) T, Q)= (T, alg*) 2D

(4.10) (=17 lT, o(y)2)

H
Flg

¥

\JS

€&y

v

Il
o

in view of the continuity of a as a mapping of Zinto L(&, &).
We shall prove below that there exist constants M (r) = M (r; B, B¥),
r=20, 1, ..., suchthat

4.11) sup(r + 1)7|Z,| < M{r)
foraU T € B* and all 2 ¢ B. Consequently,

E- 81~ 5 by,

is an element of & for all T € B* and all 2 € B, and these &’s run through
a certain bounded subset A of &.
It then follows from (4.10) that
p(a*(p)) = sggAI {p: )1,
and this proves the theorem.
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In order to prove (4.11) we first note that in view of the boundedness
of B* in &*, it is sufficient to prove that the set

B, = {(v+1ya@f)Q1Q2¢B,v=0,1,..}

is bounded in 0 for every r.
Now, let 2 = {w®™} €6. As (v +1)pF = hy, we have in the Fock-
representation

v+ Dra(®) Q= {/n+ L {p,, Bfo®+D)q)}

with the notation {y,, > of Section 3. Hence, we find by (3.23)
o + Dra@Q[[if < X wlp A o3
n
= X o3 o= Q201 + 5415
n

where the inequality (2.18) has been used in the last step.

It follows that B, is bounded in 6 for every bounded set B.

Since continuity properties of mappings into and from the spaces &
and 0* can be determined by looking only at the summand-spaces L
and the factor-spaces #%¥, the following theorems are easier to prove
than the corresponding theorems above. We state them without proofs.

(4.12) Theorem. The mapping a has a unique continuous extension
from Finto L (&*, &*).

(4.13) Theorem. The mapping a has a unique continuous extension
from F*into L(&, ©).

(4.14) Theorem. The mapping a* has a unique continuous extension
from &* into L(&*, &%).

The mappings a**® ® a™® and their extensions

It is clear that if &? is a space of type &, then the mapping

Q1 @1 Y @F (@) . aF(@)a@f) alyh)

can be extended to a linear mapping ¢*"® @ a™® from F*+ME jnto
Ligr, gn),

By exactly the same reasoning as in the proof of the theorem (3.27)
we conclude that thismappingis continuousfrom " +™®into L (&?,&?).
Thus, if L(&?, &?) is complete, and, in particular, if &? = S or &?= &,
then a*"® ® a¢™® has a unique continuous extension from &»+minto
Li@?, &),

Observe that now the element ¥, [¢p®] of & may be written

1
v, [p™] = Efn:v“$ﬂ®{‘”(ﬂ})p°’ g€ S,
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and that — corresponding to (3.14) — we have
D= 2
l/

a relation, which also holds for @ ¢ &, the series being convergent in &.

(4.15) Theorem. The mapping a*"® ® a™® has a unique continuous
extension from S ™* jnto L(S, &%).

Proof:This may be proved in essentially the same way as the lemma
(4.9). However, utilizing results of the Appendix B we here give a some-
what simpler proof.

Let ¥= {y,} and @ = {p,} be elements of &, and let y and w be
elements of .. When the explicit formulas (3.13) and (3.21) are used, an

easy calculation gives
J g (D, a* () a(w)y P

= Ve Yit £ m)t
:tzo ( +ﬂ)“{ ) &

a*n@ (?3(“)) Tﬂ

’ (Pt+n>(u)! (w*m! 'Pt+m>(m)> 2

where {y*, Y@ denotes the n-fold repetition of (y, -)q). Hence, by the

corollary (2.23) and by continuity, we find for all elements w,, ,, € S8 +™m,
{D. a*"® @ a™® (W) PP

] t
— ST EEOL [ b ) o 0090wl 2) di dy 0

where x € E*, y ¢ E™, 7 € Etand dx, dy, dz denote the respective volume
elements, and where, for convenience, SCHWARTZ representation has
been used. It is easily verified that A7, »r = 0, 1, . . ., has a unique contin-
uous inverse &7 in L(&#*,F™), n =0, 1, ... If further the following
triangular version of Cauchy-Schwartz inequality

|/ 1 (@1, @2) 9o (%o, @3) 3 (2, @) dydmpdass  |pa| llwal [l

is taken into account, one finds (with small obvious and convenient
changes of notation)

(D, *"® & @ (w,) ')
s 3 HEEERE 5 () 1t ) @and W5 gl U8 el

= K, Hwnm"-wsz; V(‘ +ap ”?’s+w"2rl’ (¢4 m)™ ﬂ%m]izn

this inequality being valid for any natural number ». Here K, is a positive

constant, and || |_s, denotes the norm given by |w|_gz,= |A~"w]|.
Finally, we make use of the inequality (2.18), and obtain
(4.16) KD, a*"® 9 a™®(w,,,) EY|

% K onml-2: 11Plllar 4 lF]llar +m
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r=0,1,...Lets# %™ denote the Hilbert-space obtained by completion

of #m+min the norm | |_,, The inequality (4.16) proves the existence
of a unique continuous extension from #"%™into L(&, &*) (lemmas
(A.7), (A. 10), and (A. 11)) for every r= 0, 1, . . . Since S ®+™*js the

inductive limit of the Hilbert-spaces#” 5™ r =0, 1,. . . (cf. Appendix B),
the theorem follows.

The proof of the following theorem is simpler (cf. the comments
before the theorems (4.12) — (4.14)).

(4.17) Theorem. The mapping a*"® ® a™® has a unique continuous
extension from FOT™% into L(S, &*). For any family of elements
Tpym€ FREME a,m =0, 1, ..., the series

> ¢*® @ a"® (T, )
n, m
is unconditionally convergent in L(&, &%),

Appendix A

Locally convex spaces
In this appendix a selection of notions and results from the theory of
locally convex topological vector spaces is given. For proofs we refer to
the many excellent textbooks, some of which are found in the references
[1, 8, 12, and 14].
Let S be a vector space over the complex field C. A real function || ||
on & is called a semi-norm iff

[a] = 0 forallx €8,
|tz = \f\ W&\ forall¢¢ Candallx €8S,
lz +y\ = || + ) forallw, y€8.
A semi-norm is called a norm iff
Ml=0=>x=0.

Let P be a family of semi-norms on S. By the topology determined
by P we understand the translation-invariant topology on & characterized
in the following way: a subset U of S is a neighbourhood of 0 iff there
exist semi-norms || ||,, #= 1, ..., k, in P and a positive real number &
such that

U2 {x | 2 lele < e} .

It is easily proved that every semi-norm | | in P is continuous with
respect to the topology determined by P.

By a locally convex space (more correctly, a locally convex topological
vector space) one understands a vector space equipped with a topology
determined by some family of semi-norms.
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(A. 1) Lemma. If 8 is a locally convex space whose topology is deter-
mined by a family P of semi-norms, then a semi-norm \\ | is continuous
on & iff there exist semi-norms \\ |,,r— 1, ..., k, in Panda positive real
number K such that

Ml = KkZ' lxl, forall «€S8.
r=1

(A. 2) Lemma. Two families P and P’ of semi-norms determine the
same topology on Siff each semi-norm in one of the families is continuous
with respect to the topology determined by the other family and conversely.
Inparticular, the topology of a locally convex space Sis determined by the
family of all continuous semi-norms on S

Bounded sets

A subset B of alocaly convex space 8 is cdled bounded iff it is absorbed
by every neighbourhood of 0, i. e. iff for every neighbourhood U of O there
exigs areal number K such that

BCKU.

(A. 3) Lemma. // B is bounded, then every continuous semi-normon S
is bounded on B. Conwersely, if every semi-norm in some topology-deter-
mining family of semi-norms is bounded on B, then B is bounded

(A. 4) Lemma. // B is a bounded subset of a locally convex space S,
then the closure B of B and the convex hull conv (B) of B are bounded.

The space L(8;, 8;) of continuous linear transformations

(A.5) Lemma. // S, and 8, are locally convex spaces and T is a linear
transformation from S; into S,, then T is continuous with respect to the
topologies of S; and 8, iff the semi-norm p,7T" defined by

(P.T)(X) = po(T) forall z €8y,

is continuous on 8, for every continuous semi-normpy on Sy, or, equivalently,
if this holds for every semi-norm p, in some topology-determining family P,
of semi-norms on S,.

(A. 6) Corollary. If T is a continuous linear mapping of Sy into S,
then the image T(By)of a bounded set By in S is bounded in S,.

It follows that the vector space L(8;, S,) of all continuous linear
mappings from §; into 8, can be given the topology of uniform convergence
on bounded sets, i.e. the topology determined by the semi-norms | |z, p,

defined b
y 11,5, = mup 75(T)
FCDy

for all bounded sets B; in §; and all continuous semi-norms p, on S,
(or, equivalently, all semi-norms p, in some topology-determining family
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of semi-norms on 8,). In the present work we always assume that
L (8;, 8,) is given this topology.

In particular, the dual space §* = L (8, C) of a locally convex space &
is given the so-called strong topology determined by the semi-norms

Iflz="sup [{f, z)|
rEB

for all bounded subsets B of 8 Here / € 8%, and {f, ) denotes the value
offatxz €8.
Note that we define the scalar multiplication in §* by

¢hhay= {2y,

where t* denotes the complex conjugate of 7. It follows that the natural
embedding of a space with a scalar product into its dual space is linear
instead of conjugate linear.

(A. 7) Lemma. Let S; and S, be locally convex spaces. Then a subset B

of L(8y, Sp) tsbounded iff B(By)is a bounded subset of Syfor every bounded
subset B, of S;.

Metrizable spaces

A topological space is called metrizable iff the topology can be defined
by a metric.

(A. 8) Lemma. If the topology of a locally convex space 8 is determined
by a sequence of semi-norms, then there exists a translation invariant metric
on § giving the topology (more correctly, the topology may be determined by
a pseudo-metric, since two distinct points may have distance 0 — this pos-
sibility, however, will be disregarded in the sequel), and conversely.

It is clear that one can always assume the topology of a metrizable
locally convex space to be given by an increasing sequence of semi-norms.

(A. 9) Lemma. A semi-norm p on a metrizable locally convex space is
continuous iff it is bounded on bounded sets.

Proof: Let | |, be an increasing topology-determining sequence of
semi-norms on &, and assume that p is not continuous. Then, by the
lemma (A. 1), for each positive integer r there exists an element z, € §
such that

ilxr“r =1, ple,) >r.

By the lemma (A. 3), the sequence {x,}is bounded, and on the other
hand p is not bounded on this sequence. The other half of the statement
is a consequence of the lemma (A. 3).

(A. 10) Lemma. A linear transformation T from a metrizable locally
convex space Sy into a locally convex space S, is continuous iff it maps
bounded sets in Sy into bounded sets in S,.

Proof: Apply (A. 6), (A. 5), and (A. 9).

Commun. math. Phys., Vol. 1 14
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(A. 11) Theorem. If S; is a metrizable locally convex space and
8, a complete locally convex space, then L(8;,8,) is complete.

Proof:Let {T;},A €A, be a Cauchy net in L(S;, 8,), i.e. assume that
for every bounded set B; in §; and every continuous semi-norm p, on S,

1Ty~ Ty|p,p,= sup (T — Tyoa) >0
Z€ B,

as A, A" —oco in A

Then, in particular, since every point x € §, is a bounded set, and S,
is complete, the net {I';z}in §, converges to a limit 7'z forvery x € 8.
It is easily seen that 7T is a linear mapping from S into S,, and that it
maps bounded sets into bounded sets. Hence, by the lemma (A. 10),
Tis continuous. Finally, it is easily proved that 7, —~ TinL(8;, S,), and
the theorem is proved.

(A. 12) Corollary. If 8 is a metrizable locally convex space, then
S* is complete.

Direct sums

Let N be any index set, and assume that S, is a locally convex space
for every n € N. By the direct sum
S = ¥ S"
neN
we understand the set of all functions x on N with the properties
z, €8, foralln € N,
x, — 0 forall but a finite number of indices n € N.

It is clear that & is a vector space with the vector operations defined
pointwise on IV, that S contains a canonical copy of S, (namely the set of
functions x for which #,, — 0 for all m == %), which will also be denoted S,,,
and that these subspaces S, generate the whole space §.

Now, let P, be a topology-determining family of semi-norms on S,,.
For every combination of semi-norms | |, € P,, n € N, and for every
real valued positive function a (n) we define a semi-norm || j| on § by

ll2] = Y a®) [2,]n

EN

By the direct sum topology we understand the topology on & determined
by these semi-norms.

(A. 13) Lemma. A semi-norm \\ | on &8 in continuous iff its restriction
to each of the spaces S, is continuous.

(A. 14) Lemma. A linear transformation T from 8 into a locally convex
space S'is continuous iff its restriction to each of the spaces 8, is continuous.

(A. 15) Lemma. A convex subset U of § is a neighbourhood of 0 in §
iff its intersection with each of the spaces 8, is a neighbourhood of 0 in S,.
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(A. 16) Lemma. A subset B of S s bounded iffthere exists a finite

number of indices Ny, Ny, . . ., ny 90 N and bounded subsets B, in each of
the spaces Sy, © = 1, 2, ..., k, such that
¥
Bg ) B,
i=1

(A. 17) Lemma. A sequence {x(i)} in S is convergent iff there exists a
finite subset N'of N such that

2 = 0 foralln ¢ N and all 7,
{x@is convergent in S, for alln € N'.

(A. 18) Lemma. S is complete iff each of the spaces S, is complete.
It is easily seen (applying in particular the lemma (A. 16)) that
(A. 19) Lemma. The dual space 8* of a direct sum
S= s 8,
neEN
can be identified algebraically with the product space
X 83
neEN
consisting of all functions f on N with f(n) € S* for all n € N.
The strong topology of S* is the product topology,i. e. it is determined
by the family of all semi-norms of the form

N5, = SUD [<F, %),
2 & By

where B,, n € N, runs through all bounded sets in the canonical copy of
S,in S.

Scalar products

By a scalar product in a complex vector space S we shall understand a
positive definite Hermitean sesquilinear form { , ) on .S. We shall take
it to be linear in the second variable, conjugate linear in the first.

We shall say that a scalar product { , ) on a locally convex space &
is continuous iff it is continuous in both arguments simultaneously, or,
equivalently, iff the norm | | defined by

> = Lz, %)
is continuous.

Two linear operators 7 and 7* on & are called adjoint with respect to
the scalar product { , ) iff

{(Ta,y) =z, T*y) foraUx,y€S.
14*
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Dual operators

If S is a locally convex space and T € L(S, 8), then we define the
dual operator T* ¢ L(8*, 8*) by the formula

<T*f’ x) = <f’ Tzx)

for all / € §* and all x € §.

In the literature 7'* is usually called the adjoint of 7', but we use the
name dual of 7 in order that no confusion should arise between this
concept and the concept of an adjoint with respect to a scalar product.

Appendix B
A class of sequence spaces

As we have seen, " may be represented as a space of multiple
sequences. Hence, & may be represented as a space of sequences too, and
it follows from the theorems (3.41) and (2.19) that this space as well as all
spaces S"and %" belongs to the class of spaces § characterized as
follows:

Let p = {o,} be a non-decreasing sequence of positive real numbers
with g, — oo for n — co. Denote by & (=8(p)) the locally convex space
of all complex-valued sequences x — {a,} satisfying

)2 = X ozt <o, r=0,1,2,...,
n=1

with the topology determined by the norms | |,, =0, 1, 2, ... One
proves easily

(B. 1) Lemma. S is a complete metrizable locally convex space.

Denote by H,,r real (not necessarily positive), the Hubert-space of
all complex valued sequences «, for which

o0
iixﬂf = Z on ]xniz'
=1

The triple of spaces § C H, C S* is essentially a Gelfand space-triple
(cf. GeLranD and VILENKIN [8]), except for the fact that & need not be
nuclear (& is nuclear if and only if there exists a positive real number r
such that ¥ g, " < co It follows that each of the spaces &"and S is
nuclear, as is also well-known, while the space & is nof nuclear). Further-
more, each space §is a perfect countably Hilbertian space in the termino-
logy of GELFAND and ViLENEKIN [8]. The results below are all contained
in the book by GELFAND and ViLENEIN, and they are collected here
simply for the purpose of convenient reference.
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Obviously, if 7' < ", then H, D H, algebraically and topologically,
and we have
8= l:l H,,

or, better, algebraically and topologically, S is the projective limit of the
spaces H,, r — occ.

(B. 2) Lemma. Every bounded set B in S is relatively compact.

Proof: Since S is complete and metrizable, it is sufficient to prove
that every bounded sequence has a Cauchy subsequence. Since every
bounded sequence is coordinate-wise bounded, it has a subsequence for
which all coordinate-sequences are convergent. Now, assume that {z(®}
is a bounded sequence and that {z{}is convergent for each n. Since

gvez Zall2= ot )7+ 1,
n

for all x € Sand py— oo for N — oo, {#®} is a Cauchy-sequence with
respect to each of the norms | |, .
It is well known that
(B. 3) Lemma. Every continuous linear functional fcH¥* can be
represented in the form
00
<f s XY = 3 7nxn
n=1
Jor some sequence f = {f,} € H_,.
Since every continuous linear functional / € §* is continuous with
respect to some norm | |,, and since & is dense in every H,, we have
(B. 49) Lemma. Algebraically, &* = IrJ H_,, or, better, S* is the
inductive limit of the spaces H_,,r — o0o0.
(B. 5) Lemma. A subset B of 8* is bounded iff there exists a number r
such that B C H_,and B is bounded in H_,.
Proof:Let Bbe a subset of S*, and assume that forevery r = 1,2, . . .
there exists an elementf() ¢ B such that

=]
032, 2 o > .

n=1

Determine N (r) such that
Nir)
K2 5 grniiofe > o
n=1
Now, define 2 = {z}by
0 K Vot forn < N(r)
® o forn > N(r) .
Then, clearly, ® ¢ fi(, and
ool = 1.
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For s = r we have
@], < fa@], =1,

so that the sequence z®, r = 1, 2, . . ., is bounded in &.
On the other hand
(0, 20y = K, = 7,

so that Bis not bounded on the bounded subset {x("} of S. Hence, Bis not
bounded in §* (lemma (A. 7)).

It is easily seen that if B is bounded in H_,, then B is bounded in S*,
and the lemma is proved.

If £ = {£,}is any sequence of complex numbers, we define P, &as the
sequence determined by

g, forn=k
(Px8)a= {0 forn>k.

(B. 6) Lemma. For every f € S*, the sequence {P;fkonverges to f in S*.

Proof: If / € H_,,then |(I - P,)f|_,— 0, and the result follows from
the Cauchy-Schwartz inequality.

(B. 7) Lemma. A4 convex subset U* of S* is a neighbourhood of 0 in S*
iff U*n H_,is a neighbourhood of 0 in H_,for every r. Thus, also topolo-
gtcally, S* is the inductive limit of the spaces H_,.,r — co.

Proof:The "only if" part of the lemma follows immediately from the
definition of the topology of §* and the fact that the bounded subsets of .§
are precisely those which are bounded in every space H,.

Now, assume that U* is a convex subset of S8* such that U*,
= U*n H_,is a neighbourhood of 0 in H_, for every r. It is clear that
we may assume zU* < U* for all complex numbers z with \z\ < 1.

Define

-Ef': {errl sup Kf’m>| = 1}
§

er¥,

andB,= B, N S. _
It is easily seen that B, is the closure of B, in H,,and that
9 B,=n B,
is a bounded subset B of §.
We shall now prove that

Ur2{f€se | sup i) = g

whence the lemma follows.

Assume that / ¢ U*, and choose an integer r, such that / ¢ H_, . For
every integer r = r,, we have / ¢ H_,and / ¢ U*,, and by the Hahn-
Banach theorem there exists an element z, € B,, such that

Ghayz g
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Then, since s >r = ry =, € B, C B,, the sequence {xz} is bounded
in 8, and by the lemma (B. 2), {#}has a Eubsequence which converges to
an element x € S. Since each of the sets B, is closed in the corresponding
H,, it follows that n

x Erg 2 B,— = B ’
1
and since / is continuous, {f, #) = -, so that

1 I
su ) R
sup [l 2 5> 4

(B. 8) Theorem. & s reflexive, i.e. S** can be identifiedalgebraically
and topologically with S.
Proof: 1t is clear that the function F, defined on S* by

(Fpf>=<[.)

is an element of S** for all x € §, and that the mapping x .~ F,is one-to-
one and linear from & into S**,

Now, let F be any element in S**, Then, by the lemma (B. 7), Fis
continuous on every H_,, and hence there exists an element x(™ ¢ H = H* ,
such that

F.py={a") forall fE¢H_,.

Since H_, is contained in H_ and is dense in H_,for r <s, it follows
that 2 — z©). Thus, all (") are equal to an element x ¢ I1 H,= 8, and
consequently F = F_for some x € S.

This shows that & and S** can be identified algebraically. That the
topologies coincide follows from the fact (familiar from Hubert space
theory) that

lal, = sup [¢f, @)

Iflr<1

together with the characterization of bounded sets in S§* given in (B. 5).
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