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Abstract

We study Mellin pseudodifterential operators (shortly, Mellin PDO’s) with symbols in
the algebra &R+, V(R)) of slowly oscillating functions of limited smoothness intro-
duced in [12]. We show that if a € &R, V(R)) does not degenerate on the “boundary”
of Ry X R in a certain sense, then the Mellin PDO Op(a) is Fredholm on the space L?
for p € (1,00) and each its regularizer is of the form Op(b) + K where K is a compact
operator on L? and b is a certain explicitly constructed function in the same algebra
ER4, V(R)) such that b = 1/a on the “boundary” of R, X R. This result complements
the known Fredholm criterion from [12] for Mellin PDO’s with symbols in the closure
of &R+, V(R)) and extends the corresponding result by V.S. Rabinovich (see [16]) on
Mellin PDO’s with slowly oscillating symbols in C*(R; X R).
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1 Introduction

Let B(X) be the Banach algebra of all bounded linear operators acting on a Banach space X,
and let K(X) be the ideal of all compact operators in B(X). An operator A € B(X) is called
Fredholm if its image is closed and the spaces kerA and kerA* are finite-dimensional. In
that case the number

IndA := dimkerA —dimker A™

is referred to as the index of A (see, e.g., [1, Sections 1.11-1.12], [3, Chap. 4]). For bounded
linear operators A and B, we will write A ~ B if A — B € K(X).
Recall that an operator B, € B(X) (resp. B; € B(X)) is said to be a right (resp. left)
regularizer for A if
AB,~1 (resp. B/A=~I).

It is well known that the operator A is Fredholm on X if and only if it admits simultaneously
a right and a left regularizers. Moreover, each right regularizer differs from each left regu-
larizer by a compact operator (see, e.g., [3, Chap. 4, Section 7]). Therefore we may speak
of a regularizer B = B, = B; of A and two different regularizers of A differ from each other
by a compact operator.

Let du(t) = dt/t be the (normalized) invariant measure on R,. Consider the Fourier
transform on L*(R.,du), which is usually referred to as the Mellin transform and is defined
by

. d
M IRy dy) — LR), (M) = fR rord

It is an invertible operator, with inverse given by
1 ,
MR = PRedi). M0 = 5 [ goorax
T IR

For 1 < p < o0, let M,, denote the Banach algebra of all Mellin multipliers, that is, the set
of all functions a € L*(R) such that M~ 'aMf € LP(R.,du) and

IM aMfllr@, aw < cpllflr@. aw  forall  f € L*(Ry,du) N LP (R, dp).

If a € M,,, then the operator f +— M~ laMf defined initially on L2(Ry,du) N LP(R.,du)
extends to a bounded operator on LP(R.,du). This operator is called the Mellin convolution
operator with symbol a.

Mellin pseudodifferential operators are generalizations of Mellin convolution operators.
Let a be a sufficiently smooth function defined on R; X R. The Mellin pseudodifferential
operator (shortly, Mellin PDO) with symbol a is initially defined for smooth functions f of
compact support by the iterated integral

1 ix d
[Op(a)f](t):[M_la(t,-)Mf](t):ngdfo a(t,x)(é) f(T)TT for teR,.

In 1991 Rabinovich [14] proposed to use Mellin pseudodifferential operators techniques
to study singular integral operators on slowly oscillating Carleson curves. This idea was
exploited in a series of papers by Rabinovich and coauthors (see, e.g., [15, 16] and [17,
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Sections 4.5-4.6] and the references therein). Rabinovich stated in [16, Theorem 2.6] a
Fredholm criterion for Mellin PDO’s with C* slowly oscillating (or slowly varying) sym-
bols on the spaces L”(R.,du) for 1 < p < co. Namely, he considered symbols a € C*(R; XR)
such that
sup  |(t9) dka(t, 0)|(1+xH)? <o forall jikeZ, (1.1)
(t,x)eR. XR

and

limsup (19,0 a(r, 0)|(1+2%)2 =0 forall jeN, keZ, se{0e0).  (1.2)
=5 xeR

Here and in what follows d; and 9, denote the operators of partial differentiation with re-
spect to ¢ and to x. Notice that (1.1) defines nothing but the Mellin version of the Hérmander
class S?’O(R) (see, e.g., [6], [13, Chap. 2, Section 1] for the definition of the Hormander
classes S Zf s(B™M). If a satisfies (1.1), then the Mellin PDO Op(a) is bounded on the spaces
LP(R,,du) for 1 < p < oo (see, e.g., [21, Chap. VI, Proposition 4] for the corresponding
Fourier PDO’s). Condition (1.2) is the Mellin version of Grushin’s definition of slowly
varying symbols in the first variable (see, e.g., [4], [13, Chap. 3, Defintion 5.11]).

The above mentioned results have a disadvantage that the smoothness conditions im-
posed on slowly oscillating symbols are very strong. In this paper we will use a much
weaker notion of slow oscillation, which goes back to Sarason [19]. A bounded continuous
function f on R, = (0, 0) is called slowly oscillating at 0 and oo if

lim rnax |f(t) f(@]=0 for se{0,c0}.

rostre[r2

This definition can be extended to the case of bounded continuous functions on R, with
values in a Banach space X.

The set S O(R+) of all slowly oscillating functions forms a C*-algebra. This algebra
properly contains C(R,), the C*- -algebra of all continuous functions on R, := [0, +oo0]. For
a unital commutative Banach algebra A, let M () denote its maximal ideal space. Iden-
tifying the points ¢ € R, with the evaluation functionals #(f) = f(¢) for f € C(R,), we get
M(C(R.)) = R,. Consider the fibers

M(SORY)) :={£ € MSORL)) : e, = s}

of the maximal ideal space M(S O(R.)) over the points s € {0,c0}. By [12, Proposition 2.1],
the set
A= Mo(SOR4))UMo(SOR))

coincides with (closg o+ Ry) \ R, where closg o+ R, is the weak-star closure of R, in the dual
space of SOR). Then M(SO(R;)) = AUR,.

The second author [10] developed a Fredholm theory for Fourier pseudodifferential
operators with slowly oscillating V(R)-valued symbols where V(R) is the Banach algebra
of absolutely continuous functions of bounded total variation on R. Those results were
translated to the Mellin setting in [12]. In particular, the important algebra 5(R+, V(R))
of slowly oscillating V(R)-valued functions was introduced and a Fredholm criterion for
Mellin PDQO’s with symbols in the closure of E(RJH V(R)) in the norm of the Banach algebra
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Cp(R4,Cp(R)) of bounded continuous C,(R)-valued functions was obtained on the space
LP(R,du) for all p € (1,00) [12, Theorem 4.3]. Here C,(R) is the smallest closed subalgebra
of the algebra M,,(R) that contains the algebra V(R). We refer, e.g., to [1, Sections 9.1-9.7],
[2, Chap. 1], [5, Section 2.1], [18, Section 4.2], and [20] for properties of the algebras V(R),
C,(R), and M,(R).

For symbols in the algebra g(R+, V(R)) the above mentioned Fredholm criterion has a
simpler form [8, Theorem 3.6]. That result was already used in [7] (see also [8]) to prove
that the simplest weighted singular integral operator with two shifts

UoP% +UgP; (1.3)

is Fredholm of index zero on the space LP(R.) with p € (1,), where ,8: Ry — R,
are orientation preserving diffeomorphisms with the only fixed points O and co such that
loga’,logB’ are bounded, o’,8" € S O(R,),

Uef =@)P(fo), Usf=@)"(fop), P;:=U+5,)/2,

and S, is the weighted Cauchy singular integral operator given by

1
(Syf)(t):=7;jé (z)ymdf

T) T—t
.

with y € R satisfying 0 < 1/p+7y < 1 (for v = O this result was obtained in [8]). To study
more general operators than (1.3) in the forthcoming paper [9], we need not only a Fred-
holm criterion for Op(a) with a € &R, V(R)) given in [8, Theorem 3.6], but also an in-
formation on the regularizers of Op(a). Note that a full description of the regularizers of
a Fredholm Mellin PDO Op(a) is available if a € C*(R, X R) satisfies (1.1)—(1.2), see [16,
Theorem 2.6]), however such a description is missing for the algebra &R, V(R)).

The aim of this paper is to fill in this gap and to complement the Fredholm criterion
for Mellin PDO’s with symbols in &R+, V(R)). Here we provide an explicit description
of all regularizers of a Fredholm operator Op(a) with a € &R, V(R)). Namely, we prove
that if a € &R, V(R)) does not degenerate on the “boundary” of R; X R in a certain sense,
then the Mellin PDO Op(a) is Fredholm on the space LP(R,du) for p € (1,00) and each its
regularizer is of the form Op(b) + K where K is a compact operator on L”(R,,du) and b is
a certain explicitly constructed function in the same algebra g(R+, V(R)) such that b= 1/a
on the “boundary” of R, X R. By the “boundary” of R, X R we mean the set

(R4 X {0} U(AXR). (1.4)

The paper is organized as follows. In Section 2 we define the algebra Cp(Ry, V(R))
of all bounded continuous V(R)-valued functions and state that if a € C,(R,, V(R)), then
Op(a) is bounded on LP(R;,du). In Section 3 we introduce the algebra SO(R ., V(R)) of
slowly oscillating V(R)-valued functions (a generalization of S O(R.)) and its subalgebra
ER,, V(R)). Further we explain how the values of a function a € E(R ., V(R)) on the bound-
ary (1.4) are defined and recall that

Op(a)Op(b) ~ Op(ab) whenever a,beER,, V(R)). (1.5)
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In Section 4 we define our main algebra g(R+, V(R)) c ER,, V(R)) and show that all al-
gebras Cp(R;, V(R)), SOR,,V(R)), &R, V(R)), and g(R+,V(R)) are inverse closed in
Cp(R; X R), the algebra of all bounded continuous functions on R, X R. Combining the
inverse closedness of the algebras &R, V(R)) (resp. g(R+,V(R))) with (1.5), we get a
description of all regularizers for Op(a) with a € &R, V(R)) (resp. g(R+, V(R))) bounded
away from zero on R, XR. In Section 5 we show that the latter strong hypothesis can be
essentially relaxed in the case of the algebra 8(R+, V(R)). We show that if a € &R, V(R))
does not degenerate on the “boundary” (1.4), then there exists b € 8(R+, V(R)) such that
b = 1/a on the “boundary” (1.4). This construction becomes possible for a € 5(R+, V(R))
because the limiting values of a(#,-) on A are attained uniformly in the norm of V(R) (see
Lemma 5.2). Finally we recall that if ¢ € g(R+, V(R)), then Op(¢) is compact if and only if its
symbol ¢ degenerates on the “boundary” (1.4). Combining this result with our construction,
we arrive at the main result of the paper.

2 Algebra Cp(R4, V(R)) and Boundedness of Mellin PDO’s

2.1 Definition of the Algebra C;,(R.,V(R))

Let a be an absolutely continuous function of finite total variation

V(a)::fla'(x)ldx
R

on R. The set V(R) of all absolutely continuous functions of finite total variation on R
becomes a Banach algebra equipped with the norm

llally := llall=®) + V(a). 2.1

Following [10, 11], let Cp(R4, V(R)) denote the Banach algebra of all bounded continuous
V(R)-valued functions on R, with the norm

[laC, e, ®,,vry = sup llacz, v
teR

2.2 Boundedness of Mellin PDO’s

As usual, let C°(R.) be the set of all infinitely differentiable functions of compact support
onR,.

The following boundedness result for Mellin pseudodifferential operators can be ex-
tracted from [11, Theorem 6.1] (see also [10, Theorem 3.1]).

Theorem 2.1. If a € Cp(R,,V(R)), then the Mellin pseudodifferential operator Op(a), de-
Jfined for functions f € C§(R.) by the iterated integral

1 ix d
[Op(@/1) = 5 - fR dx fR a(ax)(é) f@= for tek.,

extends to a bounded linear operator on the space LP(R.,du) and there is a positive con-
stant Cj, depending only on p such that

1Op(DlIgLr®,.dauy < Cpllalle,®,,vwy)-
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3 Algebra &R, V(R)) and Compactness of Semi-Commutators
of Mellin PDO’s

3.1 Definitions of the Algebras SOR.,V(R)) and &R, V(R))

Let SOR,, V(R)) denote the Banach subalgebra of Cp(R., V(R)) consisting of all V(R)-
valued functions a on R, that slowly oscillate at 0 and oo, that is,

lim cm,c(a) = lim cm,C(a) =0,
r—0 r—00

where
cmf(a) = max{||a(z,-) — a(r, Nr=my : t, T € [r, 2r]}. (3.1)

Let ER,, V(R)) be the Banach algebra of all V(R)-valued functions a € S OR 4, V(R))
such that

lim sup [la(t, ) — " (#,)lly = 0 (3.2)
=0 R,

where a”(z,x) := a(t, x + h) for all (z,x) € R, XR.

Remark 3.1. Replacing the L*(R) norm in (3.1) by the stronger V(R) norm, one can define
smaller algebras S OY (R, V(R)) and 8" (R, V(R)) c S OV (R,, V(R)) instead of the algebras
SOR,, V(R)) and ER ., V(R)), respectively. This was done in [12, p. 86], where the al-
gebras SOV(R,, V(R)) and EY(R,, V(R)) were denoted, respectively, by the same symbols
SOMR,,V(R)) and ER,, V(R)) (see also Remark 4.1 below).

3.2 Limiting Values of Functions in the Algebra &R, V(R))

Let a € ER4,V(R)). For every t € R,, the function a(¢,-) belongs to V(R) and, therefore,
has finite limits at +oo, which will be denoted by a(#,+00). Now we explain how to extend
the function a to AxR. By analogy with [10, Lemma 2.7] one can prove the following.

Lemma 3.2. Let s € {0,00} and {ax};, be a countable subset of the algebra &R, V(R)).
For each & € M(S O(R,)) there is a sequence {t} jen C Ry and functions ax(€,-) € V(R) such
thatt; — s as j— oo and

ar(&,x) = lim ai(z, x)
J—)OO
for every x e R and every k € N.

The following lemma will be of some importance in applications we have in mind [9]
(although it will not be used in the current paper).

Lemma 3.3. Let {a,},en be a sequence of functions in &Ry, V(R)) such that the series
> a, converges in the norm of Cp(Ry, V(R)) to a function a € ER,, V(R)). Then

n=1

o o

a(t,+00) = Z ay(t,x00) forall teR,, a(&,x)= Z a,(&,x) forall (£,x)e AXR. (3.3)

n=1 n=1
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Proof. Fix € >0. For N e, put

N
SN = Z ay.

n=1
By the hypothesis, there exists Ny € N such that for all N > Ny,

sup |a(t,x) —sn(t, x)| < lla=syllc,®,.vwr) < &/3. (3.4)
(t,x)ER. XR

Fix some ¢t € R;. For every N > Ny there exists x(#, N) € R, such that for all x € (x(¢, N), +0),
la(z, +o0) —a(r, x)| < &/3,  |sn(t,+00) —sn(1, X)| < &/3. (3.5)
From (3.4) and (3.5) it follows that for every N > Ny and x € (x(¢, N), +00),

Ia(t’ +OO) - SN(l; +OO)| < |a(t7 +OO) - a(tvx)l + Ia(t7x) - SN(I,X)l + |5N(t7x) - S1\/(2" +OO)| <é&.

This implies the first equality in (3.3) for the sign “+”. The proof for the sign “- is
analogous.

Fix s € {0,00} and ¢ € M(SOR,)). In view of Lemma 3.2, there exists a sequence
{tj}jen C R, such that z; — s as j — oo and functions a(£,-) € V(R,) and sy(é,-) € V(R,),
N €N, such that

a(¢,x) = lim a(tj,x), sy(&,x) = lim sy(t},x)
Jj—oo Jj—oo

for all x e R and all N € N.
Fix x € R. For every N > Nj there exists jo(x,N) € N such that for j > jo(x,N),
la(§,x)—a(zj,x)| <&/3, [sn(&,x)—sn(tj,x)| < &/3. 3.6)

From (3.4) and (3.6) we obtain that for N > Ny and j > jo(x,N),
la(&, x) = sn (&, 0| < |a(€, x) — a(tj, )| +|a(t;, x) — sn(j, 0| + |5y (2, X) — sn (€, 0)| < &,

which concludes the proof of the second equality in (3.3). O

3.3 Compactness of Semi-Commutators of Mellin PDO’s
Let E be the isometric isomorphism
E:LP(Ry,dp) —» LP(R), (Ef)(x):=f(e"), xeR. (3.7)

Applying the relation
Op(a) = E~'a(x,D)E (3.8)

between the Mellin pseudodifferential operator Op(a) and the Fourier pseudodifferential
operator a(x, D) considered in [10], where

a(t,x) =a(lnt,x), (t,x) e Ry XR, 3.9

and taking into account the fact that a € &R, V(R)) if and only if a € &, where the algebra
& is defined on p. 719 of [10], we infer from [10, Theorem 8.3] the following compactness
result.

Theorem 3.4. Ifa,b € ER,, V(R)), then Op(a) Op(b) ~ Op(ab).
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4 Regularization of Mellin PDO’s with Symbols
Globally Bounded Away from Zero

4.1 Definition of the Algebra g(R+, V(R))

We denote by 5(R+, V(R)) the Banach algebra consisting of all functions a € &R, V(R))
that satisfy the condition

lim supf |0 a(t, x)|dx = 0. “4.1)
R\[-m,m]

M= eR,

This algebra plays a crucial role in the paper.

Remark 4.1. Analogously to Remark 3.1, replacing the algebra &(R+, V(R)) by the smaller
algebra &Y(R,, V(R)) in the above definition, one can define the algebra gv(R+, V(R)) C
ER,,V(R)). But, actually, the algebras E(R,,V(R)) and ER.,V(R)) coincide, which
follows from [10, formula (2.34) and Theorem 2.8] with R, in place of R. Thus, both
definitions of g(R+, V(R)), given here and by formula (3.4) in [12, p. 86], are equivalent.

4.2 Inverse Closedneis of the Algebras C,(R;,V(R), SOR,, V(R)),
ER4,V(R)), and ER 4, V(R)) in the Algebra C,(R, XR)

Let B be a unital Banach algebra and 2 be a subalgebra of B, which contains the identity
element of B. The algebra U is said to be inverse closed in the algebra B if every element
a € U, invertible in B, is invertible in A as well.

Lemma 4.2. The algebras Cp(R+, V(R)), SOR,, V(R)), ER,, V(R)), and ER,, V(R)) are
inverse closed in the Banach algebra Cp(R. X R) of all bounded continuous functions on
the half-plane R, XR.

Proof. The proof is developed by analogy with [10, pp. 755-756]. Let a € C,(R, V(R)) be
invertible in C(R; X R). Then

-1
la Ny xey = su |G_1(f,x)|=( inf _a(t,x)|| <eco.
) (t,x)eRIixR (t,x)eRL XR

Therefore, for every t € Ry,

_ _ _ a(t, x) 0xa(t, x)
o~ (& )lly = lla™ & Mz + V™ (1) = sup + f dx
() xer | 02(1, %) Rl a%(7,x)
< oM Z, g xmy (12 oy + V(@) = lla™ 13, @ lla@lly. (4.2)
Hence
lla™! Gl @ vy < N 1, @, 10Cs ey @, vy (4.3)

and for every t,7 € R;,

la™'(t,) = ol )l <l @ )livlla™ (@ )livilace, ) = ade, )y

<o Mg, @, s laC ey veplla, ) —a(@ v, (44)
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From inequalities (4.3)—(4.4) it follows that the function a~! is a bounded and continuous

V(R)-valued function. Thus, C,(R,, V(R)) is inverse closed in Cp(R; X R).
Suppose a € S O(R,, V(R)) is invertible in Cp(Ry XR). If £,7 € R, then

ot () = a7 @@y < a7 Mg, g el ) = a@ e (4.5)

Therefore
C -1 -12 c
cm, () <|a ||C;,(R+><R) cm, (a), reR,.

From the above inequality we conclude that a=! € SO(R,,V(R)). Thus, SOR.,,V(R)) is
inverse closed in Cp(R; X R).

Let a € &R,, V(R)) be invertible in Cp(R X R). Taking into account inequality (4.2)
and that the norm in V(R) is translation-invariant, we get for h € R and r e R,

la™' (2, = @ e,y < lla” @ Hlvll@™ D, Hlivllad, ) = @@, )y
<10 iE, g ey 10 G @ vy latt ) — @ )llv. (4.6)
From the above inequality and a € &R, V(R)) it follows that

lim suplla™'(z,-) = (a™)" @, )y = 0.
171=0 ser ,
This means that a~! € &(R,, V(R)), whence the proof of the inverse closedness of the algebra
E(R4, V(R)) in the algebra Cp(R+ X R) is completed.
Finally, if a € &R, V(R)) is invertible in Cp(R; X R), then

lim sup f 100! (1, )l dx < [la”MIZ, . g, lim sup f 10.a(t, x)|dx = 0.
m=teR, JR\[-m,m] PR M= 4R, JR\[-m,m]

Therefore, a”! € g(R+, V(R)) and thus the algebra g(R+, V(R)) is inverse closed in the alge-

bra Cp(R,, V(R)). O

4.3 First Result on the Regularization of Mellin PDO’s
Lemma 4.3. I[fa € ER,, V(R)) (resp. a € ER,, V(R)) is such that

inf t 0 4.7
([’X)IEI]EMRIG( ;0> 0, 4.7
then the Mellin pseudodifferential operator Op(a) is Fredholm on the space LP (R.,du) and
each its regularizer is of the form Op(1/a) + K where K is a compact operator on the space
LP(Ry,dy) and 1/a € ER+, V(R)) (resp. 1/ae ERL, V(R))).

Proof. If a satisfies (4.7) and belongs to &R+, V(R)) (resp. to S(R+, V(R))), then 1/a be-
longs to ER 4, V(R)) (resp. to ER 4, V(R))) in view of Lemma 4.2. Then in both cases from
Theorem 3.4 we obtain Op(a)Op(1/a) ~ Op(1) = I and Op(1/a)Op(a) ~ Op(1) = I, which
completes the proof. O

As it happens, the very strong hypothesis (4.7) can be essentially relaxed for Mellin
PDQO’s with symbols in the algebra &R, V(R)). This issue will be discussed in the next
section.
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S Algebra g(R+, V(R)) and Fredholmness of Mellin PDO’s

5.1 Elementary Properties of Two Important Functions in V(R)
We prelude our main construction with properties of two important functions in V(R).
Lemma5.1. (a) For xeR, put
p-(x) := (1 —tanh(mx))/2, p+(x):=(1+tanh(mx))/2. 5.1
Then ||p-llv = llp+llv = 2.
(b) Forevery heR, put pi(x) = p+(x+h). Then
P = P, < Smihi/2. (5.2)

(¢) For everym >0,
f (p2) (x)ldx < 2¢7>™". (5.3)
R\[-m,m]

Proof. (a) Since the function p. (resp. p-) is monotonically increasing (resp. decreasing),
p+(Foo) =0 and p.(+c0) = 1, we have [|p.llz=w) = 1 and V(ps) = |p+(+00) = po(-00)| = 1.
Thus |[p+llv = l[p+llz=m) + V(p+) = 2. Part (a) is proved.

(b) From (5.1) it follows that

% tanh(rx)

(pa)'(x)=7 €R. (5.4)

(p2) () = T

2 cosh?(rx) ’
Hence |(p+)’(x)| < /2 for all x € R. From here, by the mean value theorem, we obtain
|p+(mx) — pe[n(x+ W) < 7lhl/2, x,heR,

whence
P+ — Py < lhl/2. (5.5

Taking into account identities (5.4), we obtain
P ()| <2npl(x), xeR.
Then for h € R,

x+h
V(pe—phy = fR (0 - (x4 )l dx = fR f L)y

x+|h x+A
< fR dx f P )ldy < 2n fR dx f L) dy

'y
=2n L P dy f y dx = 2n|h|(p+(+00) — p1(—00)) = 27lhl. (5.6)
-

Combining (5.5) and (5.6), we arrive at (5.2).
(c) From (5.1) it follows that for m > 0,

+00 dx 2 X
f P (0)ldx = ﬂf ———— = 1 —tanh(zm) = — < e,
R\[-mm] m  cosh”(mx) e+ 1

dx

which completes the proof. O
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5.2 Limiting Values of Elements of g(R+, V(R))

For functions in the algebra a € g(R+, V(R)), we have a stronger result than Lemma 3.2,
which follows from [10, Lemma 2.9] with the aid of the diagonal process.

Lemma 5.2. Let s € {0, 00} and {ax}y. | be a countable subset of the algebra g(R+, V(R)).
For each & € My(S O(Ry)) there is a sequence {t;} jen C Ry and functions ax(€,-) € V(R) such
thattj — s as j — oo and

lim [lag(tj,-) — a(€,)lly =0 forall keN. 5.7
]—)OO
Conversely, every sequence {7} jen CR, such that T; — s as j— oo contains a subsequence

{tj}jen such that (5.7) holds for some & € M(S O(R.,)).

As usual, the maximal ideal space M(S O(R.)) is equipped with the Gelfand topology.
Then, in view of [1, Section 1.24], the set A is a compact Haudorff subspace of M(S O(R.)).
It is equipped with the induced topology. Finally, the compact Hausdorff space A xR is
equipped with the product topology generated by the topologies of A and R.

Lemma 5.3. For every a € g(i&, V(R)), the function (¢,x) — a(&,x) is continuous on the
compact Hausdorff space A xR.

Proof. Fix € > 0. It follows from (3.2) that there exists a ¢ > 0 such that for all & € (-6, ),

sup sup|a(t, x) —a(t, x + h)| < sup |la(t,-) —a(z,- + h)||ly < /6.
teR, xeR teR,

Hence there is an £ € (0, o) such that, for all r € R, and all x,y € R with |x—y| < h,
la(z, x) —a(t,y)| < £/6. (5.8)

By Lemma 5.2, for every s € {0,00} and & € M (S O(R,)), there is a sequence {7;}jen and a
function a(¢,-) € V(R) € C(R) such that #; — s as j — oo and

im supla(t;, ) = a(€, 0] < lim fla(tj,-) = a(€, )y = 0. (5.9)

xeR

From the above inequality it follows that there is a J € N such that for all j > J,

|a(tj’x)_a('§:7x)| <8/67 Ia(tjay)_a('fayﬂ <8/6-

Combining these inequalities with (5.8), we deduce for all x,y € R satisfying |x—y| < A, all
Jj=J,all s €{0,00}, and all £ € My(S O(R,)) that

|a(é‘:7x) - a(f,)’)| < |C((tj,x) - a(é:’x)l + |a(t/,)’) - a(§7y)| + |a(tj9x) - a(tjay)l < 8/2
Therefore, for all x,y € R satisfying |x —y| < h we have

zufla(f,X) —a(&y)l<e/2. (5.10)
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Fix ¢ € A. Since the function a(-, x) belongs to the algebra S O(R,), there exists an open
neighborhood U,(§) C A of ¢ such that

la(n,x) —a(&,x)| <e/2 forall ne Uyé). (5.11)
Consequently, we infer from (5.10) and (5.11) that

la(m,y) = a(€, 0)| < |a(p,y) = a@, 0| + a7, x) —aé, ) < &

for all (1,y) € U,(€) X (x— h,x + h), which means that the function (&, x) — a(¢, x) is contin-
uous on A xXR.

It remains to show that actually the function (£, x) — a(£, x) is continuous on A xR. By
(4.1), for every € > 0 there is an M > 0 such that

sup |a(t,y) — a(t, +o0)| < supf |0ca(t,x)|dx < g/6 forall y> M. (5.12)
M

teR, teR,

By Lemma 5.2, for every s € {0,00} and every & € M (S O(R,)) there exist a sequence
{tj}jenr and a function a(¢,-) € V(R) C C(ﬁ) such that ; — s as j — oo and (5.9) is ful-
filled. From (5.9) it follows that there is a J € N such that for all j > J, all s € {0, o}, and all
&€ My(SO(R,)),

la(€,y) — a(§, +o0)| <la(z,y) — a(§, ) +]a(z), +00) — a(&, +o0)| +|a(z), y) — a(tj, +00)| < /2.
Therefore, for all y > M we have

zufla(f,y) —a(é,+00)| < g/2. (5.13)

Fix & € A. Since the function a(-,+c0) belongs to S O(R.), there is an open neighborhood
Uiw(&) C A of € such that

la(n, +00) —a(é,+0)| < g/2 forall ne Uiwn(é). (5.14)
Then similarly to (5.11) we deduce from (5.13) and (5.14) that

la(z,y) — a(&, +00)[ < |a(n,y) — a(77, +00)| + |a(1, +00) — a(&, +o0)| < & (5.15)

for all (17,y) € Usoo(§) X (M, +00].
Analogously, for every & € A there exist an open neighborhood U_.(§) € A of £ and a
number M < 0 such that

la(n,y) — a(§,—0)| < & (5.16)

for all (17,y) € U_(&) X [—00, M).
Finally, we conclude from (5.15)—(5.16) and the continuity of (¢, x) g(g, x) on the set
A xR that this function is continuous on the compact Hausdorff space A X R. O
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5.3 Key Construction

In this subsection we show that if a € g(R+, V(R)) does not degenerate on the “boundary”
(1.4), then there exists b € &R, V(R)) such that b = 1/a on the “boundary” (1.4).

Lemma 5.4. Ifa € ER,,V(R)) and
a(t,£+0) #0 forall teR,, a(&,x)#0 forall (£,x)€A xR. 5.17)

then

1
Ay = sup ——— < oo (5.18)
i la(r, £oo)

and there exists an r > 1 such that

A(r):= sup
(t,x)eT, xR

<00 (5.19)

a(t, x)

where T, = (0,r" 11U [r, o0).

Proof. By_Lemrna 5.3, the function (&, x) — a(&, x) is continuous on the compact Hausdorft
space A X R. Therefore, we infer from (5.17) that

C := min{|a(&, )| : (£,x) € AXR} > 0. (5.20)

For every point (£,x) € Ax R we consider its open neighborhood Usex CM(SOR,)) xR
such that

la(m,y)—a(&,x)| < C/2 forevery (1,y) € Uggy. (5.21)

We claim that there exists a number r > 1 such that

T,xR c U Uéox. (5.22)
(£ x)eAXR

Assume the contrary. Then for every n € N\ {1} there exists a point (7,,x,) € Ty, xR such

that
(Tm xn) ¢ [ U Ua,f,x U[ U Ua,f,x

(€X)EMo(S O(R,)XR (€ X)EMw(S O(R,)XR

. (5.23)

Since 7, € T,, = (0,1/n] U [n,00) for all n > 2, we can extract a subsequence {7, }xeny of the
sequence {7, }eny(1} such that

lim 7, =s forsome se€/{0,o00}. (5.24)

k—o0

Further, we can extract a subsequence {xnki }l_GN of the corresponding sequence {x, }en such
that the limit

x0:=limx, €R (5.25)

i—o0
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exists. Then, by Lemma 5.2, there exists a subsequence {7;}jeny = {Tnk_ } of the sequence
‘i) jeN

{Tnkl_ }l_eN and a point &y € M (S O(R,)) such that

im la(tj, )= aGéo. )l = 0. (5.26)

Put {y;} jen = {xnk_ } . Taking into account (5.23)—(5.26), we have shown that if (5.22)
') jeN

is violated for all r > 1, then there exist s € {0,00}, & € M (SO(R,)), and a sequence

{(tj,yj)}jeN such that (5.26) is fulfilled,

{(#j,y,): JENIN

g Ua,f,x] =0, (5.27)

(€X)EM (S OR))XR

and _
limy;=xp€R, limt;=s. (5.28)
J—oo0

]—)00

Since (£, x0) € My(SO(R,)) xR c AxR, from Lemma 5.3 and the first equality in (5.28)
we deduce that

}LTO |a(&o, ;) — a(§o, xo)| = 0. (5.29)
For every j € N, we have

la(z;,y ;) — a(&o, xo0)| < la(t;,y;) — a(&o,y ;)| + |a(&o, y ;) — alo, o)l
< supla(zj, y) — a(&o, )| + |a(€o, y ) — a&o, Xo)|
yeR

< ”a(t]a ) - a(§0a )HV + |a(§0ayj) - a(f()’x())l-

From (5.26), (5.29), and the above inequality we deduce that
jlgfolo a(t;,y;) = a(§o, Xo)-

This means that for all sufficiently large j the points (¢;,y;) belong to the neighborhood
Uag.x, of the point (£o,x0) € M (S OR,)) x R, which is impossible in view of (5.27).
Hence, we arrive at the contradiction.

Thus, condition (5.22) is fulfilled for some r > 1. Therefore, in view of (5.20) and
(5.21), we obtain

inf _|a(z,x)| > C/2>0.
(t,x)eT xR

This inequality immediately yields (5.19). Finally, (5.19) and the first condition in (5.17)
imply (5.18). O

Lemma 5.5. Suppose a € g(R+, V(R)) satisfies (5.17) and r > 1 is a number such that (5.19)
holds (the existence of this number is guaranteed by Lemma 5.4). Put

Inr+Int 1 (1) {.(1)

o _ _ -1
Ty c.(t) := W x00) s T.zoo)  a(rze)’ telr,r], (5.30)
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and consider the functions p. given by (5.1). Then the function

T (t,x) € Ry \ [, 1) xR,

(1) +5+(f)
a(r-,x)  a(r,x)

b(t, x) = (5.3D)

+e-(p-(0) +c(ps(x),  (Ex) € [r ' rIxR,

is continuous on R, xR and is equal to 1/a on the set (R \ (r~, 1)) xR)U((r~!, r) x {£0o0}).
Proof. Since £.(r™') =0 and £.(r*') = 1, we have c.(r) = c.(r~!) = 0. Therefore

b=, x)=1/a(*,x) forall xeR. (5.32)
Taking into account that pz(+c0) =0 and p.(+o0) = 1, we get from (5.30)-(5.31)

(1) (0] _
a(r~1, £00) * a(r, £00) te(= a(t, £00)

~-1

b(t, £00) = forall re[r - ,rl. (5.33)

Thus, the assertion of the lemma follo_ws from (5.32)—(5.33) and and the equality b(z, x) =
1/a(z, x) for all (£,x) € R\ [r~1,r]) xR (see (5.31)). O

Lemma 5.6. Suppose a € g(R+,V(R)) satisfies (5.17) and b is the function defined by
(5.30)~(5.31) with r > 1 such that (5.19) holds (the existence of this number is guaranteed
by Lemma 5.4). Then b € &R, V(R)) and

B(t, £00) = 1/a(t, £00) forall teRy, b x)=1/a&x) forall (£,x)e AxR. (5.34)

Proof. We divide the proof into five steps:
(a) First we prove that the function b belongs to the algebra C,(R, V(R)). Let

T, :=(0,r U [r, +c0).

By Lemma 5.5,
b(t,x) = 1/a(t,x), (t,x)€T,xR. (5.35)

Since a(t,-) belongs to V(R) for all r € R, by analogy with (4.2), we infer from (5.19) that

oGz, )lly < A*(r)suplla(t, lly, €T, (5.36)

teT,

From (5.18) and (5.30) it follows that
0<lu()<1, lee(®) <3As, te[rr] (5.37)
From (5.31), (5.35)—(5.37), and Lemma 5.1(a) it follows that for t € (+"1, r),

116t Ml < L@,y + E @Il + le—OIp-llv + e+ Ol 1p+llv
< 2A%(r)supla(t,-)lly + 6A_ +6A,. (5.38)

teT,
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Combining (5.36) and (5.38), we arrive at
16, e, @..vy = sup 16z, )y < 24%(r) supla(z, )|y + 6A_ + 64, < +oo. (5.39)

teR, teT,

From (5.19) and (5.35)—(5.36), by analogy with (4.4), we obtain for t,7 € T},

lIo(z,-) = b(z, Iy < (16, )llvlIb(z, llvilacz, ) = alz, )llv

2
< A%(r) (Suplla(t, -)Ilv) lla(z,-) —a(z, )lly.

teT,

Since a is a continuous V(R)-valued function, from the above inequality we conclude that
t — b(z,-) is a continuous V(R)-valued function for r € T,.

Obviously, £ are continuous on [r~!,7]. Since a is a continuous V(R)-valued function,
taking into account (5.18), we also have for ¢,7 € (1,7,

R
a(t,£00)  a(t,+00)

_ @ ze0)—a(@zo0)| 50
= T zoo)la(r. zo0) S Azl —a@ollv.

From this inequality and the definitions of c. in (5.30) we see that the functions c. are
continuous on [r~!,r]. Therefore, from the definition (5.31) we conclude that 7 — b(z,-)
is a continuous V(R)-valued function on [r~!,r]. From the continuity of the V(R)-valued
function ¢ — b(¢,-) on R, and inequality (5.39) we conclude that b € Cp(R., V(R)).

(b) Now we prove that b € S O(R ., V(R)). By analogy with (4.5), from (5.19) and (5.35)
we obtain

[16(z,) = b(r, =@y < A2Plla(t,) = a(T, =@y, tTE T,
Since a € SOR,, V(R)), from this estimate we obtain
limem€ (b) < A%(r) limemS (a) = 0,
VoS VoS
which means that b € SOR,, V(R)).

(c) On this step we show that b € &R,, V(R)). By analogy with (4.6), taking into
account that the norm of V(R) is translation-invariant, from (5.19) and (5.35)—(5.36) we get
forheRandreT,,

I16(2,-) = 0" (2, )lly < 116, IV I @, lvllad, ) - o (@, )lly
< C(a) sup lla(z,-) = o (2, )llv, (5.40)

teR

where

2
C(a) :=A4<r>(sup||a(t, ')||v) :

teT,

On the other hand, from (5.31), (5.35), (5.37), (5.40), and Lemma 5.1(b) it follows that for
heRandte (r!,r),

lI6(z,) = b"(t, Iy <_@IBG",) =",y + € @)lb(r, ) = b (r, )lly
+le-Olllp-—p v +les@llps = plily
<2C(a) sup |la(t,) — ah(t, My + 15T”(A_ +A,)A|. (5.41)

teR
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Combining (5.40)—(5.41), we arrive at

15

sup [[b(z,-) = b" (2, )lly < 2C(a) sup [la(t, ) — a"(z, Iy + ;(A— +A)|hl.

teR, teR,

Since a € &R+, V(R)), the right-hand side of the above inequality tends to zero as |h| — O.
Hence

lim sup||b(z,-) — v"(t,)lly = 0.
[h—0eR,

Thus, b € &R, V(R)).
(d) Now we prove that b € g(R+, V(R)). From (5.35) we obtain

A.b(t,x) = —a (1, x)0a(t,x), (1,x) € T,XR.

From this identity and (5.19) it follows that for all m > 0 and t € T,

f |0,b(z, x)|dx < Az(r) sup f |0a(t, x)|dx. (5.42)
R\[-m,m] R\[-m,m]

teR,

On the other hand, from (5.35), (5.37), (5.42), and Lemma 5.1(c) it follows that for all
te(r ', ryand m> 0,

f |0,b(t, x)|dx <€_(¥) |8xb(r_1,x)|dx+€+(t)f |0,0(r, x)|dx
R\[-m,m]

R\[-m,m] R\[-m,m]

+le_() P (o) dx + e, ()] P, (0)ldx
R\[-m,m] R\[-m,m]

<2A%(r) sup f 10 a(t, X)|dx+6(A_ +A)e™ ™. (5.43)
R\[-m,m]

teRy

Combining (5.42)—(5.43), we obtain for m > 0,

sup f 10,5z, x)| dx < 2A%(r) sup f |0ca(t, x)|dx + 6(A_ + A, )e 2™,
teRy JR\[-m,m] teRy JR\[-m,m]
Since a € g(RJ,, V(R)), the right-hand side of the above inequality tends to zero as m — oo.
This implies that
lim supf |0b(z, x)|dx = 0.
R\[-m,m]

m—oo 1R,
Thus, b € &R, V(R)).

(e) Finally, we prove (5.34). The first equality in (5.34) was proved in Lemma 5.5.
Fix s € {0,00}. Since a,b € g(R+,V(R)), from Lemma 3.2 it follows that for each & €
M (S OR,)) C A there exists a sequence {;} ;e C Ry and functions a(£,-),b(£,-) € V(R)
such that #; — s as j — oo and

a(é,x) = lim a(¢j,x), Bb(& x) = lim b(¢;,x), x€ R. (5.44)
]4)00 ]*)00
For all sufficiently large j, one has ¢; € T,. Then from (5.35) we get b(z;, x) = 1/a(z;, x) for

all sufficiently large j and all x € R. From this equality and (5.44) we obtain the second
equality in (5.34). O
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5.4 Regularization of Mellin PDO’s with Symbols in g(R+, V(R))

From [12, Theorem 4.1] we can extract the following.
Lemma 5.7. Ifce g(R+, V(R)), then Op(c) € K(LP(R,duw)) if and only if
o(t,+00) =0 forall teRy, «&,x)=0 forall (¢£,x)eA xR. (5.45)
Now we are in a position to prove the main result of the paper.
Theorem 5.8. Suppose a € g(R+, V(R)).

(a) If the Mellin pseudodifferential operator Op(a) is Fredholm on the space L (R.,du),
then

a(t,x0) #0 forall teR,, a(&,x)#0 forall (£,x)€A X R. (5.46)

(b) If (5.46) holds, then the Mellin pseudodifferential operator Op(a) is Fredholm on
the space LP(R+,dp) and each its regularizer has the form Op(b) + K, where K is a
compact operator on the space LP(R.,du) and b € ER, V(R)) is such that

b(t,£00) = 1/a(t,+00) for all te Ry, b(&,x) =1/a(&,x) for all (¢,x) € AXR. 5.47)

Proof. Part (a) follows from the necessity portion of [12, Theorem 4.3], which was obtained
on the base of [10, Theorem 12.2] and (3.7)-(3.9).

The proof of part (b) is analogous to the proof of the sufficiency portion of [10, Theo-
rem 12.2]. If (5.46) holds, then by Lemma 5.6 there exists a function b € g(R+, V(R)) such
that (5.47) is fulfilled. Therefore, the function ¢ := ab— 1 belongs to g(R+, V(R)) and (5.45)
holds. By Lemma 5.7, the operator Op(c¢) = Op(ab) — I is compact on L”(R,du). From this
observation and Theorem 3.4 we obtain

Op(a)Op(b) ~ Op(ab) ~ 1,  Op(b) Op(a) ~ Op(ab) ~ /.

Thus, the operator Op(a) is Fredholm and each its regularizer is of the form Op(b) + K,
where K € K(LP(R,,du)). O

For a symbol a € C*(R; X R) satisfying (1.1)—(1.2) the corresponding result was ob-
tained in [16, Theorem 2.6].
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