Communications in ${f M}$ athematical ${f A}$ nalysis

Volume 19, Number 2, pp. 62–67 (2016) ISSN 1938-9787

www.math-res-pub.org/cma

A NOTE ON CLOSEDNESS OF THE SUM OF TWO CLOSED SUBSPACES IN A BANACH SPACE*

ZHE-MING ZHENG[†] College of Mathematics and Information Science Jiangxi Normal University Nanchang, Jiangxi 330022, People's Republic of China

HUI-SHENG DING[‡] College of Mathematics and Information Science Jiangxi Normal University Nanchang, Jiangxi 330022, People's Republic of China

(Communicated by Simeon Reich)

Abstract

Let X be a Banach space, and M, N be two closed subspaces of X. We collect several necessary and sufficient conditions for the closedness of M + N (M + N is not necessarily direct sum), and show that a necessary condition in a classical textbook is also sufficient.

AMS Subject Classification: 46B25.

Keywords: Banach spaces; sum of two closed subspaces; closedness.

1 Introduction

Let X be a Banach space, and M, N be two closed subspaces of X. Then, M + N is not necessarily closed in X even if X is a Hilbert space and $M \cap N = \{0\}$ (see, e.g., [6, p.145, Exercise 9]). So, to study when M + N is closed in X is always an interesting problem.

For the case of $M \cap N = \{0\}$, a necessary and sufficient condition for M + N being closed in X is given by Kober [3] as follows:

Theorem 1.1. Let X be a Banach space, M, N be two closed subspaces of X and $M \cap N = \{0\}$. Then M + N is closed in X if and only if there exists a constant A > 0 such that for all $x \in M$ and $y \in N$ we have $||x|| \le A \cdot ||x + y||$.

^{*}The work was supported by NSFC (11461034), and the Program for Cultivating Young Scientist of Jiangxi Province (20133BCB23009), and the NSF of Jiangxi Province (20143ACB21001).

[†]E-mail address: zhengzhemingn212@163.com

[‡]E-mail address: dinghs@mail.ustc.edu.cn

It seems that there are seldom published results concerning necessary and sufficient conditions for M + N being closed in X in the case of M + N being not necessarily direct sum. To the best of our knowledge, the first result of a necessary and sufficient condition for M + N (not necessarily direct sum) being closed in X is given by Luxemburg:

Theorem 1.2. [5, Theorem 2.5] Let X be a Banach space, and M,N be two closed subspaces of X. Then M + N is closed in X if and only if $T : M \times N \to X; (m, n) \mapsto m + n$ is an open mapping.

Luxemburg [5] obtain the above theorem in a more general setting. Theorem 1.2 is only one of the interesting results concerning this topic given by Luxemburg. We refer the reader to [5] for more details.

In addition, for the case of X being a Banach lattice or a Hilbert space, there has been of great interest for some researchers to study if the sum of two closed subspaces of X is still closed. We refer the reader to [4, 5, 8, 9] and references therein for the case of X being a Banach lattice or a Fréchet space and to [2, 7] and references therein for the case of X being a Hilbert space.

This short note is also devoted to this problem for the case of X being a general Banach space. As one will see, we give a Kober-like theorem for the case of M + N being not necessarily direct sum, and show that a necessary condition in the classical textbook [6] is also sufficient (see Remark 2.4).

2 Main Results

Lemma 2.1. Let X be a Banach space, M and N be two vector spaces of X. Assume that N is closed in X and contained in M. The following assertions are equivalent:

- (1) M is closed in X,
- (2) M/N is closed in X/N.

Proof. The implication of $(1) \Rightarrow (2)$ follows from the well-known fact that M/N is a Banach space (see, e.g., [6]). On the other hand, the implication of $(2) \Rightarrow (1)$ follows from the inequality: $||x|| \ge ||x+N||$ for every $x \in X$.

Theorem 2.2. Let X be a Banach space, and M, N be two closed subspaces of X. Then the following assertions are equivalent:

- (i) M + N is closed in X;
- (ii) (M+N)/N is closed in X/N;
- (iii) there exists a constant K > 0 such that for every $x \in M + N$, there is a decomposition x = m + n such that

$$||m|| \le K \cdot ||x||,$$

where $m \in M$ and $n \in N$;

(iv) $T: M \times N \rightarrow M + N; (m, n) \longmapsto m + n$ is an open mapping.

Proof. "(i) \implies (ii)". Obviously, it follows from Lemma 2.1.

"(ii) \implies (iii)". Define a mapping $\phi : (M+N)/N \rightarrow M/(M \cap N)$ by

$$\phi(x+N) = m + (M \cap N),$$

where $x = m + n \in M + N$, $m \in M$ and $n \in N$. It is easy to see that ϕ is well-defined. Moreover, ϕ is linear and bijective. Noting that

$$\|\phi(x+N)\| = \|m+(M\cap N)\| \ge \|m+N\| = \|x+N\|,$$

we conclude that ϕ^{-1} is a bounded linear operator from $M/(M \cap N)$ to (M+N)/N. Since (M+N)/N and $M/(M \cap N)$ are both Banach spaces, it follows from the open mapping theorem that ϕ is also a bounded linear operator from (M+N)/N to $M/(M \cap N)$. Taking $K = ||\phi|| + 1$, the assertion (iii) follows. In fact, letting $x = m' + n' \in M + N$ and $x \neq 0$, where $m' \in M$ and $n' \in N$, we have

$$||m' + (M \cap N)|| = ||\phi(x + N)|| \le ||\phi|| \cdot ||x + N|| \le ||\phi|| \cdot ||x|| < K||x||.$$

Then, there exists $y \in M \cap N$ such that

$$||m' + y|| < K||x||.$$

Letting m = m' + y and n = n' - y, we get x = m + n and ||m|| < K||x||.

"(iii) \implies (iv)". It is easy to see that

$$kerT = \{(x, -x) : x \in M \cap N\}.$$

Let π be the quotient map from $M \times N$ to $(M \times N)/kerT$, and $\widetilde{T} : (M \times N)/kerT \to M + N$ be defined as follows

$$T[(m,n) + kerT] = m + n, \quad (m,n) \in M \times N.$$

Then \widetilde{T} is linear and bijective. For every $(m,n) \in M \times N$, by (iii), there exist $m' \in M$ and $n' \in N$ such that m + n = m' + n' and

$$||m'|| \le K||m+n||,$$

which yields that

$$||m'|| + ||n'|| \le (2K+1)||m+n||.$$

Then, we have

$$\|\widetilde{T}[(m,n) + kerT]\| = \|m+n\| \ge \frac{\|m'\| + \|n'\|}{2K+1} \ge \frac{1}{2K+1} \|(m,n) + kerT\|,$$

which means that \tilde{T} is an open mapping. Combing this with the fact that π is open, we conclude that $T = \tilde{T} \circ \pi$ is also open.

"(iv) \implies (i)". As noted in the Introduction, (i) is equivalent to (iv) has been shown by Luxemburg using a more general setting. Here, we give a different proof (maybe a more direct proof in the setting of Banach spaces).

Let π , kerT, \widetilde{T} be as in the proof of "(iii) \implies (iv)". For every $(m,n) \in M \times N$ and $x \in M \cap N$, there holds

$$||m+n|| \le ||m+x|| + ||n-x|| = ||(m+x,n-x)|| = ||(m,n) + (x,-x)||,$$

which yields

$$\|\widetilde{T}[(m,n) + kerT]\| = \|m + n\| \le \inf_{x \in M \cap N} \|(m,n) + (x, -x)\| = \|(m,n) + kerT\|,$$

i.e., $\|\widetilde{T}\| \le 1$. On the other hand, since $\pi : M \times N \to (M \times N)/kerT$ is continuous and T is an open mapping, for every open set $U \subset (M \times N)/kerT$,

$$\widetilde{T}(U) = T(\pi^{-1}(U))$$

is also an open set. Thus, \tilde{T} is an open mapping, which means that $(\tilde{T})^{-1}$ is continuous, and so bounded. Now, we conclude that as normed linear spaces, M + N and $(M \times N)/kerT$ are topological isomorphic. Therefore, it follows that $(M \times N)/kerT$ is a Banach space that M + N is also a Banach space. This completes the proof.

Remark 2.3. Very recently, Blot and Cieutat [1] prove that (i) is equivalent to (iii) by a different and interesting proof (see [1, Theorem 3.1]). Also, by applying this result, they obtain a class of interesting and important results about sufficient conditions for the closeness of the sum of two closed subspaces of the Banach space of bounded functions.

Remark 2.4. In the classical textbook [6] (see p.137, Theorem 5.20), it has been shown that (iii) is a necessary condition for (i) by using the open mapping theorem. Here, we show that (iii) is also a sufficient condition for (i). In fact, the fact that (i) is equivalent to (iii) is a Kober-like result for the case of M + N being not necessarily direct sum. Moreover, by using the idea in the proof of [10, Theorem 2.3], we will give a direct proof of "(iii) \Longrightarrow (i)" in the following. We think that it may be of interest for some readers. Here is our proof:

Let $\{x_j\}_{j=1}^{\infty} \subset M + N$ and $x_j \to x$ in X as $j \to \infty$. Then, we can choose a subsequence $\{x_k\}$ of $\{x_i\}$ such that

$$||x_{k+1} - x_k|| \le \frac{1}{2^k \cdot K}, \quad k = 1, 2....$$

By taking $x = x_2 - x_1$ in the assertion (iii), there exist $m_1 \in M$ and $n_1 \in N$ such that $x_2 - x_1 = m_1 + n_1$ and

$$||m_1|| \le K \cdot ||x_2 - x_1|| \le \frac{1}{2}.$$

Similarly, by taking $x = x_3 - x_2$ in the assertion (iii), there exist $m_2 \in M$ and $n_2 \in N$ such that $x_3 - x_2 = m_2 + n_2$ and

$$||m_2|| \le K \cdot ||x_3 - x_2|| \le \frac{1}{2^2}$$

Continuing by this way, we get two sequences $\{m_k\} \subset M$ and $\{n_k\} \subset N$ such that

$$x_{k+1} - x_k = m_k + n_k, \quad k = 1, 2...,$$

and

$$||m_k|| \le \frac{1}{2^k}, \quad k = 1, 2...$$

Then, we have $\sum_{k=1}^{\infty} ||m_k|| < \infty$. Also, we can get $\sum_{k=1}^{\infty} ||n_k|| < \infty$. Since *M* and *N* are both Banach spaces, there exist $m \in M$ and $n \in N$ such that

$$m = \sum_{k=1}^{\infty} m_k, \quad n = \sum_{k=1}^{\infty} n_k.$$

Recalling that $x_k \rightarrow x$, we get

$$x - x_1 = \sum_{k=1}^{\infty} (x_{k+1} - x_k) = m + n,$$

which yields that $x = x_1 + m + n \in M + N$.

Corollary 2.5. *Let X be a Banach space, and M,N be two closed subspaces of X. Then the following assertions are equivalent:*

- (a) M + N is closed in X;
- (b) $(M+N)/(M\cap N)$ is closed in $X/(M\cap N)$.

Proof. One can show this corollary by directly using Lemma 2.1. Here, we give another proof by using Theorem 2.2.

Noting that $(M + N)/(M \cap N) = M/(M \cap N) + N/(M \cap N)$, it follows from Theorem 2.2 that the closeness of $(M + N)/(M \cap N)$ is equivalent to the closedness of

$$[(M+N)/(M\cap N)]/[M/(M\cap N)].$$

On the other hand, it is not difficult to show that (M + N)/M is isometric to $[(M + N)/(M \cap N)]/[M/(M \cap N)]$, and so their closedness are equivalent. Thus, the closedness of $(M + N)/(M \cap N)$ is equivalent to the closedness of (M + N)/M. Again by Theorem 2.2, we complete the proof.

Remark 2.6. By Corollary 2.5, whenever we find an example of non-direct sum M + N, which is not closed, we can get an example of direct sum $M/(M \cap N) + N/(M \cap N) = (M + N)/(M \cap N)$, which is still not closed.

Acknowledgments

The authors are grateful to the anonymous reviewer for his/her professional comments and suggestions. Especially, Lemma 2.1 is put forward by the anonymous reviewer.

References

- [1] J. Blot and P. Cieutat, Completeness of sums of subspace of bounded functions and applications, arXiv:1510.01160 [math.FA].
- [2] I. S. Feshchenko, On closeness of the sum of n subspaces of a Hilbert space. Ukr. Math. J. 63 (2012), pp 1566-1622.

- [3] H. Kober, A theorem on Banach spaces. Compos. Math. 7 (1940), pp 135-140.
- [4] H. P. Lotz, A note on the sum of two closed lattice ideals. *Proc. Am. Math. Soc.* 44 (1974), pp 389-390.
- [5] W. A. J. Luxemburg, A note on the sum of two closed linear subspaces. *Indag. Math.* (*Proceedings*) **88** (1985), pp 235-242.
- [6] W. Rudin, Functional Analysis, McGraw-Hill, second edition, 1991.
- [7] I. E. Schochetman, R. L. Smith, and S-K. Tsui, On the closure of the sum of closed subspaces. *Int. J. Math. Math. Sci.* 26 (2001), pp 257-267.
- [8] J. Voigt, On the sum of two closed subspaces. Indag. Math. 25 (2014), pp 575-578.
- [9] W. Wnuk, A note on the sum of closed ideals and Riesz subspaces. *Positivity* 19 (2015), pp 137-147.
- [10] Z.-M. Zheng and H.-S. Ding, On completeness of the space of weighted pseudo almost automorphic functions. J. Funct. Anal. 268 (2015), pp 3211-3218.