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1. Discussion of the Basic Facts
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Abstract. We give a systematic description of several C*-algebras associated with
a free Boson field. In this first part the structure of the one-particle space enters
only through its symplectic form ¢ and a directed absorbing set of finite-dimensional
subspaces on which o is non-degenerate. The Banach *-algebras .2, (€, o) and.#, (€,0)
of absolutely continuous resp. bounded measures on a finite-dimensional symplectic
space (€, o), with their “‘twisted convolution product” stemming from Weyl’s
commutation relations, are studied as the analogues of the %, resp. .#, algebras
of a locally compact group. The fundamental ‘‘vacuum idempotent” Q2 determines
their (unique) Schrédinger representation, Schrédinger 4*-norm and Schrodinger
C*-completions %, (€, o) and (€, o). After a study of these one proceeds to a
construction as an inductive limit of the algebras #,(9, o) and #,(9, o) for an
infinite-dimensional symplectic space (9, o). The ‘‘Fock representations” (with the
corresponding “‘field operators”) are presented as the infinite-dimensional gene-
ralization of the Schrédinger representation. The paper ends with a discussion of
several possible choices for the ‘‘free Boson C*-algebra”.

§ 1. Introduction

The present paper is the first part of a study of different C*-algebras
associated with the free Bose field. Our aim is to investigate on the example
of the free relativistic Bose field a number of questions which arise in
Haac’s approach to field theory based on “local rings” [1—5] — par-
ticularly in the version of this approach based on C*-algebras [6, 7].
Some of the questions we have in view are the following:

1) Amongst the different, more or less ‘‘rich” C*-algebras which
can be associated with the relativistic free Bose field, which one should
be chosen as the ‘“quasi-local algebra’ ?

2) What is the relation between the space-time structure and the
algebraic structure (‘‘diamond theorem” . .. etc.)?

3) Does Haag’s conjecture that local factors are of Type I [8]
hold for some adequately chosen faithful representation of the quasi-
local algebra (it has been shown not to hold for the standard Fock re-
presentation by AraxI [9])? This question leads to formulating the
following conjecture: for adequately chosen ‘“commuting” space-time
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domains # and %’ (#’' is the set of points lying space-like to all points
of # and conversely) the whole quasi-local algebra 2 can be written as
the “C-*tensor product” A= A(H) ® UA(#')*. If this conjecture holds
true for free fields one would be tempted to take it as an axiom for coupled
fields and to attempt a construction of the quasi-local algebra as an
infinite C*-tensor product [10].

Technically this work is an amplification of Von Neumann’s fundamen-
tal paper on the uniqueness of representation of the commutation relations
for finite systems [11]. Our approach, paralleling the theory of the group
algebras of a locally compact group is tailored to afford the maximum
flexibility for the choice of the quasi-local algebra about which we want
to remain open-minded in view of question 1). In that respect our pre-
sentation should help to unify the different standpoints of previous
related works: Vax Hove [12], Coox [13], FrieDpRICHS [14], GARDING
and WigHTMAN [15], HAaAG [16, 17], SEGAL [18], CorsTER and Haaa [19],
Araxa [20, 21], Lew [22], FuruToME [23], GELFAND and VILENKIN [24],
BareMaNN [25], SHALE [28], KLAUDER [29], McKENNA and KLAUDER
[30].

In this first part we treat only some of the possible algebras (see
discussion of § 7). To motivate their abstract synthetic construction
presented in the sections to follow we devote the rest of this introduction
to a heuristic analytic comment.

Let us start from the free scalar boson field operator

A(f) = [} (@) A(x) de

smeared out with a test function f. A4 (f) operates on Fock space and is
equal to

A(f) = A{y} = a*{y} + a~{y},

creator

a*{y} being the of a particle with the wave function

annihilator
p=A*f,

* The concept of C*-tensor product U, ® A, of two C*-algebras AU, and AU,
has been developed by T. TvruMARU, Téhoku Math. Journ. 4, 242 (1953), 5, 1
(1953) and A. WurrsorN, Bull. Sci. Math., 87, 13 (1963). It can be stated most
simply as follows: choose two respective faithful representations s; and sz, of U,
and U, on Hilbert spaces 5#; and 5, and take the smallest norm closed algebra
of operators on the tensor product Hilbert space #; ® #, which contains all finite
sums Y m(4;) ® 7y (B;) with 4, €2, B; €A, This construction is independent

K3
of the choice of the (faithful) representations n; and =, and has accordingly a
purely algebraic character. The a priori possibility that Haac’s conjecture, although
incorrect in the original ‘‘W*-form”, could be true in “C*-form” as stated here
exists according to A. GUICHARDET (oral communication).
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the convolution product of the test function f and the singular function
A+*, y is a square-integrable positive-energy solution of the Klein-
Gordon equation and the set of all such y is a dense linear manifold in
the free boson one-particle Hilbert space &. Owing to the commutation
relations between creators and annihilators:

[at{y1}, et {ya}] = [a={yi}, e {p}1= 0
lo~{yi}s et {a}] = (w1 [ wa) »
where (|) denotes the scalar product in §), one has for the field operator
the commutation relations

Ay}, A{pal] = ulws) — (ya] 1) = 200 (p1, v2) )
(we denote by s(yy, w,) and o (yy, P,) respectively the real and purely
imaginary part of the complex scalar product (y,|v,) in H).
A{y} being an unbounded self adjoint operator [13] we will get
an everywhere defined bounded (in fact unitary) operator by taking

U{y} =4}, 2)
By formal manipulation of (1) and (2) (where we replace the exponential

by its Mac Laurin expansion) we find as a substitute for (1) Weyl’s
commutation relations [31]

Ulys} U{ya} = 72000 Uy} Uy},
or equivalently the multiplication law

U{py+ po} = €709 Uy} Uy}, 3)
which resembles the addition law of an Abelian group (the difference

consisting in the factor €!°(¥»¥2 which destroys commutativity — we
will accordingly call it twisted addition).

This analogy will help us to construct the algebras we are aiming
at as the objects analoguous to the ‘‘group algebras” of group theory
[32—35]. Let us first consider the case of a subsystem with » degrees of
freedom, i.e. take the operators U{y} given by (2) with y confined to
an n-dimensional complex subspace € of the Hilbert space §. In its
natural topology € is locally compact and the analogue of the group
algebra (of a locally compact group) is then obtained as follows: to each
function f on € integrable with respect to the Lebesgue measure dy of €
we associate the operator**

U =@ff(w) Ufy}dy . (4)

* See for instance D. KasTLER: Introduction & I'Electrodynamique quantique
Dunod Paris (1961) Chap. V.
** This integral is to be understood in the weak sense i.e.

(D, U(f)| Ds) zgf flw) ( (pxl U{’P}[‘pz) dy

where @, and @, are arbitrary vectors in Fock space. The integral exists because
(P,| U{y}| P@;) is a bounded continuous function of y.
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The multiplication law (3) for the U{y} then entails the following
multiplication law for the operators U (f):

U(fl) U(f2) = U(f1 X fz) ’ (5)
where f, X f, is the (Lebesgue integrable) function on X defined by
(fx fo) (9) = [ e CED L&) fo(y — §) d& (6)

= [€7EN fi(p — &) fo(5) dE .

The product x defined by (6) is a bilinear associative composition law
for integrable functions analoguous to the convolution familiar in group
theory (the difference consisting in the exponential modulating factor
under the integral — we shall accordingly call it twisted convolution).
(3) implies also that

U= U= U, )
the integrable function f* (called adjoint of f) being defined as
) = (=) . (8)

Under the product (6) and the adjoint operation (8) the set %, (€, o)*
of Lebesgue integrable functions on € (equipped with the %, norm |f|,
of functions) is a non-commutative Banach *-algebra which parallels
the group algebra of a locally compact group for € equipped with the
“twisted addition” (3). Furthermore f — U (f) is a faithful (continuous) **
*.representation of %, (€, o). Setting

Ifl = U ()]l = norm of the operator U (f),

one defines on %, (€, o) a norm with respect to which the completion
ZL1(€, 0) is a C*-algebra which we might call the &, — C*-algebra of
the m-dimensional subsystem defined by the n-dimensional subspace €.

In order to define a C*-algebra corresponding to the infinite dimen-
sional system of free bosons we have to take a kind of an inductive limit
of the C*-algebras of all n-dimensional subsystems. To be able to do
this it is necessary that given two mutually included finite dimensional
subspaces € C & there be a corresponding inclusion of their C*-algebras.
This is not realized with the ¥, — C*-algebras of € and § (there is no
inclusion of %, (€, ¢) in %, (§, 0), the elements of Z, (€, o) being measures
on { instead of integrable functions). This urges us to take instead of the
F, — C*-algebras the A; — C*-algebras defined as follows: given an
n-dimensional subspace €C $ we extend the definition (4) to bounded

* We write Z,(€, o) (A,(€, o)) instead of Z,(€) (A;(€)) as a reminder that

the multiplication law (twisted convolution Xx) depends on the symplectic form o.
** For C*-algebras we use the terminology of the Appendix I of [6].
Commun. math. Phys., Vol. 1 2
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measures y on €*
U = [ U{y}duly). 9)

U(w) Uus) = Uy X po)
U(w* = U(u*),

where x and * are now a “twisted convolution” and an adjoint operation
defined on bounded measures. Under these operations the set A, (€,0)**
of bounded measures on € is again a Banach *-algebra faithfully re-
presented by p — U (u). Setting again

Il = 1T (]
and completing with respect to this norm we now get C*-algebras
M, (€, o) (called the .4, — C*-algebras of the corresponding spaces)
such that to an inclusion €CF of finite dimensional spaces there cor-
responds a natural inclusion of their .#; — C*-algebras. We are now in
a position to define the .#, — C*-algebra (9, o) of the infinite di-
mensional §) as an inductive limit.

We close here this motivating introduction and proceed afresh to
construct 4, (9, o) rigorously, forgetting about the origin of the problem
for the sake of generality. We shall recover a posteriori the field operator
A{y} on Fock space.

We raise a number of lemmas to the dignity of theorems for the
convenience of monotonic numbering. Before starting let us say that
another technique for treating the relations (3) in a group — theoretic
spirit would consist in building a group extension of the additive group
of € by the one-dimensional torus so as to relate (3) with representations
of this group extension [36]. This aspect will be described in a forth-
coming paper by Lourias and MiracLE which will in addition contain
a more detailed description of the “‘regular representation’ of theorem 5
as well as a discussion of the relations between our “twisted convolution’
and the BareMaNN [25] and WieNER-MovarL [26, 27] formalisms.

One has now

* We recall that the bounded measures on the locally compact space € are the
(regular) complex measures u on € for which || (€) < co. The set #,(€) of bounded
measures on € can be considered as the topological conjugate space of the Banach
space %, (€) of complex continuous functions on # vanishing at co. €, (€) and #,(€)
are Banach spaces under the norms

Iflc = Sup |f(w)| fE€%,(€)
pe€
luli= Sup |u(hl= [d|ul (v € My ()
i

The integral (9) is to be understood in the weak sense (cf. footnote ** on p. 16).
** See footnote * on p. 17.
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§ 2. Twisted convolution of measures on a finite-dimensional symplectic
space. The algebra .#,(€, ¢) and its subalgebras

A symplectic form o(py, p,) on a real vector space € is a regular*,
antisymmetric**, real bilinear form on €. In this section we shall be
concerned with a finite-dimensional symplectic space (€, o), that is, a
finite-dimensional real vector space € equipped with a symplectic form o.
€ is then of even (real) dimension m = 2n and there exist in € symplectic
bases of vectors e, f;,1=1,2,...,n, that is, reference systems such
that ***

U(ej’ ey) = O'(.f:i’ fk) =0

i k=1,2,....n (10
o(enfe) = —(me) = 0. ! n (10)

n
The coordinates (&%, %¢) of a vector p € € in a symplectic base (Qp =2
i=1
- (Ee; + 1t fi)) are called symplectic coordinates. The measure dm,

n
= [1d& dun' is the same for all systems of symplectic coordinatest. We
i=1
call it the symplectic measure of (€, o).
Theorem 0. Let p be a bounded measurett on (€, o) and let f € €, (€).

The function u X f defined by

(L x f)(y)=[e " ED [y — &) du(®) (11)
1s again an element of €y (€). One has
lee % floo = Nl 1l (12)
and
u(f) = (u x ) (0) (13)

f being the function of €o(€) defined by f(p) = f(— ).

* A bilinear form ¢(yy, p), on 9 is regular if @(yp,, y,)= 0 for arbitrary y, €
implies ;= 0.
** A bilinear form @(y,, y,) on 9 is symmetric, resp. antisymmetric if @(y,, p;)
= (1, ¥a), TESP. P (Yo, Y1) = — @ (Y1, y,) for arbitrary y,, p, € 9.

*** We can construct a symplectic base on the following way. Choose ¢, &= 0 € €.
Since ¢ is regular there exists f; == Ae; ¢ € such that o(e,, f;) = 1. € is the direct
sum of the plane (e;,f;) and the subspace & of elements v<€ such that o(e;, v)
= o(fy, v) = 0: an arbitrary y ¢ € can namely be written in a unique way as
v =u -+ vwithu = &e 4 n'f,and v € F (by taking &' = o (y, f,) and n* = o' (ey, p)).
Now the restriction of o to the subspace ¥ is bilinear, antisymmetric and regular (for
P, €F, oy, v) =0 for all v F implies o(y,, ,) = 0 for all y, ¢ € and thus
y; = 0). (§, o) is thus a symplectic space of dimension m — 2 in which we can choose
¢y, f» such that o (e, fz) 50 ... ete.; after % = n steps our construction will be
completed.

T One passes from a system of symplectic coordinates to another one by means
of a matrix of determinant 4 1 (proof as for orthogonal transformations).
TT See footnote * on p. 18.

2*
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Proof: For fixed y, e~ f(y — &) is an element of %,(€) as a
function of &, whence the existence of the integral (11). We want to show
the continuity of (11) with respect to y around vy, € €: let us first choose
a compact set K such that |f(yp, — &)| < ¢/6 |, for & ¢ K. There exists
a neighborhood V; of 0 such that for A€V, é¢ K, |[f(yo+ b — &) =
=< 2¢/6 | ul, (we can take V; such that h € V, implies |f(yp + ) — f(p)| =
=< ¢/6 |u|; for all y € B, which is possible since f € %,(€) is uniformly
continuous*. For & € V, we then have

[( < f) (wo + ) — (u % f) ()] =
5t [l G D fy b £) — eGP [y — £ dp(E)
K

IIA

I\

%Jrfle“i"“”"— 1] |f(wo + b — &) du(&) +
flf(wo+k &) — fwo — &) dp(&) =
K

=< {IlulllﬂfllooSuPle‘“"”)~1|+Suplf%+k £) — fy >|},

which can be made arbitrarily small because of the uniform continuity
in & of o(&, k) and f(p — &) on the compact set K.

We have now to show that (u x f) (p) tends to 0 for y tending to oo.
Since we have the majorization

[ @l =TIy — & dlul@) (11a)
and since |f| is a function of %,(€) and |u| a bounded measure on € the
desired result reduces to the analoguous one for the usual convolution **.

Theorem 1. Let p and v be bounded measures on (€, o). There exists one
and only one bounded measure v x u on € (called twisted convolution of v
and ) such that

X (ux fy=@wxpu xf (14)
for every f € €y (€). One has
rxpy(h=[dvin) [du@) e omD (& +n) (15)
and
Iy x ply = 1wl - (16)

Proof: One has aceording to (11)

X (X D)= [dv(y) [du()eiomD o @t f(y— £ —np). (17)
The last assertion of Theorem 0 then shows that if » x u exists with the
required properties it satisfies (15), whence the uniqueness. Now for

* Because of Prop. V, §27, n°3 of Ref. [32], p. 369 and the fact that each

f € %,(€) is a uniform limit of continuous functions with compact support.
** See for instance Ref. [34], p. 264, Lemma (19.5).
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bounded measures », y the integral exists as the value of » x (u x f)
for = 0 and furthermore (12) shows that

[y x wb(Dl=r x px FHON = v x px flo = 0] |1l 1]l »
whence (16). On the other hand (15) and (11) imply that [ (v x u) X f](y)
equals the right side of (17), whence (14).

Theorem 2. Given a bounded measure y on (€, o) there exists one and
only one bounded measure u* such that

. w*(f) = p(f*) (18)
where f* = f. One has
Il =l (19)
and
(v X u)* = p* x v*, (20)

The proof is immediate and left to the reader.

Theorem 3. Equipped with the norm || |, the product x (twisted con-
volution ) and the adjoint operation *, the set of bounded measures on (€, o)
is a Banach *-algebra. We denote it by M, (€, o) to remind that the algebraic
product depends on o.

The product x is evidently bilinear. It is associative as a consequence
of (14). The * operation being evidently antilinear (19) and (20) then
imply that .#, (€, o) is a normed *-algebra. As the topological dual space
of the Banach space %, (€) it is in addition complete.

The Dirac measures d,, ¢ € €, defined by

0,(=1w)  E€E,(C) (21)
are elements of .#; (€, ¢). One has according to (15) and (18)
Oy, X Oy, =e—00uM g, o\, (22)
or more generally, for y;, p,, p €€,
{0y, X 1} (pg) = e71oWuva) f(pp, — ) (22a)
{f X 6,.} (o) = €7¥=¥) f(ypy — ) (22Db)
05 =0,1=0_,. (23)

(22) is identical with the “twisted addition’ (3). The algebra .#, (€, o)
is accordingly not commutative. (22a) shows that .#, (€, o) has anidentity
element, namely d,.

Theorem 4. Let f, g be functions on (€, o) (defined uptoa set of measure
zero) integrable with respect to the symplectic measure dm,. The measures
f dm,, g dm, are elements of A (€, ¢) and one has

”f“l = f |f(’/’)| dmo‘(w) = ”f dma“l ’ (24)
(f dm,) x (g dmg) = (f x g) dmg , (25)
(f dmg)* = f* dmy , (26)
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where | X g and f* are again integrable functions given by
(fxg) ()= [ e ED (&) gy — &) dmg ()
= [€7ED fy — &) g (&) dmg(8),
) =f(-v). (28)
Equipped with the norm (24), the multiplication (27) and the adjoint opera-
tion (28) the set L, (€, o) of functions on € integrable with respect to dm,
is a Banach *-algebra which can be considered as a closed subalgebra of
M1 (€, 0) via the (injective) correspondance f € £, (€, o) — fdm, ¢ HA,(€,0)
(in this sense we shall write f instead of fdm,). Furthermore %, (€, o)
s a two -sided ideal of M(€,0): for fE€ZL(€ 0) and u € A, (€,0)
one has u X f, f x p € Z1(€, o) with
(X 1) ()= [ e 7EN fp - E du(&) (29)
(Fx p) (p) =[N fly — & dué). (30)
For f € €4(€) (29) coincides with (11)*.

Proof: (24) is classical. (25), (27) can be inferred from (15) and
Fubini’s theorem. (26), (28) is obvious. %, (€, o) is known to be complete
in the norm (24). The existence almost everywhere of the integrals (27),
(29), (30) results from Fubini’s theorem. (29) and (30) are implied by (15)
and Fubini’s theorem.

Theorem 5. Let f be a function of €,(€) of integrable square with
respect to m, and set as usual

(27)

Wfla = {/ 1 () dmg ()} 2 .

u being an arbitrary element of M (€, o), u X f is again such o function
and we have
e > flla = Tl ]2 5 (31)
the mapping
foag(u)f=pxf (32)
can therefore be extended to a bounded operator on the Hilbert space £, (€) and
one gets in that way a continuous faithful *-representation of the Banach-
*.algebra M (€, o). 7, will be called the regular representation of M(€, o)
(or of its subalgebras).

Proof: u x f € €,(€) by Theorem 0. (31) is reduced to the analoguous
result for the ordinary convolution** using the majorization (11a) as
in the proof of Theorem 0. The fact that m,(u x ) = 7y (u) 7wy (¥) is
obvious from the definition (32). The fact that s, (u*) = 7,(u)* is ob-
tained from (18) and the change of variable y — y + & in the integral

@7 () ) = [ dmg(p) g () [ e ED fy — &) du (&)

* Z0(€) N Z,(€) is accordingly a two-sided ideal in 4, (€, o).
** See for instance Ref. [32], p. 383, Prop. V of § 28, n® 2.
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(we again use here Fubini’s theorem). Equation (31) implies that

lme (@) = lpules € ALUE, 0). (31a)

Finally the representation sz, is faithful because €, (€)is densein %, (€)
and @+ 0 implies the existence of f ¢ %,(€) such that u(f)
= (u x ) (0) + 0.

Corollary. For u € (€, o) u* x p = 0 implies yu = 0.

Proof: The representation x, injects .#,(€, o) into a C*-algebra
where the property is true.

Definition: (€, o) being a real vector space equipped with a symplectic
form o, the real vectorial subspace §F C € is called regular if the restriction
of the bilinear form o to § is regular in F*.

Theorem 6. Let § be a regular subspace of (€, o). To each p € M, (F, o)
we assoctate the measure g on € defined by

af) = n(f|3) =%ff(§)dﬂ(§) (33)

where f runs through €(€) and f|F denotes its restriction to FC €. j is

an element of #,(€, o) which we call the natural extension of u. One has
—

0y g + Oty g = 0y fiy + p fls (34)
Il = lleeles (35)

FX =y %, (362)

i = ¥ (36b)

so that M(F, o) can be considered as a closed sub-*-algebra of M1 (€, o)
via the correspondance u € My (F, o) — i € M, (€, o)**. If §' is another
regular subspace of (€, o) perpendicular to F with respect to the symplectic
form o the subalgebras M(F, o) and M(F', ¢) of M, (€, ¢) commute with
each other.

Proof: For [C%,(6) one has f|F €€,(F) with [f|Fe = |/]w-
Conversely to each g € %, (F) there exists a f € €,(€) such that f|F=g¢g
with |flle = |¢]w- This justifies (33) and proves (34). In order to show
(35) we write for f € %,(€) using (33), (13), (14) and the fact that the
operation f — f commutes with the restriction to &:

» X ) = x 1} (1) = x p x (B0 = vI(w x FIFN]
Fx @O ={FxaxfrO)=3@xNH"T=2[@ExHIF"]
(35) is thus reduced to
px @lF =(@ExPIF g6 (33a)

* See footnote * on p. 19.

** We shall accordingly write /i instead of u whenever this does not cause con-
fusion.
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which results immediately from (33) and (11): for ¢ € § one has

{m x (9|} () =%f e EN g — &) du(é)
whilst
{@ x g} () =@fe*“‘5"”’g(w — & dpé)

=%f e EN gy — E) du(é).

The last assertion of the theorem results from (33) and (15).
Theorem 7. Let (€, ¢) be a finite dimensional symplectic space. The
formula

u(f) =fo(¢) Uy} dms(y) (4a)

establishes a ome-to-one correspondance between the essential conttnuous
*.representations f € L1(€, o) - U(f) of the algebra £,(€, o) and the
weakly continuous unitary representations v € € — U{y} of the canonical
commutation relations. This correspondance carries over irreducibility and
cyclicity of vectors*.
Proof: Let us start from a weakly continuous unitary representation
of the canonical commutation relations on the Hilbert space 7, i.e.
a weakly continuous mapping y — U{y} of € into the unitary operators
on S obeying the relation (3) for all y,, y, € €. Given a y €.#, (€, o) we
define the operator U (u) on S# by
(P|U(u)| D) =@f (@ ULy} D) d uly) (9a)
for all @, @’ € . Since (P|U{y}|P’) is a continuous function of y
bounded by |D| - [|D’| the integral (9a) exists and is bounded in modulus
by | - @] - |D’|. (4a) thus defines a linear operator on # depending
linearly on u and of bound not larger than ||u|;. The fact that u — U (u)
is a *-representation of the algebra .#, (€, o) is shown by the relations

@U) U(W)|#) = X @IU6)P) (@] T@|P) (T | 2)(@d=D)
= X ] @|U@)|D) (@] U )| @) dv (&) dps (1)

=[[(@U&) Um)|D)dv (&) dp(n) = (P|U (v x p)|P)

* Theorems 7 and 7a are the analogues of well known theorems in the theory
of locally compact groups, see Ref. [32], §§29 and 30. A representation z of a
*.algebra 2 on a Hilbert space & is called essential if () 5 is dense in 52 (i.e. if
it does not admit the null-representation as a subrepresentation). Cyclicity of the
vector ¥, for the representation y — U{y} on # means that the U{y} ¥, v € €,
form a total set in S (i.e. generate linearly a dense set in 5#). Theorems 7, 7a and 8
are not indispensable for the comprehension of the sequel.
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(where use was made of Fubini’s theorem, Lebesgue’s dominated conver-

gence theorem for exchange of summation and integration, formulae
(3) and (15)) and
(@IU(@)*|9) = (P'|U(W)| D) = [ (| Uiy} D) dpuly)
= [ (@|U{=9}| D) du(y) = (DU (u*)| D)

cf (18). We have thus associated to the mapping y — U{y} a continuous
*.representation of .#, (€, ¢) whose restriction to the subalgebra %, (€, o)
defines a continuous *-representation f— U(f) of Z;(€, o) (notice that
U (d,) = U{y}). The fact that f - U (f) is essential is obvious: a @ € #°
such that (| U (f)|D") vanishes for all f € &, (€, ¢) and @’ € 5 is such

that (D| U {y}|D’') = 0 for all @', whence @ = 0.
Conversely let f — U (f) be an essential *-representation of %, (€, o)

n
i.e. a *-representation such that the set 5#, of finite sums }' U (f,) @,,
i=1
f: € £1(€, 0), D; € A, is dense in 5. We define the action of U{y} on
Hy by

(@) Ui} 3 UG Be= 3 UG, 1) .
Since -

| UG O~ 5 @IUGE x 8y x 8, 1)|0)

n,i=1
=1 X U)o,

this definition is coherent ((38) applied to the null vector gives again the
null vector) and U{y} is linear isometric on J#,. It can accordingly be
extended to a unitary operator on 5# and the relation (3) (which need only
be verified for U{y} acting on J#) is a consequence of (a) and (22). Let
us now show that U{y} is weakly continuous in y. It suffices to prove
the continuity of (@,|U{y}|D,) in p for @, and P, running through
the total set of the U(g)®@ where @ € 3£ and g runs through the set
A (€) of continuous functions on & with compact support (the totality
of the set of U(g)® stems from the inequality |U (9)PD| < |g[.|D|
and the density of A (€) in %, (€, ¢)). We have now for f, g € X (€):

(UNP|U{y}— Uly}| Ug) D) =(P|U(f x (6, — 8y,) x 9)|D) =
=D D] - 1* % (8, — 8p) X gl = D]+ D] - |- (8, — y,) X gl
the function

{(8, — 0y,) X g}(u) = €0 f(u — p) — e~ W) f(y — )

converging to zero within a fixed compact set.
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Now we have shown how to assign to every unitary representation
of the canonical commutation relations an essential continuous *-re-
presentation of % (€, o) and conversely. To see that the correspondence
is one-to-one we need only verify the relations

[ {0, x g}(u) (@|U ()| D) dmq(w) = [ g(u) (@|U{y} U(w)|D’) dm,(w)
and

J (@U@, x H|P)g(y)dm, = (P|U(g x )| D)

which is straightforward with some amount of vectorial integration.

The relations (4a) and (38) show that it is equivalent, for a @ € 7,
to be perpendicular to all U{yp}¥,, y € €, or to all U (f)¥,, f € %, (€, o),
(¥, being a fixed element of ). ¥, is thus cyclic with respect to y— U {y}
if and only if it is cyclic with respect to f — U (f). The statement about
irreducibility results from the fact that irreducibility means cyclicity
for every vector.

We notice that the construction of U (f) from U{y} required only
the weak measurability of U{y}. By recovering U{y} from U(f) one
then sees that weak measurability of U (y) implies weak continuity. We
notice also that the process U (f) - U{yp}— U(u) defines a ‘““canonical
extension” of any essential continuous *-representation of .Z;(€, o)
to an essential continuous *-representation of .#; (€, o).

Definition: A complex function y € (€, o) - @{y} on the finite dimen-
stonal symplectic space (€, o) is called of positive type if

n
Y 0;0, e ply, —p}t = 0 (37)

k=1

for every choice of elements y; € (€, o) and complex constants C;,§ = 1,2, ...n.
Theorem 7a. The formula

p{y} = (Do Uy} Do) (38)

establishes a one-to-one correspondance between continuous functions of
positive type on (€, o) and unitary cyclic weakly continuous representations
of the canonical commuiation relations with cyclic vector @,. The formula

@(f) =@f F) p{y} dmg(y) (38a)

establishes o one-to-ome correspondance between the continuous functions
of positive type w € (€, 0) - @{y} on (€, o) and the positive forms
1 € Z1(€,0) > ¢(f) on Z1(€, 0). The mapping {— U (f) defined by (4a)
18 the *-representation of £, (€, o) associated with the positive form f — @ (f):
Le. p(f) = (@] U ()| D).

Proof: The fact that ¢{y} defined in (38) satisfies (37) is shown by

calculating | 3' C;U{y}|? using (3). Conversely starting from a ¢{y}
i=1
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satisfying (37), the formula
(f|9)=EZE’G]‘@g(n) doCm gl — £} fgeF
> 7

defines a semi-definite sesquilinear form on the vector space % of complex
functions on € vanishing on all but a finite number of points. Passing to
the quotient oy = F A" of & modulo the null space A~ (consisting of
all f €& such that (f|f) =0 or equivalently (f|g) =0 for all g € %)
our sesquilinear form becomes a strictly positive Hermitean product.
Now the definition

[U{y} f1(§) = e @I f(& — ), feF

determines coherently a linear isometric operator y — U{y} on #,
as is shown by the relation (U{y} f| U{y}g) = (f|g), easily obtained by
shifting summation variables. U{y} extends to a unitary operator on
the completion 5 of 5#,. The relation (3) follows from the fact that the
definition of U {y} formally coincides with (22a). The element @, = fo+.4"
of 3#,, where f, is the characteristic function of the set {0}, is easily seen
to be a cyclic vector for v — U {y}. Finally the relation

(f1 ULy} 9) = . 26’6@9(77) g EM=icw N+ pfy — &4 y}

shows both that U {y} is weakly continuous in y, and by making f=g=f,,
that it satisfies (3). (3) establishes a one-to-one correspondance between
p{y} and U{y} because our construction applied to ¢{y} given by (3)
is merely a reinterpretation of the cyclic component of @, (via

n
2 C; U{y} @y~ f + A with f vanishing everywhere but in the points
i=1
y; where it takes the values C,).

Let us now take p — ¢{y} and p — U{y} related by (3) and let

f— U(f) be the cyclic *-representation of %;(€, o) defined by (4a).
One has by (4a)

() = (Do U (f)| Dy) =@f f() p{y} dmy(y)

whence, by Theorem 7, formula (38a) and the second part of our theorem.
The continuous positive form ¢ extends canonically to a (continuous)
positive form on .#; (€, o) by using (9a):

@ (p) = (Do| U (1) | Dg) =@f p{w} du(yp) = u(p), (38D)

this extension being such that ¢{y}= ¢(d,) = d,(p). The possibility
of this extension shows that the function ¢{y} is bounded:

7l = loll = @(d0) = #{0},
which could have been obtained directly from (37) for m = 2.
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Theorem 8. Hach non vanishing continuous *-representation @ of the
algebra. £, (€, o) ts such that p(f) &= 0 for each | € L, (€, o) with nowhere
vanishing Fourier transform f.

Proof: If g(f) = 0 one has p(d, X f x d,) = 0 for all u € €. Since, by
(22a, b)

{0, % [ x 8.} () = f(y — 2u),

the theorem follows if &, (€, o) is the smallest closed subspace generated
by all translates of f. This is so because this subspace is an ideal and f
is contained in no proper ideal since its Fourier transform vanishes
nowhere (Ref. [32], p. 426, Folgerung 1 of § 31, n° 8. The meaning of the
word ideal is here the usual one in commutative harmonic analysis.)

§ 3. The Schridinger representation of .#; (€, a)
and the associated C*-Algebra .#,(€, o)

We know from Theorem 5 that the algebra .#;(€, o) of bounded
measures on a finite dimensional symplectic space (€, o) can be faith-
fully represented by operators on a Hilbert space. In this section we shall
see that (€, o) has a unique faithful srreducible (continuous) *-re-
presentation (up to unitary equivalence). This is essentially Von Neu-
mann’s uniqueness theorem for the representation of the canonical
commutation relations for systems of n degrees of freedom (see Ref. [11])
which we have to complement in some respects for our further study of
the infinite-dimensional case. We begin with the

Definition: Let € be a real vector space (of arbitrary dimension) on
which a symplectic form o is defined (we recall that o is a real-bilinear regular
antisymmetric form — this forces the dimension of € io be even if it is finite).
We say that € is equipped with a c-allowed prehilbertian structure if

1) € 1s a complex vector space for which the respective addition of vectors
and multiplication by complex numbers of the form a + 10 coincides with
the addition and multiplication by reals for the initial real vector space
structure,

2) as a complex vector space € has a hermitian positive definite scalar
product b whose purely imaginary part is equal to io.

Comment on this definition: from the point of view of the real vector
space structure multiplication in € times the imaginary unit is a real-
linear operator J of square —1:
oy, 0ty Teals (39
Y9 €€ )
Ji=—1 (39a)

J (o + %) = oy Yy + apd Y,

satisfying in addition
o(JynJye) =0y, 92) YLy €C. (40)
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The real part s of the hermitean scalar product:

R (1, po) = 8(91, wa) + 10 (Y1, Py), s, 0 real (41)
is a real-bilinear symmetric positive-definite form on € satisfying
$(Tyy, Jpg) = 8 (py, o) Y P €€ (42)
and
8(p1, o) = —a(Jyy, ¥3) Y, P €€ (43)
or equivalently
o(yp ¥a) = s(Jy po) Y192 €€ (43a)
so that
J=—0"1s. (44)

The situation characterized by the presence on a real vector space of
a symplectic form ¢ and a o-allowed prehilbertian structure can be re-
constructed

— either from a symplectic form ¢ and a J satisfying (39), (39a) and (40);

s is then given by (43)

— or from a real-bilinear symmetric positive-definite (i.e. Buclidean) s
and a J satisfying (39), (39a) and (42); ¢ is then given by (43a)
— or from a symplectic ¢ and a Euclidean s satisfying (44); J is then

given by (44).

In the rest of this section we shall be concerned with a finite-dimen-
sional symplectic space (€, ¢). In this case the existence of g-allowed
(pre)hilbertian structures is guaranteed. In fact every symplectic base
(exs 1), E= 1,2, ..., n provides one by defining

{J6k=iek=fk
Jh=1tfr=—¢

{s(ez‘: er) = $(fi fx) = Oix
s(e, fx) =0

E=1,2,...,n  (45)

which implies

,k=1,2,...,n (46)
and therefore
h(’l’l’ iwz) = —h(i% Yp) = ih(’/’i: Ps) -

Thee;, 7= 1,2, ..., nthen constitute a complex orthonormal base for €.
It is important to realize that there are plenty of ¢-allowed prehilbertian
structures on (€, ), the preceding construction giving in general two
different g-allowed prehilbertian structures if applied to two different
symplectic bases.

The main tool for the construction of the Schrédinger representation
of A4, (€, o) will now be the

Theorem 9. Let (€, o) be a finite-dimensional symplectic space on
which we choose a o-allowed (pre)hilbertian structure. The function
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0 €%,(€) N P, (€, o) defined by

1

Q) —a-te T® (47)
with

a= [ @) dm, () (48)
gives rises for each u € M1 (€, o) to the relation

2Xux2=owWif, (49)
where

1
— 5 8(¥, %)
o= e 2" duy) = p@). (50)

We prove (49) by direct calculation using (27), (29) and Fubini’s
theorem: we have
{0 x p x Q) (p) = a2 [ dm,y (v) €70 Q(p —v) [ dpu(w) €60 Q (v — w)
=~ [ dp(u) [ dm,(v) e 0w+ -
‘-—:;:[S(W—v,w—v)—l-s(v—u,v—u)}
e

r

= a1 Q(y) [ dp(u) et

s(y+u, v +u)— %s(u,u) I

with

v+u v+u
I:fdma(v)e“’(”v‘ﬂ”)e*s(v_ 2 T2 )

= f dmg (v) €t9 (@, ¥+u) g=s(v,2)

which we evaluate using symplectic coordinates: v = (w, u'?), v = (v9, v'9)
w = (y/, p'7). We get

n . PR ’ ’ s 'y . .
I = ]]{f e @ +ivl (v I+a mdw"-fe”[” Tr—iv 1! +uN] goi
9=1

—~1—8(w+u, v+ u)
=qae ¢ , q.e.d.

Corollary. Q is a self-adjoint idempotent of M, (€, o).

Proof: One gets 2% = Q from (28) and 2 x Q2 = Q by setting u = J,
(see (22a)) in (49).

Corollary. T'he function w on M1 (€, o) defined by (50) is a continuous
positive linear form on M (€, o) such that

lo @) = |7 (W) = [l (51)
where 7, ts the reqular representation defined in Theorem 5%,
Proof: w is obviously linear. Setting y = »* X v in (50) and applying
7y One gets
Tt (0 X Q)* 73 (u X Q) = o (u* X p) 7,(2)

* The positive form w is associated to the function of positive type a2 as
described by formula (38Db).
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so that w(u* X u) appears as the proportionality factor of two positive
operators: it is therefore non-negative. Since 4, (€, o) has a unit, o is
automatically continuous. w (u*) = w(u) for all u € #,(€, g) because
of positivity (or directly from the definition). Applying 7, to (49) we get

o ()] |72(Q)] = |72 (2 x p x Q) = |7 (] |72 (Q)]*,

whence (51) since ||77,(£2)]] = 1 because of the first Corollary to Theorem 9.
Definition: Let A be a sub *-algebra of M, (€, 6) and w | the restriction
of witoU: w|Ais a continuous positive linear form on A. The *-representa-
tion of 2 obtained from w|A through the Gelfand-Segal construction [37]*
18 called the Schrodinger representation of A and denoted 7, o.
We recall that x, o is obtained by considering in 2 the left ideal

N o = {p €A o (u* x p) =0}, (52)
then defining 7, o (1) acting on A/N,, o by
To, (@) [V + Ro,al = v X g+ Ny, a0, (53)

and finally extending 7, o () to the completion of 2/, o With respect
to the norm associated with the scalar product

(1 + Ryt | o + Ry20) = @ (X o) (54)
which is possible if 7, o (1) is continuous for that norm. This circumstance
usually arises from the fact that the *-algebra under consideration is a
Banach *-algebra with approximate unit. We here instead notice that
(51) allows to extend w to the C*-completion of .#,(€, o) in the m,
norm. Denoting by < the order relation in that C*-algebra we have for
s v €4,(€, 0)

PE X ut X opX v S ||y (X )| vE X v
whence, upon applying w and using (31) the inequalities

|70, 2 (W] = e (u* x w)] = [ulf . (55)

In order to study the Schrodinger representation we shall now
describe it in another way supplied by the following theorems.

Theorem 10.**. Let A be a *-subalgebra of (€, o) containing Q.

The sub *-algebra Q x A x Q of A is a field. Specifically the mapping

PER X AXQ—w(u) €C (56)

s a *-isomorphism of 2 x A x Q2 with the complex number field C.
Proof: The elements of U of the form u =0 x » x 2, v €YU clearly
build a sub *-algebra of 2. They are such that

u=owu) L, UER XxAX O, (57)

* See also Ref. [32], § 17, n° 3.
** Theorem 10, the minimality of the ideal I N\ U in Theorem 11, and Theorem
17 are not necessary for the understanding of subsequent constructions.
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which shows that the mapping (56) is multiplicative and injective, there-
fore surjective since 2 = 0. It is on the other hand evidently linear and
we noticed earlier that w (u*) = w(u)*.

Theorem 11. Let U be as in Theorem 10 and consider in A the left
ideals o N U and g N U intersections of A with the closed left ideals

Bo=M(C,0) x Q={uxQ|ucH(E, o)}
={u €t (€ 0)|ux Q= p} (58)
B0 ={p € M(€, 0)|u x 2 =0}
of M, (€, c). These ideals are directly defined as

FonU=Ax Q={ucA|px 2= pu}
{8};m9[={p€9[l,u><$?=0}. 59)
They are complementary
A=8onAd Ton A (60)
and closed if A is closed. Ty N U is a minimal iedal of A on which the sesqui-
linear form
(u]9) = o (u* x 7) (61)
defines a prehilbertian structure. Jo N A is a maximal ideal of A coinciding
with the null-space N, o 0f the form (61). Finally the restriction s of the
left-regular representation of U to the prehilbertian space To N A:

T(u)y =@ X nEeEUv€EIpon U (62)

is an irreducible *-representation consisting of bounded operators whose
extenston to the completion of Jo N U is unitarily equivalent to the Schri-
dinger representation 7, .

Proof : The equalities between sets stated in (58) and (59) are immediate.
Continuity of the mappings y—u X 2 — p and p— pu x £ implies
that 3, and Jg are closed. Equation (60) amounts to the existence and
uniqueness of the decomposition for each p €YU

p= A+ pe with g €8N A p, €ToN AL (63)

Now right multiplication of (63) by 2 fixes u,= u x £ whence
e = g — 4 X 2 which actually fulfills (63). Let us now show the mini-
mality of J, N QA: we start with a left ideal £ & 0 of 2 contained in
Fon U. The square L2 = {X u; X v;| u;, v; € £} of the ideal £ cannot
be (0) because taking u €2, whence u* x u €L, this would imply
(u* x p)? = 0, whence u* x u = 0and y = 0 by the corollary to Theorem
5. Now take u, x £, us X £ € & such that u; x Q X py x 2 = 0 whence
0 X py x 2+ 0, there exist by Theorem 10 vy € 2 x U x £ such that
¥ X £2 X py x £2 =0 so that

FoNA=AX 2OLOUAX s X LOUX Y X 2 X ps X DU X 2
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whence € = J, N U, q.e.d. The maximality of Jo N A now immediately
results from the minimality of J, N U and (60). To study the sesquilinear
form (61) we write according to (49):

QX p*x ux Q= (uxQ)*x(ux8)=owp*xul

thisimplies via Theorem 5 the equivalences: w (u*xX pu) =0« y x Q=0+
< u €3N A, whence Ip N A= N, o Equation (60) then implies the
strict positivity of (61) on o N .

7 defined by (62) is a *-representation of A on JF, N\ AU (obvious
from Theorem 3). One sees easily that it is unitarily equivalent to the
Schrodinger representations 7, o @ because of (60) the class g + R, o €
€ A/N,, o contains a unique element of Fo N A, namely u x 2. This
establishes a one-to-one mapping between these two spaces which is
isometric for the scalar products (54) and (61) and transforms (53) into
(62). The extension to the completions is obvious. & is irreducible
owing to the minimality of the left ideal 3o N 2.

Theorem 12. Let A, and A, be two sub *-algebras of M(€, o) such that
BoCU CU,. The Schrodinger representation 7, o, of Uy is unilarily
equivalent to the restriction 7, o, |, of the Schrodinger representation of
U, to A;. This holds in particular if L, (€, 0) CA; CU,. For *-algebras A
such that o AC M, (€, 0) we shall accordingly write m, instead of
o, (OF nw,Ml((SE,a)lg[))'

Proof: Results immediately from Theorem 11 and the fact that
Fon AU = TN Yy = Fp. For D Z, (€, o) one has A D J, because the
ideal Z; (€, o) contains 2 and therefore Jy,.

Theorem 13.* Let us denote by “Q, u € (€, ¢), the following element of
o C %, (€)

uQ =6, x Q. (64)

As a function on € “Q is given by

1
—8(v—u, y—u)

Q) = a~le icwv ¢ 2 pe€. (65)

The scalar product (61) in I, of »Q and °Q, u, v € €, is equal to
“Q*Q) = a°Q(u) . (66)
In particular *£2 is of unit norm. One has furthermore, for any f € €o(€),
fx Q= [} 2dm, ) (67)
(“Q|f x Q) = a{f x Q} (). (68)

The set of all *Q, u running through €, is a total set in S (or in the Hilbert
space of the Schrédinger representation).

* The states “(2 are the same as the ‘‘coherent states” introduced by R. GLAUBER,
Phys. Rev., 130, 2529 (1963); 131, 2766 (1963).

Commun. math. Phys., Vol. 1 3
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Proof: (65) is immediate inserting (21) and (47) into (27). By (64),

(49) and (22), (23), the left side of (66) is seen to be equal to
1

00—y X 0,) =€ §,_ (al)=ae®Me 2

Using (27) one has on the other hand for f € €,(€)

(v—u, v—u)

1
(x D@ =a feroeone 20 dm0) gy
= [*Q®) 1) dm, v)

which is the same as (67) where the integral on the right side is to be
understood in the topology of point-wise convergence on %,(€). (68)
finally obtains by forming the scalar product of (67) with “Q to the left
and using (66) and (67). For any f € g, (by Theorem 0, f = f x 2 €%, (€))
(68) now shows that (“Q|f) = 0 for all ¢ € implies f = 0: the set of
“Q, u € €, is therefore total in J, (i.e.) the finite linear combinations
of the “Q are dense in J).

Theorem 14. T'he Schridinger representation wt,, of M (€, o) is faithful.

Proof: Take u =0 ¢ .#,(€,c). To show that z,(u) +0 we shall
exhibit f € €,(€) such that 7, (u) 7, (f) = 7, (p X f) = 0. Since u =0
there exists f €%, (€) such that u(f)= (u x f) (0) + 0, whence u x f
=g =+ 0. Now g €%,(€) (Theorem 0) is such that x,(g9) == 0 because
otherwise one would have g x »Q = 0 for all % and therefore

(g % “Q) (y) = e o) [emioEvin) Qy — u — &) g(§) dm,(§) = 0
for all v and %. Uniqueness of Fourier transform would then imply
Qp—u— & g(é)=0 for all & whence g =0 contrary to hypothesis.

Theorem 15. Let 2 be a sub-*-algebra of M,(€,c) containing Q.
EBach *-representation of U on a Hilbert space is the direct sum of a multiple
of the Schrodinger representation 7w, o and a *-representation o, such that
01(2) = 0. Consequently each irreducible *-representation o such that
0(2) =0 (in particular each faithful irreducible *-representation) is
unitarily equivalent to 7, o. This theorem is a slight extension of Von
Neumann’s uniqueness theorem (see Ref. [11]).

Proof: Let g be a *-representation of 2 on the Hilbert space .
£ being a self-adjoint idempotent o ({2) is a self-adjoint projector with
range ¢ and null space S+, Let {f,, o« € I} be a complete orthonormal
system for 7", Owing to (49) we have for u, v € 4, (€, o)

(fele(@)1fe) = (@ (2 % 1 x D)fs) = () (f| @ (@) |f5) = Supeo (1)
and
(o) fxl@(¥) fg) = Oup @ (u* X 9) .

Thus the cyclic components of the f,, « €I, for the representation g
are mutually orthogonal, g reducing on each of them to a subrepresenta-
tion with expectation w (u), i.e. unitarily equivalent to 7, o. Moreover



The C*-Algebras of a Free Boson Field 35

@

since }; 0(2) f» 2 A the remaining component g, of g acts in J#'+ and
ael

is thus such that g, () = 0. In the special event that g is irreducible and

such that ¢ () == 0 one has g, = 0 and " is one-dimensional.

‘We notice that as a result of Theorem 8, g, annuls not only £ but
the whole of &, (€, o). In particular we have the

Theorem 15a. Each *-representation of £;(€, ¢) is a direct sum of
a multiple of the Schridinger representation and the null representation.
Each irreducible representation of £,(€, o) is unitarily equivalent to the
Schrodinger representation.

Corollary. The regular representation 7, of M,(€, ¢) is a multiple of
the Schrodinger representation m,. Accordingly |7y (u)| = |7, (p)] for
all p € M, (€, o).

Proof: We have to show that the subspace 2 L in the proof of Theo-
rem 15 reduces to the null vector for p = 7,. For any f € 4L C 2, (€,dm,)
one has 7my(g9) f=¢g x f =0 for all g € .%,(€, ¢). In particular for each
g €ZL1(€,0)NE,(€), g X f €F(€) by Theorem 0 and

{9 x 13 0)=[g(&) f(—§) dm(§) =0

which implies that f = 0 since £, (€, 0) N\ €, (€) is dense in L, (€, dm,).

Theorem 16. Let A be as in Theorem 15. The Schrédinger representa-
tion 7,9 of U is (topologically) irreducible.

Proof: Let 9 be the completion of 2 in the z,-norm (Theorem 5).
9l is a C*-algebra and possesses therefore an irreducible representation o
such that () == 0*. The restriction of g to 2 is also irreducible since 2/
is dense in 9l in the norm topology (and a fortiori in the weak topology
of operators on the representation space of p). According to the preceding
theorem p is then unitarily equivalent to 7, o Which is thusirreducible.
This result could also have been inferred from the Theorem 19 below.

The C*-algebra A (€, o). Let (€, o) be a finite-dimensional symplectic
space on which one has defined two different ¢-allowed Hilbertian struc-
tures s; + to and s, + 70. Let £, and £, be defined as in (47) in terms
of s; and s, respectively, and let w, and w, be the corresponding positive
forms on .#;(€, o). Theorem 15 shows us that for a sub-*-algebra A
of M#,(€, o) containing 2, and Q,, in particular for .#,(€, o) itself,
w; and w, define the same (faithful) *-representation 7z, o = 7,
up to unitary equivalence. The following definition pertains therefore
only to the symplectic structure of (€, o):

Definition. Let (€, o) be a finite-dimensional symplectic space. For
U € M (€, 0) we denote by |u| the norm of the corresponding operator in

* See for instance Ref. [5], p. 324, Theorem 4 of § 24, n°2; p. 314, Prop. II
of § 23, n° 3; and p. 320, Prop. I of § 24, n° 1.
g
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the Schrodinger representation of M (€, o):

o(@* X p* X u X v)%

lull = ll7wo ()] = Sup T

veM1(€,0) o (v* X v)?2

| | is called the Schridinger norm of u*. For any sub-*-algebra?l of A (€, o),

we denote by A the completion of A for the Schrodinger norm (69). 2A is a

C*-algebra called the Schridinger C*-completion of A. In particular the

respective C*-completions of M(€,0) and Z(€, o) are denoted by
M1 (€, 0) and L, (€, o).

Tt is obvious from this definition that one has A C .4, (€, o), A being
the sub-C*-algebra of .4, (€, o) generated by . Setting v = J, in (69)
and using Schwarz’s inequality for w and (55) one gets the set of in-
equalities 1

lo ()] = o@* x w2 < |p] < |l (69a)
The positive form o on #, (€, o) therefore extends to a positive form on
M1(€, 0) which we continue to call w, the representations 7w, 4, (e, 0
extending correspondingly to a faithful irreducible representation of
M (€, o) which we continue to call the Schrédinger representation and to
denote by T, M1 (€, 0) = Tee

If, as we shall assume in what follows, 2 contains Jy, |u| is equal
to the operator-norm |, o ()| ie. is obtained by taking the Sup in
(69) for v running through 2 (Theorem 12). Theorem 16 then shows that
A is (via 7, = 7o, o) isomorphic to a topologically (and, by Kadison’s
Theorem [38], strictly) irreducible operator algebra i.e. A is primitive.
The following theorem shows that by completing 2 in the C*-norm we
obtain a new object.

Theorem 17. Let A be a sub-*-algebra of M,(€, o) containing Ig,.
QU is strictly smaller than its Schrédinger C*-completion 2.

Proof: We set

(69)

1
Qi(p)=e 27

and easily obtain using Theorem 8 and (24):
1423013 = A Y1 + 122 [ 23* x 23] -

Theorem (4.10.6) of RICKART ** then shows that 3, N Y is strictly smaller
than its Hilbert space completion: because of Kadison’s theorem QU is
then strictly smaller than 2.

The inequality (69a) allows one to extend (49) to 4, (€, o). Reasoning
as in the proofs of Theorems 10, 11 and 15 one then gets corresponding

results for the C*-algebra 4, (€, 0):

* The fact that p is a norm and not a pseudonorm results from Theorem 14.
** See Ref. [33], p. 263, Theorem (4.10.6).

vy 0<l<oo
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Theorem 18. One has for all u € #, (€, o)
QX px=owul (49"

where w denotes the extension of the form (50) to #,(€, ). The sub-algebra
QxUX Q of A is a fild. The respective Schrodinger C*-completions
AXxR=FonA=AxQ=F,nAand o N A= Aof FTon Y
and S N A are complementary left ideals of U, the first being a minimal,
the second a maximal left ideal. Ip N A is the null space of the extension
of wto . T N Wis (by Kadison’s theorem) a complete Hilbert space under
the scalar product (1| v) = w (u* X v) (3o N W has accordingly the same com-
1

pletion in the norms |u| and o (u* x p)2)*. The extension of the Schri-
dinger representation 7, to A coincides with the restriction of the left regular
representation of A to the minimal left ideal Fo N A (this providing an
alternative proof of Theorem 16 ). Every *-representation o of A on a Hilbert
space s the direct sum of a multiple of the Schrodinger representation and
a representation o, such that g,(2)= 0. In particular every irreducible
representation o of A such that 0(£2) & 0 is unitarily equivalent to the
Schrodinger representation m,. Every *-representation of £;(€, o) is the
sum of a multiple of the Schrodinger representation and the null representa-
tion. Bvery irreducible representation of Z;(€, o) is unitarily equivalent
to the Schrodinger representation. All *-representations of £, (€, o) are
quasi-equivalent.

The last statement is an immediate consequence of the definition of
quasi-equivalence of representation, for which we refer to Appendix I of
Ref. [6].

Theorem 19. The Schridinger representation maps £1(€, o) isomor-
phically onto the compact (= completely continuous) operators of the re-
presentation space.

This theorem is an immediate consequence of A.ROSENBERG’S
result that a concrete C*-algebra on a separable Hilbert space having
only one irreducible representation consists of the compact operators [39].

Theorem 20. Let (€, 0) be a 2n-dimensional symplectic space, €
a 2p-dimensional regular subspace of (€, o), €, the orthogonal complement
of €, (with respect to ¢ ), 7, o, T, the respective Schrodinger representa.-
tions of M,(C,0), M,(€, o), M,(€,, o) acting on the respective spaces
H, Ay and H,. One has

H=H,® H, (70)
1

* This can be directly inferred from the fact that w(u* x ,u)5=||/t||
1

= ||u* x ,u|lE for p € 3 (take u* x u for p in (49)).
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and, for u, € M1(€y, 0), ps € A, (€,, 0)

7o (ty) = o, () ® 1#2 (71)
o (ths) = Lop, ® 70, (U2) (72)
T (g X fha) = To, (111) ® T, (o) (73)
therefore
70 ()l = 700, (141)] (74)

v.e. iy has the same Schrédinger norm as an element of M (€,, 6) and as an
element of (€, o). Consequently one has the inclusion™

M (€, 0) M (E, 0) . (75)

Proof: The definition €, = {y € €|o(y, 0) = 0 for all 0 € €} implies
that € = €, @ €,: since ¢ is regular one has namely dim€ = dim &, +
+ dim &, and on the other hand €, N &, reduces to the null vector owing
to the assumed regularity of €,. Moreover if v € €, is such that o (v,7)=0
for all 7 € €, one has o(v, p) = 0 for all p €€, and therefore €, is also
regular. Taking symplectic bases (e;, f;) and (e;, f;) respectively in
G and €, 1=1,2,...,p,j=p+1,...,n, we get a symplectic base
in (€, o) which, upon the construction (45), (46) provides a c-allowed
prehilbertian structure 2 = s + ¢¢ on (€, ¢) for which & and €, are
orthogonal complements. For p =y, + 9, €€, p, €€, p, €€, we set

1
Q) =a"te 2s(y,p) =2 (y) La(y2)

where
—lsw ¥i)
Q) =a;te 2™ i=1,2
a; =Ef e—s (v, ) dma('z/)) s O = Qylg

and denote by w, w,, w, the corresponding positive forms respectively on
M= M€, 0), M = M(E, 0), My= M (C,, 0). For v; ¢ M1, vy € M,
one has according to (33) and (50):

(1 X vp) = 0y (v1) wy(vy) - (76)
To prove (70) we define the tensor product of f; = y; + Ny, gz, € A1/ N0, .2,
and gy = g + Ro,,.0, € M o|Rory,.2t, 38

fa ® fia =y X po + Nyt (77)
This definition is coherent because o, €N, 4, 02 € Ry, .x, imply
01 X 02, 01 X Mg, 02 X Yy €N, 4 owing to (76). Furthermore for
G0 € MR, [ DY EMfRy, s 1=1,2,..k j=1,2,...,1

* As a result of theorem 19, %,(€, o) is the C*-tensor product of %,(€,, o)

and Z,(€,, 6). We leave open the question of wether an analoguous result holds
for the .#,-C*-algebras.
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one has by (54) and (76):

1 ) 1
(Zaon Zne)-2 5 @i o9

=1

where (]), (]), (|)s denote the scalar products (54) respectively on
MR, 1, M1 |R e, 10,5 M 2| Ry, a,- Since the two last spaces are respectively
dense in 3#; and 5, (77) and (78) show that o, ® 5, # and (70)
will be proven if we show that this inclusion is an equality. This now
follows from the last assertion of Theorem 13: we start from the total
systems {0, u, € €}, {90, u, € €} respectively in #; and #, and show
that “Q, ® *“, is total in #: since €, and €, are orthogonal #, and 57,
commute (Theorem 6). One has therefore

ulgl X uz«Qz = 64.&1 X Ql X 6112 X .Qz
= 61&‘ X 6“3 X ‘Ql X QZN 6“1‘*’“29: u1+an,
the #Q = "+ %0 being a total system in .
Proof of (73), (71) and (72). We verify (73) on the total set of elements
P ® P €H, € MRy, 5 Vo € Mo[Rry, 1,
T (g X pho) $1 ® Py = py X g X v X 934+ Ny
=y X ¥y X flg X ¥y + Ry, g = 7o, (Wg) P1 @ 7, (U3) Pp
(71) and (72) are obtained by specifying respectively p; = &y, s = 9y
in (73).

We close this section with the remark that %, (€, o) is a separable
C*-algebra whilst M, (€, o) is non-separable. Separability results for
Z1(€, o) from Theorem 19. The non-separable character of 4, (€, o)
will result from the existence of an irreducible representation = on a

non-separable Hilbert space (see Ref. [35] 2.3.3). We proceed to the con-
qtruotion of m. Lete;, f;, = 1,2, ..., n, be a symplectic base in € with

Y= Z (E%ep + 1 fr), v € €, and let § be the real subspace of € spanned

by the vectors e;, i = 1,2, ..., n. Consider the commutative subalgebra
M of A, (€, o) consisting of all (canonical extensions of the) bounded
measures on &. An element y € M can be considered as a measure y (&%)
on the space of the coordinates & and we define as follows its Fourier
transform f:

J = [ exp [kgjl zksk]du(sn .

For fixed A;, u € M — fi(4z) is a character of I because the twisted con-
volution reduces on % to the ordinary convolution. We thus get a
one-dimensional representation 7z, of M on a complex Hilbert space
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spanned by the vector u by setting
o (1) w = fi(Ae) % pEM

One can now construct an irreducible representation 7z of #(€, o)
on a Hilbert space 5# containing the vector u such that s restricted to
M acts on u like 7, (see Ref. [35], 2.10.2). Taking

§= Y é&ea, n= X0
k=1 E=1
one has then using (22)
7(0) 7 (0y) u = expl[-2i X EnFlm(d) m(dy)

= expli 3 (e~ 20) 8 (6, u

which shows that for 9 == %' 7 (d,)u and 7 (J,/)u are eigenvectors of the
7 (d;) belonging to different eigenvalues and hence mutually orthogonal.
H contains thus a non-denumerable orthonormal system; q.e.d.

§ 4. The algebras .#, (9, ¢) and .#; (9, o)
for an infinite-dimensional symplectic space

We consider in this section an infinite-dimensional symplectic space
(9, o), that is, an infinite-dimensional real vector space 9 equipped with
a symplectic form and such that in addition there exists a filtrating and
absorbing system of regular finite-dimensional subspaces of $ (we recall
that a subspace €C 9 is regular if the restriction of o to € is regular.
& is filtrating in the sense that to each pair €, €, € % there exists
€, € & such that € D€, U €, & is absorbing in that GleJ@ € = 9. These

two definitions imply that to each finite-dimensional vectorial subspace
& C 9 there exists an € € & such that FC E).

The infinite-dimensional symplectic spaces which we will have to
consider are all provided by some complex prehilbertian space £ with
a complex scalar product & = s + 70, ¥ consisting of all finite-dimen-
sional complex subspaces of §. In this case one has a ‘“g-allowed pre-
hilbertian structure” on (9, o) as was defined in the beginning of Section 3.
Since however other ¢-allowed prehilbertian structures on the same
(9, o) can be of interest (see § 6), it is useful to consider the symplectic
space (9, o), as above, independently of the way in which it is given in
terms of a prehilbertian space.

Our task is to construct the analogues for (9, o) of the algebras
discussed in §§ 2 and 3 for a finite-dimensional symplectic space. Roughly
speaking these are the “union” of the algebras .#, (€, g) (resp. 4, (€, )
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corresponding to_the subspaces € € % of §). For a rigorous construction
we start from the set I of all couples {u, €} consisting of an € ¢ &
and a u € A, (€, o) and define on I an equivalence relation in the follow-
ing way: given €,C &; € & let us first denote by ¢,z the homomorphic
injection of .#(€,, o) into .#,(&;, o) provided by the “natural exten-
sion” of measures (see Theorem 6). One has, according to (33)

Qoo = identity operation on .4 (€,, o) (79)
Pyp* Ppa= Pyo Tor E,CECE, S . (80)

The equivalence {pt, €} ~ {ug, €5} between elements of M is now defined
as the existence of (at least one) €, ¢ & such that €,>€, U & and

Pyafha = PysHUp - (81)
One can equivalently require (81) for all €, such that €,>€, U ;.
Suppose indeed that (81) holds for €, and that there is a €; € & such that
€D C, U & but @5, e + @spus. Taking €, € & such that €, D€, U €
one would conclude from (81) and the fact that ¢.s is injective that

Pey Pyalhe = Poy Pyplp = Poalla = Peplp -

PeoPoulba F PeoPsplp = Pealla + Pepllp -
The relation ~ defined by (81) is now easily seen to be an equivalence
relation : reflexivity is obvious from (79), reciprocity from the symmetry
of (81) in « and f, transitivity from the fact that the equivalences
{Bar €} ~ {up, €} and {pg, €} ~ {u,, €} imply for €, ¢ & such that
€ D€, U € that
Poalba = Poplts = Poyly >

whence {u,, €.} = {,» €,}.

We consider now the set M, of the classes determined in I by the
equivalence relation ~. Let us call {u,, €,} € M a representant of u € M,
if {ua €} € u. For p,v €M, with representants {u., €.}, {vs, €} we
can choose other representants {g,,us, €,}, {@,57s €,} with the same
€ ¢, €,0€, UE. We then define au 4 by (for complex scalars
a,b), p x v and p* as the respective equivalence classes of {a @, ,u, +
F0@se € {(@ratta) X (#yputp), &) and {(@yapa)*, €} We define
in addition

lelly = @y o prally = A1 — norm of (82)
4] = | @ya el = Schrédinger norm of 4 . (83)

Owing to (34), (35), (36a, b) and (74) these definitions do not depend on
the choice of €,. Neither do they depend on the choice of the represen-
tants {u,, €} and {5, €} of u and » because by starting from other
representants one would get the same {@,,u., €}, {@,57s €,} with
an appropriate €,. We have therefore defined on IR; the structure of
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a normed *-algebra (in either of the two norms (82) and (83)). The
Banach *-algebras .#; (9, o) and #, (9, o) are now defined as the com-
pletions of MW, = MW, (9, 0) in the respective norms (82) and (83). Since
[u* x ull = ||p|? for all u € M, A, (9, o) is a C*-algebra.

The preceding construction depends a priori on the system <.
However,

Theorem 21. ,(9, o) as constructed above (and therefore M,(9, o)
and M(9,0)) depend uniquely on the symplectic space (9, o) and not
on the system & used for their construction.

Proof: Take a symplectic space (£, o) with two distinct filtrating and
absorbing systems & and &, of finite-dimensional regular subspaces.
&' =% v S, is a filtrating and absorbing system containing & (it is
filtrating because & absorbs every finite-dimensional vectorial subspace
& of 9). Let M and MY, resp. M and MY denote the spaces construct-
ed above respectively with & and %’. We want to establish a one-to-
one homomorphism between %Y and MY, For this, to each uE w7
with representant {u,, €} ¢ M” CM” we assign the class u’' €M7
of {us €.} in MW", This procedure is independent of the choice of the
representant {u,, €,} of u because if {u,, €} ~ {us, €5} in M the same
holds obviously in %", Since the algebraic operations in M*” can be
defined using arbitrary representants the mapping y— u'ishomomorphie.
It is on the other hand one-to-one (because of the arbitrariness of
€, in the definition of ~) and onto (because % is absorbing).

Theorem 22. Let (9, o) be an infinite-dimensional symplectic space and
R a symplectic subspace of (D, o) (that is a subspace which s itself a
(possibly infinite-dimensional) symplectic space under the induced struc-
ture). There is a natural homomorphic injection of M1 (R, o) into M(9, o)
(respectively of M,(R, o) into M(D,0)). The set of these injections for
different subspaces satisfies in addition the rules (79), (80).

& and &, being filtrating absorbing systems for’$) and R respectively
one sets &' = & U &, and performs with & and &’ the construction
of the preceding theorem, the only difference being that % is not ab-
sorbing for §, so that the mapping p — u’ is not onto.

§ 5. The Fock representation of .#; (£, ) associated to a o-allowed
prehilbertian structure and the corresponding field operator

In the last section the algebra .#, (%), o) has been given an algebraic
definition without reference to a special representation. This is made
possible by the intrinsic character of the Schrodinger norm (83) due to
von Neumann’s uniqueness theorem (adapted to the algebra of bounded
measures). We now intend to describe the analogue for (9, o) of the
Schréodinger representation of (€, ¢): the analogy with the finite-
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dimensional case is however only partial: instead of the uniqueness of
the Schrodinger representation (following from Theorem 15) we will
now have a plurality of “Fock representations’ (which depend on the
choice of a g-allowed prehilbertian structure), amongst which the famil-
iar Fock representation of field theory is only one example.

Let (9, o) be our infinite-dimensional symplectic space. We start
as in § 4 from a ¢-allowed prehilbertian structure & = s + 40 on (9, o).
Defining the function £2; on $ as

1

Gp=c """, ey (84)
we consider the linear form w, on M, (%, o) defined as follows: for
u €M (9, o) with representant {u,, €.}, €, € &, we set

Wy (‘u) = WYa (‘Q;[@o() (85)

where ;| €, is the restriction of £ to the subspace €,.

This definition does not depend on the representant {u,, €,}: given
another representant {us, €} we have an €, ¢ %, €, D€, U &, such
that @, .M. = @,pUp Whence

Pa (23] €) = pa{(2]€)) |€} = {9, o} (5] E,)
= {®ypps} (%]C,)) = s (2] €p) .

Tt is obvious from the definition of algebraic operations in 9, (9, o)
that w, is a positive linear form on this algebra. One has further from (51),
(68), (82), (83)

lo(w)] = |ul = |pl: (86)

therefore w, extends to a positive linear form on the Banach *-algebras

M9, o) and A (9, ¢), which is of unit norm since p(d,) = 1. The re-

presentation 7, of #,(9, o) (and, by restriction of its sub *-algebras)

is called the Fock representation associated with the o-allowed prehilbertian

structure b = s + i0. Unlike the case of a finite number of degrees of

freedom (corollary to Theorem 15) z,, now essentially depends on s.
If, for p € 9 such that s(y, y) = 1, we define

Us(yp) = 74, (3,) (87)
the correspondence

ACR - Uy(Ay) (88)
is by (22) a unitary representation of the additive real number line.
Since
- % s(v, ¥)

05 () = (Po| Us () | Do) = e (89)

is continuous in y this representation is strongly continuous (we denote
by @, the cyclic vector of the Fock representations 7, constructed
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a la Gelfand-Segal from the positive form w,). By Stone’s theorem there
exists therefore a self-adjoint infinitesimal operator

IR U(ly) —1
Ayp) = —ilim TEI =1 (90)
such that
Us(y) = 4@ (91)

this (unbounded) operator is called the field operator associated with the
Fock representation s, (or with the o-allowed structure 2 = s+ ig).
Let $ be the Hilbert space completion of the prehilbertian space (8, h).
The field operator (90) is identical with the operator

at{y}+a{y}, YEHCH (92)

defined in the Hilbert space & (9) = eBO S$H®?. This results from the
P =
equality of (89) with

1
(poleite” 0+ 0 [y = ¢~ 2* 93)

where y, is the vacuum of & (9).

The last formula is easily derived from the fact that the exponential
of (92) as applied to the vector y, is equal to its Mac Laurin expansion
(calculation analogous to the derivation of the addition law (3)).

Notice that the Fock representation s, of .#;($9,c) is obviously
faithful since ||7,, ()] = [ul for all p.

§ 6. The field operator algebra A($H,s) and its subalgebras A (€, o)

We come now to the description of the ‘field operator algebra”
which is the object of main interest for field theory. (9, o) still denoting
an (infinite-dimensional) symplectic space let § be a finite-dimensional
vectorial subspace of $ and u a bounded measure on F. We can give u
a unique meaning as an element of .#, (9, o) by choosing € ¢ & such
that € >, defining ji = pegu on € by (33) and taking the element of
My (9, 0) C M (D, 0) represented by (i, €). This procedure does not
depend on the choice of the subspace €, because, if we had chosen in-
stead & € %, there would exist ¢ ¢ &, €’ D€ U € such that

Yere b = Pere Peg b= Peg b= Pec Peg b= P e i
or {@#i', €} ~ {fi, €}. In this way we can consider as included in .#, (9, o)
the following decreasing sets: the set .4, () of bounded measures on {,
the set Z1(F) of bounded measures on § absolutely continuous with
respect to Lebesgue measure and the set € (F) of (bounded) measures
with Radon-Nicodym derivatives (with respect to Lebesgue measure)
continuous and with compact support.
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Definition: Let A(9, 0), resp. Up(9, o), be the smallest sub-C*-
algebra of A4 (9, o) containing all Z1(F), resp. € (F), for all one-dimen-
sional (real) vectorial subspaces of . A(9, o) is called the field operator
algebra of the symplectic space (9, ).

This definition being given for an (§), o) of arbitrary dimensionality,
it is clear from the inclusion of the .#;-C*-algebras that A($, o) contains
as sub-C*-algebras all the (€, ¢) corresponding to the regular subspaces
€ of 9.

The following theorem gives the connection between A (9, o) and the
field operators of the different Fock representations.

Theorem 23. Let h = s+ io be an arbitrary c-allowed prehilbertian
structure on (9, o) and let 7, and A, (yp) be the associated Fock representa-
tion and field operator. The image of A(9D, o) in m,, is the smallest sub-
C*-algebra of 7., (M1(D, 0)) which contains all functions of the different
field operators A, (), w € §, which are continuous and vanish at infinity.

This theorem shows that the ‘“algebra generated by the field operator”
is independent of the Fock representation (viz g-allowed prehilbertian
structure). This motivates the name “field operator algebra” without
further specification.

Proof of the theorem : The specification of a vector ¢ in the one dimen-
sional subspace  establishes as follows a one-to-one correspondance
between Lebesgue-integrable functions and absolutely continuous mea-
sures on {:

fee?!’l(%)Hufeefi(%)
ur(g) = f g(lw)f(hp) g €6, (F) - (64)
Let
Ay (p) = f EdAP(& (95)

be the spectral decomposition of the self-adjoint field operator A,(yp).
Stone’s theorem tell us that

Uy (hy) = 0, (8,) = 67449 = [ @it 4P (£) (96)

— 0

and we know from the theory of the #;-algebra of the additive group
of & that for u, given by (94)

+ o0
T, (45) = f U(Ay) f(Ay) dd= [ [(&)dP(E) = f(4s(y), (O7)

where f is the Fourier transform of A4 — f(A V)

+ oo
f@) = [ é*fAy)da; (98)

— 0
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the norm of the operator (97) is given by
17, ()] = {0 = Sup [f(£)] - (99)
EER

Our theorem then results from the known fact that the set of Fourier
transforms (98) of functions of &, (F) is a dense subset of the set €, (1)
of all continuous functions vanishing at infinity on the real line.

§ 7. Other possible choices of C*-algebras

The C*-algebras described above do not exhaust the list of possible
choices of a C*-algebra associated with the Boson field. The following
alternatives are to be considered, each of which might possess special
virtues:

The algebra # (9, o) defined as the smallest C*-subalgebra of 4, (,0)
containing all bounded measures on the different (real) one-dimensional
spaces of §. This algebra could, as well as 2A(9, o), claim the name of
“field operator algebra’ since it is the smallest C*-algebra of .#, (9, o)
containing all bounded continuous functions of the different field opera-
tors which are differences of continuous functions of positive type (this
is seen by an argument analoguous to the one of the previous section)*.

The algebra A" (9, o) is the smallest C*-subalgebra of .#,(9, o)
containing all absolutely continuous measures on the different regular
subspaces of $. This algebra is easily seen to be included in all others
(by means of the Stone-Weierstrass Theorem). In any concrete realiza-
tion it consists of tensor products of a compact operator times a unit
operator.

SEeAL defines as the “Weyl algebra’ the C*-algebra obtained in the
following way. The fact, noted in Theorem 18, that all representations
of Z, (€, o) are quasi-equivalent, implies that there is a (unique) one-to-
one correspondence between the weak closures (the von Neumann rings
generated) in any two different representations. This provides an
intringic definition of the von Neumann ring R (€, o). Moreover for
€, § €& such that €CF one has N(E, 0) CR(F, o). The Weyl algebra
of SE@AL is then defined as the completion in norm of the inductive
limit of all R(E, ¢), € € Z.

The algebra dealt with in Ref. [1] is the C*-inductive limit of “Haag
rings” obtained in the following way. Let % be an open space-time do-
main with compact closure; then R(%) is the von Neumann algebra
generated by the spectral projectors of all field operators A (f) correspond-
ing to test functions f with support in %. In our description R (#) could
be obtained as the closure in the weak operator topology associated with

* We leave open the question of wether % (9, o) is actually smaller than .#, (9,0).
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the standard Fock representation of the smallest C*-subalgebra of
M1 (9, o) containing all bounded measures of all rays of & of the form
w=A**f, where f is a test function with support in %. One then
takes the uniform closure of the inductive limit of all R(#). This de-
finition uses both the detailed structure of the one-particle space of
free relativistic bosons and the standard Fock representation defined
by the Lorentz-invariant vacuum. The question of whether the con-
struction actually depends upon this particular representation is related
to the possible “local quasi-equivalence” of all representations.
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