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Abstract

This paper deals with the global existence and stability of solutions of a new class of
partial integral equations of Hadamard fractional order.
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1 Introduction

Integral equations are one of the most useful mathematical tools in both pure and applied
analysis. This is particularly true of problems in mechanical vibrations and the related
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fields of engineering and mathematical physics. We can find numerous applications of
differential and integral equations of fractional order in viscoelasticity, electrochemistry,
control, porous media, electromagnetism, etc. [17, 18, 21]. There has been a significant
development in ordinary and partial fractional differential and integral equations in recent
years; see the monographs of Abbas et al. [5, 6], Kilbas ef al. [20], Miller and Ross [22],
Samko et al. [24], the papers of Abbas et al. [1, 2, 3], Bana$ et al. [7, 8,9, 10, 11, 12],
Darwish et al. [16], and the references therein.

In [13], Butzer et al. investigate properties of the Hadamard fractional integral and
derivative. In [14], they obtained the Mellin transforms of the Hadamard fractional inte-
gral and differential operators. In [23], Pooseh et al. obtained expansion formulas of the
Hadamard operators in terms of integer order derivatives. Many other interesting properties
of those operators and others are summarized in [24] and the references therein.

Recently, Abbas et al. [4] studied some existence and stability results for the nonlinear
quadratic Volterra integral equation of Riemann-Liouville fractional order of the form

u(t,x) = fltxutx).ue@.0)+ o B0 -

(1.1)
xg(t, x, s,u(s, x),u(y(s),x))ds; (t,x)e€ R, x[0,b],

where b > 0, R, =[0,00), r € (0,00), a, B, ¥y : Ry = R, f: Ry X[0,b] xRXR — R and
g: Ry x[0,b] xRy xR XR — R are given continuous functions and I'(:) is the (Euler’s)
Gamma function defined by

)= foo et > 0.
0

This paper deals with the global existence and stability of solutions to the following
nonlinear quadratic Volterra partial integral equation of Hadamard fractional order,

1 rx r—1 r-1
u(t,x) = f(txu(tx).u@0.0)+ s [ [ (log22)" (log2)
(1.2)
déds
xg(t, x,5,¢, u(s,-f),u(V(S),f))s—g; (t,x) € J:=[1,00)X[1,0],
where b > 1, r;,rp € (0,00), @, B, v:[l,00) = [1,00), f: JXRXR—>Rand g:JXJXRX
R — R are given continuous functions.

Our existence results are based upon Schauder’s fixed point theorem. Also, we obtain
some results about the local asymptotic stability of solutions of the equation in question.
Finally, we present an example illustrating the applicability of the imposed conditions.

This paper initiates the global existence and stability of such new class of fractional
integral equations.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. By L!([1,a] x[1,b]); for a,b > 1, we denote the space of Lebesgue-



44 S. Abbas, W. Albarakati, M. Benchohra and J.J. Nieto

integrable functions u : [1,a] X [1,b] — R with the norm

a b
lleelly = f f |u(t, x)|d xdt.
1 1

By BC := BC(J) we denote the Banach space of all bounded and continuous functions from
J into R equipped with the standard norm

lullpc = sup |u(z,x)|.
.0l

For uy € BC and n € (0, 00), we denote by B(ug,n), the closed ball in BC centered at 1y with
radius 7.

Definition 2.1. [20] The Hadamard fractional integral of order ¢ > O for a function g €
L'([1,a],R), is defined as

H 4 _fo d
CHow = g | (10g3)

where I'(+) is the Euler gamma function.

q-1
@ds,

Example 2.2. The Hadamard fractional integral of order ¢ > O for the function
w:[1,e] = R, defined by w(x) = (logx)’~! with 8> 0, is

I'(B)
I'(B+q)

Definition 2.3. Let r|, r» >0, o = (1,1) and r = (r1,r2). For w € L'(J,R), define the
Hadamard partial fractional integral of order r by the expression

o ~ 1 fxfy f ri—1 X rn-1 W(S,t)
Clow)ey) = mesremy o (logs) (logt) 5 s

Let® # Q c BC, and let G : Q — Q, and consider the solutions of equation

(logx)yPa-1.

(w0 =

(Gu)(t,x) = u(t, x). 2.1
Now we review the concept of attractivity of solutions for equation (1.2).

Definition 2.4. [5] Solutions of equation (2.1) are locally attractive if there exists a ball
B(ug,n) in the space BC such that, for arbitrary solutions v = v(¢, x) and w = w(t, x) of equa-
tions (2.1) belonging to B(ug,n) ()2, we have that, for each x € [1, 5],

lim (v(t, x) = w(t,x)) = 0. (2.2)
>0

When the limit (2.2) is uniform with respect to B(ug,n), solutions of equation (2.1) are
said to be uniformly locally attractive (or equivalently that solutions of (2.1) are locally
asymptotically stable).
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Definition 2.5. [5] The solution v = v(t, x) of equation (2.1) is said to be globally attractive
if (2.2) holds for each solution w = w(z, x) of (2.1). If condition (2.2) is satisfied uniformly
with respect to the set €2, solutions of equation (2.1) are said to be globally asymptotically
stable (or uniformly globally attractive).

Lemma 2.6. [15] Let D C BC. Then D is relatively compact in BC if the following condi-
tions hold:

(a) D is uniformly bounded in BC,

(b) The functions belonging to D are almost equicontinuous on [1,00) X [1,b],

i.e. equicontinuous on every compact of J,

(c) The functions from D are equiconvergent, that is, given € >0, x € [1,b] there corresponds
T (e,x) > 0 such that |u(t, x) — lim;—. u(t, x)| < € for any t > T(€,x) and u € D.

3 Existence and Global Stability Results

In this section, we are concerned with the existence and the asymptotic stability of solutions
for the Hadamard partial integral equation (1.2).

The following hypotheses will be used in the sequel.
(H1) The function « : [1,00) — [1, 00) satisfies lim,_,, a(f) = oo,
(H3) There exist constants M,L > 0, and a nondecreasing function ¢ : [0,00) — (0, 0)

such that M < %,

M(Juy —uz| +[vi —v2|)

7wt v) = J (X, v)l < e T T+ v —val)”

and
[f(t1, x1,u,v) = f(t2, X2, u, V)| < (It1 — 12| + | x1 — X2 1 (|| + V1),

for each (¢, x), (t1, x1),(t2,x2) € J and u,v,u1,vi,uz,v2 €RR,
(H3) The function t — f(¢,x,0,0) is bounded on J with

= sup f(t,x,0,0)
(6,0l 1,00)x[1,b]
and
lim [£(1,x,0,0)] = 0; x € [1,0],

(H4) There exist continuous functions p,q,¢ : J — Ry, and a nondecreasing function v, :
[0,00) — (0, 00) such that

|g(t]’xl’ S,g,u, V) _g(tz’xz’ saf’ M,V)l < (,D(S,é:)(lt] - t2| + |X] —X2|)lp2(|1/l| + |V|),

and

p(t,x)q(s,&)

t, b 9 b b S —’
g0t .8Vl < T S b

for each (¢, x),(s,&),(t1,x1),(t2, x3) € J and u,v € R. Moreover, assume that

B(1)  rx
lim p(t, x)f f AW
t—o00 1 1

ri—1 -1

log— q(s,&)déds = 0.

N

X
log —
&
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Theorem 3.1. Assume that hypotheses (H,) — (Hy) hold. Then the integral equation (1.2)
has at least one solution in the space BC. Moreover, solutions of equation (1.2) are globally
asymptotically stable.

Proof: Set d" := sup, ,)c; d(t,x) where

(£, %) 5(1) F1—1 -1
S q(s,&)déds.

d(t,x) =

X
log —
3

From hypothesis (H,), we infer that d* is finite. Let us define the operator N such that, for
any u € BC,

Nu(tx) = fltoxut, 0 u@(0.0) + o [P0 [ (10g22)" (1og £)™
G.1)

X (1, %, .6,1(5,), u(y(5).£)) i: (tx) € J.

By considering the assumptions of this theorem, we infer that N(«) is continuous on J. Now
we prove that N(u) € BC for any u € BC. For arbitrarily fixed (¢, x) € J we have

|(Nu)(z, )| < | f (2, x, u(t x), ua (1), X))—f(t x,0,0)[ +1£(z,x,0,0)|

5(1) ri—1 -1
1 og & log g
X g1, 3. 5,£u(5,), u(y(S),f))If—§I

M(|u(t, x)| + |u(a(2), X))
(I +a@®)(L+ |u(t, x)| + [u(a(r), 0)))
p([ X) f (l‘)f @ ri—1
T log
q(s,€) déds
1+a(t)+ lu(s, &)+ u(y(s),E)  s&

M(u(t, )|+ lu(a(D), X)) .. .
S ol .

+1f(t,x,0,0)|

X r—1

3

Thus
IN(u)llgc < M+ f*+d". (3.2)
Hence N(u) € BC. The equation (3.2) yields that N transforms the ball B, := B(0,7) into

itself where 7= M + f* +d*. We shall show that N : B, — B, satisfies the assumptions of
Schauder’s fixed point theorem [19]. The proof will be given in several steps and cases.

Step 1: N is continuous.
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Let {up},env be a sequence such that u, — u in B,,. Then, for each (7, x) € J, we have

IA

|(Nup)(t, x) = (Nu)(t, x)| Lt x, (2, ), un ((2), X)) = £ (2, x, u(t, ), u(a(1), x))|

R0 ﬁm ”‘1| Mica
oo Ji Ji fto logz

X sup Ig(t,x,S,f,un(s,f),un(y(S),f))
(s.£)e]

—g(r X, 5,£,u(s,£), u(y(5), )| 2 3.3)

M1, — ullge

I ﬁ(t)
F(rl (r2) fl

x|lg(t, x, -, ,un( ) Mn(v( )>7)
—=8(t, %, u(, ), uy(), )llpcdéds.

IA

(r) 2-1

Case 1. If (t,x) € [1,T]x[1,b], T > 1, then, since u,, — u as n — oo and g,y are contin-
uous, then (3.3) gives

[IN(u;) —N@w)llpc >0 asn— oo.

Case 2. If (t,x) € (T,00) x[1,b], T > 1, then from (H,4) and (3.3), for each (¢, x) € J, we
have

|(Nuy,)(t,x) = (Nu)(t,x)| < 2ﬁlllun ullpc
N0 5([) - 2l g8
F(rl)F(rz) J |1°g§ & déds
< M, —ullpc + d(t, x).
Thus, we get
oM
|(Nuy,)(t, x) = (Nu)(t, x)| < T”un —ullpc +d(t, x). (3.4)

Since u;,, — u as n — oo and t — oo, then (3.4) gives

IIN(u,) —Nw)llpc >0 asn— oo.

Step 2: N(B)) is uniformly bounded.
This is clear since N(B;) C B, and B, is bounded.

Step 3: N(B)) is equicontinuous on every compact subset [1,a] x[1,b] of J, a> 0.
Let (t1,x1),(t2,x2) € [1,a] X[1,b], t; <12, x| < x2 and let u € B;,. Also without loss of gen-
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erality suppose that 8(¢1) < S(2). Then, we have

|(Nu)(t2,x2) = (Nu)(t1, x1)|
<|f(t2, x2,u(tz, x2), u(a(t2), x2)) — f(t2, x2, u(ty, x1), u(a(ty), x1))l
+f(t2, x2, u(ty, x1), u(a(ty), x1)) — f(ty, x1, u(ty, x1), u(a(ty), x1))|

1 Bt2) x2 logﬁ(tz) r1_1| r-l

_ 1 p2) X2
troorm S log %

X|g(t2’ X2,5, é:’ M(S, f)’ M('y(S), ‘f)) T g(tl X1, Sa§:9 M(S’ 6)9 M(V(S)’ é:))|d‘§:ds
(1) [x2 1)\~ x \2~

+| GGy [ (log%2)" (10g )

Xg(tl s X158, f’ M(S, 6)9 u()’(s), f))dé‘:ds

-1 -1
~re T (02 22)" T (log )"

Xg(t1, 31, 5,6, u(s, £), u(y(s), E))déds|

o )lr(rz) f1ﬂ(m ffq (log @)” B (log %)rz_l

~ (10g22)" ™ (10g g—l)”‘l]|g<n,x1,s,§, u(s,€),u(y(s).)ldéds.

Thus, we obtain

[((Nu)(t2, x2) = (Nu)(ty, x1)|
< M (Ju(ty, x2) — u(ty, x| + lu(e(t2), x2) — ula(tr), x1)))
+(|t2_t1|+|x2—x1|)'ﬁl(2”u”BC% 1
1 Bt2) x2 B |~ x|
+r(r1)r(r2)f1 fl og =+ log Z
X@(s,E)(|t2 — 11|+ [x2 — x1 D2 2llullpc)déd s

1 Bt2) X2 By |11 x|
TTeore ) fl log =5 log %

Xlg(tl » X1, s?éj’ M(S,f), M()’(S),f))ldfds

1 Bt2) x2 B(1) ri=1 =1
+rores fxl og=F|  |logZ
X|g(t1,x1,5,&, u(s,&),u(y(s),E)\déds

1 (B rx M”_l ﬂrz—l
ot Sy e 10855 log %

X|g(ty,x1,8,& u(s,&),u(y(s),€))|déds
1 B rx Bt \1~1 r-1
troomem i |(log®2) " (log )

(102 242)"™ (10 )" [lgt1. 1,5 £, 804ty (9). )l

—

—
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Hence, we get

|(Nu)(t2, x2) — (Nu)(ty, x1)|
< Hu(tz, x2) = u(ty, x| + lu(a(t2), x2) — ue(ty), x1))
+(2 = f1l + lx2 — x1 )1 (21)

(t2=t1]+[x2—x1 D2 (217)

T o) ; |

% [7 [ fog 22" flog 2[ " ¢(s, o)dzds
ey ﬁfffi) * [log 222 " |10g% rz_lq(s,f)ldgds
kel (P [2]10g 60" fiog 27 (s, £y
s o 17 og 22" log 2™ s olazas
it i : (log22)" ™ (tog )™

(1og ﬁ(”)) (log %) ‘ q(s,&)|déds.

From continuity of «,8, f,g and as t; — t, and x; — x», the right-hand side of the above

inequality tends to zero.

Step 4: N(B)) is equiconvergent.
Let (¢,x) € J and u € B, then we have

lu(t, x)| < | £t x,u(t, %), u(a(2), X)) — £(2,x,0,0) + f(t,x,0,0)|

X g(t,x,5,&,u(s,£), u(y(s),8))

(1) ri—1 r—1
k" [
L(rp(r2) J 1 ¢

déds
s&

M(|u(t, x)| + |u(a(2), 0)))

(I +a@®)(L A+ |ut, x)| + lu(a(?), X))

+|f(t,x,0,0)|

p(t x) fﬁ(t)f ( 18( ))rl 1( x)r2—1
log— log —
F(’"l )(r2) &

q(s,£)

T r aO) + (5, D) + (), )]
+|f(¢,x,0,0)

<
T 1+a)
p(t,x)

LDl (r)(1 +a(7))

<
1+a()
Thus, for each x € [1,b], we get

déds

B(1) r-1 r—1
[ o s

+1/(t,x,0,0)| +

1+a(t)

lu(t,x)| — 0, as t - +oo.

Hence,

lu(t, x) — u(+o0,x)| = 0, as t — +oo.
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As a consequence of Steps 1 to 4 together with the Lemma 2.6, we can conclude that
N : B, — By, is continuous and compact. From an application of Schauder’s fixed point
theorem [19], we deduce that N has a fixed point # which is a solution of the Hadamard
integral equation (1.2).

Step 5: The uniform global attractivity.
Let us assume that ug is a solution of integral equation (1.2) with the conditions of this

theorem. Consider the ball B(ug,n) with n* LLA; 57> Where

i} 1 ,B(t) X B(t))rl_l( x)rz—l
M = —— log— log —
() ﬁlﬁlij{fl fl (Og s e

X|g(t, x, 5,&,u(s, &), u(y(s),£))
—g(t,x,5,&,u0(5,£), uo(y(5), £))|dédss; u € BC).
Taking u € B(ug,n*). Then, we have
[(Nu)(2, x) — uo(t, X)| |(Nu)(2, x) = (Nuo)(t, )|
|f (2, x, u(t, ), u(e(), X)) — f (&, X, uo (2, x), up((2), X))l

1 ﬁ(z) X ﬁ(t))r]_]( x)}’z—]
- log—~ log Z
r(rl)r(rz)f] fl (Og s 8

X|g(t, x, 5., u(s, &), u(y(s),£))

IA

+

déds
s&

< —|lu—ugllpc + M*
L||

< 2M*+M*_*
= LT] =n.

Thus we observe that N is a continuous function such that N(B(ug,n*)) C B(ug,n*). More-
over, if u is a solution of equation (1.2), then

|u(t, x) —up(t, )| = |(Nu)(t, x) — (Nuo)(, x)|
< 1f@ xu(t, x), u(a(r), x)) — f(t,]x, uo(t, x), 1140(0/(1), x))|
B() x H\'1~ x\2~
torem b (log @) (log E)
x|g(t, x, 5,&,u(s,&),u(y(s),£))
—g(t,x,s,f,uo(s,f),uo(y(s),f))|d§ds.

Thus
lu(t,x) —uo(t, )| < Hult,x)—uo(t, )| + lu(a(t)’)f) - uO(a(t)f ) )
r(fl()trj?rz) 1ﬂ(t)f1 ( ﬁ(t)) l (logg) ’ q(s,&)déds. ’

By using (3.5) and the fact that a(f) — oo as t — oo, we get

i . L.p(t,x) T G
fm 015 i s | fl(k’gT) (k’gE)

X q(s,&)déds =0.
Consequently, all solutions of the integral equation (1.2) are globally asymptotically stable.
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4 An Example

As an application of our results we consider the following partial Hadamard integral equa-
tion of fractional order

u(t.) = i (1 2sin(e. 0)+ i 1 (log )¥ (log2)™
@.1)

In(1+2x(s6)" ju(s.£)]) .
(1+l+2|u(s,§")|)2(1+x2+t4)d§ds’ (f, )C) € [la OO) X [la e]9

where 1 =, = 1, a(t) = (1) = y(t) = 1,

tx(1 + sin(u) + sin(v))

Jtxuv) = =0 T o)

and
In(1 + x(s&)~ (|u] + |v]))

(L+1+ul+ D2 +x2 +14)°
for (¢,x),(s,&) € [1,00)x[1,e], and u,v € R.

g(t,x,s,&,u,v) =

We can easily check that the assumptions of Theorem 3.1 are satisfied. In fact, we have
that the function f is continuous and satlsﬁes assumption (H), where M = 10, = 1. Also
f satisfies assumption (H3), with f = {5- Next, let us notice that the function g satisfies
assumption (Hy), where p(t, x) = and ¢(s,&) = (s€)~'. Also,

1+ 2+t4

hm p(t x)f f log - ’ log — ‘ q(s,&)déds
B El déds
a Hoo1+x2+t4ff log s&

9x(logt)3 B
oo |+ x2+14

Hence by Theorem 3.1, the equation (4.1) has a solution defined on [1, c0) X [1,¢] and solu-
tions of this equation are globally asymptotically stable.
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