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Abstract

Our aim is to give a simple estimate of the Bloch constant applying some fundamental

facts on complex analysis. Our method is based on the Cauchy estimate, the maximum

modulus principle, the Schwarz lemma and the Rouché theorem.
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1 Introduction

Given a ∈C and r > 0 we write B(a,r) := {z ∈ C : |z−a| < r}. In particular the unit open disc

is denoted by D := B(0,1) = {z ∈ C : |z| < 1}. The following theorem is well known as the

Bloch theorem.

Theorem 1.1 (The Bloch theorem). We can take a constant B > 0 so that for all holo-

morphic function f on D satisfying f ′(0) = 1, there exists a point z f ∈ f (D) such that

B
(

z f ,B
)

⊂ f (D).

The supremum of B appearing in Theorem 1.1 is called the Bloch constant. The estimate

of the constant is one of the most important problems in complex analysis. Ahlfors and

Grunsky [2] have found the upper bound B ≤
1

√

1+
√

3

·
Γ(1/3)Γ(11/12)

Γ(1/4)
< 0.4719. They

have also conjectured that the correct value equals to the upper bound above. It is known

that the lower estimate B >
√

3/4 is obtained by using the Poincaré metric [1, 9, 12, 13].

Some better lower estimates are proved based on more developed methods [3, 4, 15].

The recent study on the Bloch theorem treats not only better estimates of the Bloch

constant but also generalizations of the theorem to wider classes of functions. Some gen-

eralizations to the cases that functions of several variables, locally univalent functions and

harmonic functions are known ([5, 6, 10]).

On the other hand, we note the method of the proof of the Bloch theorem. Recently

Cortissoz and Montero [8] have proved it based on the Banach fixed point theorem. Of

course an elementary complex analytic proof is known. For example we can find the proof

with B ≥ 1
16 log3 in [14]. An argument similar to [14] is found in [7, 11].

In the present paper we give a simple method of an estimate of the Bloch constant

modifying the argument found in [7, 11, 14]. It suffices to use basic facts on complex

analysis in order to a better estimate than the one obtained by [14]. More precisely we have

only to use the Cauchy estimate, the maximum modulus principle, the Schwarz lemma and

the Rouché theorem in order to prove the key lemma. We remark that our method gives not

only a simple estimate of the Bloch constant but also a self-contained and elementary proof

of the Bloch theorem.

2 The main result

In order to prove the Bloch theorem straightforwardly we use the next lemma. For readers’

convenience we give a self-contained proof, however the lemma can be found in [7, 11, 14].

Lemma 2.1. Let f be a holomorphic function on B(0,R) satisfying | f (z)| ≤ M for all z ∈
B(0,R), where M > 0 is a constant independent of z, f (0)= 0 and f ′(0) = 1. Then f satisfies

f
(

B
(

0, R2

4M

))

⊃ B
(

0, R2

6M

)

.

Proof. If the function f (z)− z equals to a constant C on B(0,R), then f (0) = 0 implies that

C = 0. We easily see that the conclusion of the lemma is true in the case f (z)= z on B(0,R).
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Below we suppose that f (z)− z does not equal to any constant function on B(0,R).

Because f is analytic on B(0,R), we obtain the Taylor expansion of f on B(0,R), that is,

f (z) =

∞
∑

n=0

cnzn =

∞
∑

n=2

cnzn+ z. (2.1)

Here we remark that c0 = f (0) = 0 and c1 = f ′(0) = 1. By virtue of the Schwarz lemma we

have | f ′(0)| ≤ M
R

. Because of f ′(0) = 1, we additionally get R ≤M. Below we write r := R2

4M
.

Then we have

r =
R2

4M
≤

R2

4R
=

R

4
< R ≤ M. (2.2)

On the other hand, the function f (z)−z is continuous on the bounded and closed set ∂B(0,r).

Thus the maximal value M(r) := max
z∈∂B(0,r)

| f (z)− z| does exist. Now we note that f is holo-

morphic on a domain including B(0,r). Hence for every n ≥ 2, the Cauchy estimate implies

|cn| =
∣

∣

∣

∣

∣

f n(0)

n!

∣

∣

∣

∣

∣

≤ M

Rn
. Thus we get M(r) = max

z∈∂B(0,r)

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=2

cnzn

∣

∣

∣

∣

∣

∣

∣

≤
∞
∑

n=2

M

(

r

R

)n

=
M

R2
· r2

∞
∑

n=0

(

r

R

)n

.

On the other hand, by virtue of (2.2) we get r
R
≤ 1

4 . Therefore we obtain

M(r) ≤
M

R2
·
(

R2

4M

)2 ∞
∑

n=0

(

1

4

)n

=
R2

12M
.

Therefore we have

r =
R2

4M
> M(r). (2.3)

Now we remark that the function f (z)− z is holomorphic and is not any constant function

on the bounded domain B(0,R). Additionally it is continuous on B(0,r). Thus by the

maximum modulus principle we get | f (z)− z| ≤M(r) for all z ∈ B(0,r). By virtue of the fact

that f (z)− z = 0 if z = 0, the Schwarz lemma implies that | f (z)− z| ≤ M(r) · |z|
r

holds for all

z ∈ B(0,r). By (2.3) we have that for all z ∈ B(0,r),

| f (z)| ≥ |z| − | f (z)− z| ≥ |z| −M(r) · |z|
r
= |z|

(

1− M(r)

r

)

> 0. (2.4)

On the other hand, we have | f (z)| ≥ |z| − | f (z)− z| ≥ r−M(r) ≥
R2

6M
for all z ∈ ∂B(0,r). Now

we take w ∈ B
(

0, R2

6M

)

arbitrarily. Because | f (z)| > |w| holds for all z ∈ ∂B(0,r), the Rouché

theorem implies that the number of the zero points included in B(0,r) of f equals to the one

of f (z)−w, where we take the order of each zero point into account. From (2.1) we see

that the point z = 0 is a zero point of order 1 of the function f . Combining the fact with

(2.4), we see that f has the only one zero point z = 0 on B(0,r). Thus the function f (z)−w

has also only one zero point on B(0,r), that is, there exists zw ∈ B
(

0, R2

4M

)

uniquely such that

f (zw)−w = 0. �

Applying the lemma above we begin the proof of the Bloch theorem. Reviewing the

proofs of Lemma 2.1 and Theorem 1.1, we see that our method is elementary and simple.
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Proof of Theorem 1.1. Fix ε, ε0 ∈ (0,1) arbitrarily. We will prove the theorem with B =
ε0

3

ε2
log 1+ε

1−ε
.

(i) We first consider the case that f is holomorphic on a domain includingD and satisfies

f ′(0) = 1.

Step 1: We estimate the function (1− |z|2)| f ′(z)|. Because this function is continuous on

the bounded and closed set D, the maximal value M :=max
z∈D

(1− |z|2)| f ′(z)| does exist. Now

we take α ∈ D so that (1− |α|2)| f ′(α)| = M holds. We see that M ≥ (1− |0|2)| f ′(0)| = 1. In

addition, if β ∈ ∂D, then (1− |β|2)| f ′(β)| = 0 holds. Namely we have |α| < 1. Thus we can

define a holomorphic function on D by

z(ζ) :=
α− ζ
1−αζ

(ζ ∈D). (2.5)

The map z : D→ D is bijective because it is the Möbius transform on D.

Step 2: We estimate a function F defined by

F(ζ) := f (z(ζ)) = f

(

α− ζ
1−αζ

)

(ζ ∈D).

We remark that F is holomorphic on D and satisfies F(D) = f (D). For all ζ ∈ D, we have

z(ζ) ∈D. Hence we get

(1− |ζ |2)|F′(ζ)| = (1− |ζ |2)
∣

∣

∣ f ′(z(ζ))z′(ζ)
∣

∣

∣

= (1− |ζ |2)

∣

∣

∣

∣

∣

∣

|α|2−1

(1− ᾱζ)2

∣

∣

∣

∣

∣

∣

| f ′(z(ζ))|

=
|1−αζ |2− |α− ζ |2

|1−αζ |2
· | f ′(z(ζ))|

= (1− |z(ζ)|2)| f ′(z(ζ))|.

Combing this result with Step 1 we obtain

(1− |ζ |2)|F′(ζ)| = (1− |z(ζ)|2)| f ′(z(ζ))| ≤ M. (2.6)

Step 3: By virtue of z(0) = α and (2.6) we see that |F′(0)| = M, in particular F′(0) , 0.

Thus we can define a holomorphic function g by

g(ζ) :=
F(ζ)−F(0)

F′(0)
(ζ ∈D).

We prove that the inclusion relation B















0,
1

3
ε2

log 1+ε
1−ε















⊂ g(D) holds. The function g satisfies

g(0) = 0, g′(0) =
F′ (0)
F′ (0)
= 1 and |g′(ζ)| = |F

′(ζ)|
M

≤ 1

1− |ζ |2
for every ζ ∈ D, where we have

used (2.6). Take ζ0 ∈ B(0,ε) arbitarily. Then there exist r0 ∈ [0,ε) and θ0 ∈ R such that

ζ0 = r0eiθ0 (0 ≤ r ≤ r0). Let l be a line segment starting from 0 to ζ0, namely l : ζ(r) =
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reiθ0 (0 ≤ r ≤ r0). We note that l ⊂ B (0,ε). Because g′ is continuous and has the primitive

function g on B (0,ε), we have

|g(ζ0)| = |g(ζ0)−g(0)| =
∣

∣

∣

∣

∣

∫

l

g′(ζ)dζ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ r0

0

g′(reiθ0 )eiθ0 dr

∣

∣

∣

∣

∣

≤
∫ r0

0

|g′(reiθ0)|dr ≤
∫ r0

0

1

1− |reiθ0 |2
dr

=

∫ r0

0

1

1− r2
dr =

1

2
log

1+ r0

1− r0

<
1

2
log

1+ε

1−ε

Thus by applying Lemma 2.1 to g, for all w ∈ B

(

0, ε2

6· 12 log 1+ε
1−ε

)

= B

(

0, 1
3

ε2
log 1+ε

1−ε

)

, there exists

ζw ∈ B

(

0, ε2

4· 12 log 1+ε
1−ε

)

= B

(

0, 1
2

ε2
log 1+ε

1−ε

)

uniquely such that w = g(ζw). This implies that

B















0,
1

3
ε2

log 1+ε
1−ε















⊂ g















B















0,
1

2
ε2

log 1+ε
1−ε





























⊂ g(D).

Step 4: We prove B

(

f (α), M
3

ε2
log 1+ε

1−ε

)

⊂ f (D). Take w ∈ B

(

f (α), M
3

ε2
log 1+ε

1−ε

)

arbitrarily. We

easily obtain

∣

∣

∣

∣

∣

w− f (α)

F′(0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

w− f (α)

M

∣

∣

∣

∣

∣

<
1

3
ε2

log 1+ε
1−ε

, that is,
w− f (α)

F′(0)
∈ B

(

0, 1
3

ε2
log 1+ε

1−ε

)

. By virtue

of Step 3, B

(

0, 1
3

ε2
log 1+ε

1−ε

)

⊂ g(D) holds. Thus we can take ζ1 ∈D so that
w− f (α)

F′ (0)
= g(ζ1). This

implies that w = f (z(ζ1)) ∈ f (D).

Step 5: We prove B

(

f (α), 1
3

ε2
log 1+ε

1−ε

)

⊂ f (D). Combing the fact that M ≥ 1 with Step

4, we see that B















f (α),
1

3
ε2

log 1+ε
1−ε















⊂ B















f (α),
M

3
ε2

log 1+ε
1−ε















⊂ f (D). Consequently we have

proved the theorem in the case (i).

(ii) We consider the case that f is holomorphic onD and satisfies f ′(0)= 1. The function

g0(z) := 1
ε0

f (ε0z) is holomorphic on B
(

0, 1
ε0

)

and satisfies g′
0
(0) = f ′(0) = 1. We also note

that D ⊂ B(0, 1
ε0

). Thus we can apply the result (i) to the function g0, that is, there exists

zg0
∈ g0(D) such that B

(

zg0
, 1

3

ε2
log 1+ε

1−ε

)

⊂ g0(D). In addition, we can take α0 ∈ D so that

zg0
= g0(α0). Now we take w ∈ B

(

f (ε0α0),
ε0

3

ε2
log 1+ε

1−ε

)

arbitrarily. Then we see that

∣

∣

∣

∣

∣

w

ε0

−
1

ε0

f (ε0α0)

∣

∣

∣

∣

∣

<
1

3
ε2

log 1+ε
1−ε
,

that is, w
ε0
∈ B

(

g0(α0), 1
3

ε2
log 1+ε

1−ε

)

. By virtue of B

(

g0(α0), 1
3

ε2
log 1+ε

1−ε

)

⊂ g0(D) there exists z1 ∈D

such that w
ε0
= g0(z1). This implies that w = f (ε0z1) ∈ f (D). Consequently we have proved

B

(

f (ε0α0) , ε0
3

ε2
log 1+ε

1−ε

)

⊂ f (D) in the case (ii). �
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Remark 2.2. We note that there do exist ε, ε0 ∈ (0,1) such that

1

16 log3
<

ε0

3
ε2

log 1+ε
1−ε
. (2.7)

In fact, if we take ε = 4
5 and ε0 ∈

(

75
128 ,1

)

, then we see that

3
ε2

log 1+ε
1−ε

16log3
=

75
16

log9

16 log3
=

75

128
< ε0,

that is, (2.7) holds. This implies that we have obtained a better estimate than B≥ 1
16 log3 due

to Yoshida [14] applying only some fundamental facts on complex analysis.
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[10] S. Kanas and D. Klimek-Smȩt, Coefficient estimates and Bloch’s constant in some

classes of harmonic mappings, Bull. Malays. Math. Sci. Soc. 39 (2016), pp 741-750.

[11] Y. Komatsu, Function Theory, Asakurashoten, Japanese, 1965.

[12] C. D. Minda, Bloch constants, J. Anal. Math. 41 (1982), pp 54-84.

[13] Ch. Pommerenke, On Bloch functions, J. London Math. Soc. 2 (1970), pp 689-695.

[14] Y. Yoshida, Function Theory Second edition, Iwanamishoten, Japanese, 1965.

[15] C. Xiong, Lower bound of Bloch’s constant, Nanjin Daxue Shuxue Bannian Kan 15

(1998), pp 174-179.


