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México, D.F, 07360 México

Egor A. Maximenko†
Escuela Superior de Fı́sica y Matemáticas
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(Communicated by Vladimir Rabinovich)

Abstract
We consider the C*-algebra generated by Toeplitz operators acting on the Bergman
space over the upper half-plane whose symbols depend only on the argument of the
variable. This algebra is known to be commutative, and it is isometrically isomorphic
to a certain algebra of bounded complex-valued functions on the real numbers. In the
paper we prove that the latter algebra consists of all bounded functions f that are very
slowly oscillating on the real line in the sense that the composition of f with sinh is
uniformly continuous with respect to the usual metric.
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1 Introduction

Let Π =
{
z = reiθ : r > 0, θ ∈ (0,π)

}
be the upper half-plane and let dµ = r dr dθ be the

Lebesgue measure on Π. Recall that the Bergman space A2(Π) is a reproducing kernel
Hilbert subspace of L2(Π,dµ) which consists of all square integrable analytic functions on
Π. The reproducing kernel of this space has the form

Kw(z) = − 1
π(w− z)2 , (1.1)
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and the orthogonal projection of L2(Π,dµ) ontoA2(Π) is given by (P f )(w) = ⟨ f ,Kw⟩.
The Toeplitz operator Tg : A2(Π)→A2(Π) with defining symbol g ∈ L∞(Π) is given by

Tg f = P(g f ). Korenblum, Zhu, Grudsky, Karapetyants, Quiroga-Barranco and Vasilevski
[15, 7, 8, 9, 17, 18, 19] have found various families of symbols which generate commu-
tative C∗-algebras of Toeplitz operators (see the summarizing book by Vasilevski [27]).
These families of defining symbols may be reduced to three model cases: radial symbols,
functions on the unit disk depending only on |z|, vertical symbols, functions on the upper
half-plane depending on Imz, and angular symbols defined on the upper half-plane and de-
pending only on θ = arg z. In addition, Huang [14] showed that these commutative algebras
are maximal.

Suárez [22, 23] made the principal step in the characterization of the commutative al-
gebra generated by Toeplitz operators with bounded radial symbols. His results are com-
plemented and generalized in [1, 2, 10, 16]. Recently, Herrera Yañez, Hutnı́k, Maximenko,
and Vasilevski [11, 12] have given a description of the commutative C∗-algebra generated
by Toeplitz operators with vertical symbols and show that it is isommetrically isomorphic
to the C∗-algebra of functions uniformly continuous on the positive half-line with respect
to the logarithmic metric | ln x− ln y|.

This paper is devoted to the studying of the third (angular) case. A function a ∈ L∞(Π)
is said to be angular if there exists b ∈ L∞(0,π) such that a(z) = b(arg z) for almost every
z ∈ Π. Denote by A∞ the C∗-subalgebra of L∞(Π) that consists of the bounded angular
functions. Introduce the operator algebra T (A∞) generated by all Toeplitz operators Ta

acting on the Bergman spaceA2(Π) with defining symbols a ∈ A∞.
The main tool to study T (A∞) is an isometric isomorphism of A2(Π) onto L2(R) con-

structed by Vasilevski [27, section 7.1]:

(Rφ)(x) =
1
√

2π

√
2x

1− e−2xπ

∫
Π

(z)−ix−1φ(z)dµ(z), x ∈ R. (1.2)

This isomorphism reduces every Toeplitz operator Ta with angular symbol a to the multi-
plication operator by γa acting on L2(R), where the function γa : R→ C is given by

γa(x) =
2x

1− e−2xπ

∫ π

0
a(θ)e−2xθ dθ, λ ∈ R. (1.3)

More precisely, if a ∈ A∞, then RTaR∗ = γaI. In particular, this implies that the C∗-algebra
T (A∞) is commutative and isometrically isomorphic to the C∗-algebra generated by the set

G = {γa : a ∈ L∞(0,π)}. (1.4)

Hence, a natural task to be done here is to obtain an explicit and intrinsic characterization
of the commutative C∗-subalgebra of L∞(R) generated by the set G and thus describe the
operator algebra T (A∞).

The main result of this paper states that the C∗-algebra generated by G coincides with
the C∗-algebra VSO(R) of bounded very slowly oscillating functions on R, i.e. the func-
tions that are uniformly continuous with respect to the “arcsinh-metric” ρ(x,y)= |arcsinh x−
arcsinhy|. As a consequence, the operator algebra T (A∞) is isometrically isomorphic to
VSO(R). We also prove that T (A∞) is dense in the C∗-algebra of angular operators with
respect to the strong operator topology in B(A2 (Π)).
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The paper is organized as follows. In Section 2 we define angular operators and give
various equivalent characterizations of these operators. In Section 3 we give a criterion of
angular Toeplitz operators and show that the closure in the strong operator topology of the
algebra angular Toeplitz operators coincides with the C∗-algebra of angular operators. In
Sections 4 we introduce the C∗-algebra VSO(R) and show that for every angular symbol a
the function γa belongs to VSO(R). In Section 5 prove the main result, i.e. the density in
VSO(R) of the algebra generated by the functions γa.

2 Angular operators

Let B(A2 (Π)) be the algebra of all linear bounded operators acting on the Bergman space
A2(Π). Given h ∈ R+, let Dh ∈ B(A2 (Π)) be the dilation operator defined by

Dh f (z) = h f (hz), z ∈ Π. (2.1)

An operator V ∈ B(A2 (Π)) is said to be angular or invariant under dilations if it commutes
with all dilation operators. The set of all angular operators will be denoted by A:

A :=
{
V ∈ B(A2 (Π)) : ∀h ∈ R+, DhV = VDh

}
. (2.2)

Example 2.1. Let h > 0. We shall prove that the dilation operator Dh is diagonalized by R.
Given φ ∈ A2(Π) and x ∈ R, by the equation (1.2) we have

(RDhφ) (x) =
hix

√
2π

√
2x

1− e−2xπ

∫
Π

(z)−ix−1φ(z)dµ(z) = Eh(x)(Rφ)(x).

Thus
RDhR∗ = MEh . (2.3)

Here and in what follows, we denote by Eh the function R→ C defined by Eh(x) = hix, and
MEh stays for the multiplication operator by Eh.

The Berezin transform [3, 4] of an operator V ∈ B(A2 (Π)) is the function Ṽ : Π→ C
defined by

Ṽ(z) :=
⟨VKz,Kz⟩
⟨Kz,Kz⟩

. (2.4)

The next theorem gives a criterion for a bounded linear operator acting in A2(Π) to be
angular. It is analogous to the corresponding criteria of radial and vertical operators [12, 28].

Theorem 2.2 (Criterion of angular operators).
Assume that V ∈ B(A2 (Π)). The following conditions are equivalent:

i). V ∈ A.

ii). RVR∗MEh = MEhRVR∗ for all h ∈ R+.

iii). There exists ϕ in L∞(R) such that V = R∗MϕR.

iv). The Berezin transform Ṽ depends on β = arg z only.
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Proof. i). −→ ii). The proof follows from (2.3).
ii). −→ iii). It follows from the well known characterization of the translation invariant

operators (see, for example, [13, Theorem 2.5.10]); see also [12, Lemma 2.1]).
iii). −→ iv). Given w ∈ Π, with w = ρeiβ, consider the Berezin transform of V at the

point w:

Ṽ(w) =
⟨VKw,Kw⟩A2(Π)

⟨Kw,Kw⟩
=
⟨MϕRKw,RKw⟩L2(R)

⟨Kw,Kw⟩
= (2Imw)2

∫
R
ϕ(x) |RKw(x)|2 dx.

A direct computation shows that

(RKw)(x) =
πe−2xπe(i−x)β

2ρ1+ix

√
2x

1− e−2xπ , x ∈ R.

Combining the last two formulas we see that Ṽ(w) depends on β = argw only:

Ṽ(w) = 4π2 sin2 β

∫
R
ϕ(x)e−2x(β+2π) 2x

1− e−2xπ dx,

iv). −→ i). Given z,w ∈ Π, and h ∈ R+, by (1.1) and (2.1)

(DhKw)(z) = hKw(hz) = −h
π

(w−hz)−2 = − 1
hπ

(
w
h
− z

)−2

=
1
h

K w
h
(z).

Using this formula we calculate the Berezin transform of the operator Dh−1VDh:

˜Dh−1VDh(w) =
⟨VDhKw,DhKw⟩
⟨DhKw,DhKw⟩

=
⟨VK w

h
,K w

h
⟩

⟨K w
h
,K w

h
⟩ = Ṽ

(w
h

)
= Ṽ(w).

Since the Berezin transform is injective [21], Dh−1VDh = V . �

Corollary 2.3. The set A of all angular operators on B(A2 (Π)) is a commutative C∗-
algebra which is isometrically isomorphic to L∞(R).

3 Criterion for a Toeplitz operator to be angular

The next proposition gives a criterion for a Toeplitz operator on the Bergman spaceA2(Π)
to be angular. In what follows we denote by µR2 the Lebesgue measure inR2, and dµR2

+
(x,y)=

xydxdy.

Proposition 3.1. Let a ∈ L∞(Π). The Toeplitz operator Ta is angular if and only if a is
angular.

Proof. Sufficiency. If a is angular, there exists b ∈ L∞(0,π) such that a(z) = b(arg z) for
almost every z ∈ Π, then for all h ∈ R+ we get a(hz) = b(arg(hz)) = b(arg z) = a(z) almost
all z ∈ Π. Hence, the Toeplitz operator Ta acting on A2(Π) is unitary equivalent to the
multiplication operator γaI = RTaR∗ acting on L2(R) (see [27, Section 7.2]), in this way Ta

is angular by Theorem 2.2.
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Necessity. Suppose that Ta ∈ A. Hence, for each h > 0 one gets that Ta = DhTaDh−1 =

Tah , where ah(w) = a(hw). Equivalently, Ta−ah = 0 for all h > 0. This implies that for all
h ∈ R+ a(z) = ah(z) = a(hz) a. e. z ∈ Π (see [12, Section 3, Lemma 3.1]), that is,

µΠ (∆h) = 0, where ∆h =
{
(x, θ) ∈ R+× (0,π) : a(xeiθ) , a(hxeiθ)

}
. (3.1)

Define Φ : R2
+× (0,π)→ C by

Φ (x,y, θ) =

0, if a(xeiθ) = a(yeiθ);
1, if a(xeiθ) , a(yeiθ),

and note that for all h ∈ R+

{(x, θ) ∈ Π : Φ (x,hx, θ) , 0} =
{
(x, θ) ∈ R+× (0,π) : a(xeiθ) , a(hxeiθ)

}
= ∆h. (3.2)

Accordingly, by (3.1) for all h ∈ R+ we get Φ(x,hx, θ) = 0 a. e. (x, θ) ∈ Π, and by Tonelli’s
theorem ∫

R2
+×(0,π)

Φ(x,y, θ)xydθdxdy
y=hx
=

∫
R2
+×(0,π)

Φ(x,hx, θ)x3hdθdxdh

=

∫
R+

h
(∫
Π

Φ(x,hx, θ)x2dµΠ(x, θ)
)
dh = 0.

Therefore, for almost θ ∈ (0,π)

0 = µR2
+

({
(x,y) ∈ R2

+ : a(xeiθ) , a(yeiθ)
})
=

∫
R2
+

Φ(x,y, θ)xydxdy =
∫
R2
Φ(et,eu, θ)e2te2u dt du.

It follows that

0 = µR2

({
(t,u) ∈ R2 : Φ(et,eu, θ) , 0

})
= µR2

({
(t,u) ∈ R2 : a◦ exp(t+ iθ) , a◦ exp(u+ iθ)

})
a. e. θ ∈ (0,π). Now, there exists a constant c(θ) such that a ◦ exp(t+ iθ) = c(θ) for almost
t ∈ R (see [12, Section 3, Lemma 3.2]), for this reason the bounded function b : (0,π)→ C
given by

b(θ) =

c(θ), if µR2

(
{(t,u) ∈ R2 : a◦ exp(t+ iθ) , a◦ exp(u+ iθ)}

)
= 0;

0, otherwise,

satisfies the equality a(z) = b(arg z) for almost all z ∈ Π, which means that a is angular. �

Proposition 3.2. The C*-algebra T (A∞) generated by angular Toeplitz operators is dense
in the algebra of bounded angular operators A with respect to the strong-operator topology
in B(A2 (Π)), i.e. SOT-closure(T (A∞)) = A. (3.3)

Proof. By Theorem 2.2 A is isometrically isomorphic to {M f : f ∈ L∞(R)}, which is a
maximal abelian von Neumann algebra in B(L2(R)) (see, for example, [5, Theorem 1.45
and Proposition 12.4]). Thus A is maximal abelian von Neumann algebra in B(A2 (Π)).
However, the von Neumann algebra W∗(T (A∞)) generated by the Toeplitz algebra T (A∞)
is abelian maximal, and T (A∞) is dense in W∗(T (A∞)) with respect to the strong operator
topology in B(A2 (Π)) (see [14] ). Therefore A = SOT-closure(T (A∞)). �
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4 VSO-property of the functions γa

In this section we formally introduce the C*-algebra VSO(R) and prove that G is a proper
subset of VSO(R). We denote by ρ the “arcsinh-metric” on the real line:

ρ(x,y) = |arcsinh(x)− arcsinh(y)| . (4.1)

Definition 4.1. Let f : R→ C. The function Ωρ, f : [0,+∞] −→ [0,+∞] defined by

Ωρ, f (δ) := sup
{| f (x)− f (y)| : x,y ∈ R, ρ(x,y) ≤ δ}. (4.2)

is called the modulus of continuity of f with respect to the metric ρ.

Definition 4.2 (very slowly oscillating functions on the real line). Let f : R −→ R be a
bounded function. We say that f is very slowly oscillating if it is uniformly continuous with
respect to the metric ρ given by (4.1), i.e., if lim

δ→0
Ωρ, f (δ)= 0. In other words, f is very slowly

oscillating if and only if the composition f ◦ sinh is uniformly continuous with respect the
usual metric on R. Denote by VSO(R) the set of all such functions.

The following result is well known in more general settings, namely, for bounded uni-
formly continuous functions on a general metric space. The idea of the proof may be seen
in [12].

Proposition 4.3. VSO(R) is a closed C∗-subalgebra of the C∗-algebra Cb(R) of bounded
continuous functions R→ C with pointwise operations and supremum-norm.

We are going to prove that γa ∈ VSO(R) for every a ∈ L∞(0,π). Recall that

γa(x) =
2x

1− e−2xπ

∫ π

0
a(θ)e−2xθ dθ, x ∈ R.

In the following proposition we introduce a metric ζ on R which is in a certain sense, the
most “natural” for the functions γa. After that we will show that ζ may be estimated from
above by the arcsinh-metric ρ.

Proposition 4.4. Define ζ : R2→ [0,+∞) by

ζ(x,y) = sup
a∈L∞(0,π)
∥a∥∞=1

|γa(x)−γa(y)|. (4.3)

Then

ζ(x,y) =
∫ π

0

∣∣∣∣∣ 2x
1− e−2xπ e−2xθ − 2y

1− e−2yπ e−2yθ
∣∣∣∣∣dθ. (4.4)

Proof. For every a ∈ L∞(0,π) and x,y ∈ R we have

|γa(x)−γa(y)| ≤ ∥a∥∞
∫ π

0

∣∣∣∣∣ 2x
1− e−2xπ e−2xθ − 2y

1− e−2yπ e−2yθ
∣∣∣∣∣dθ.

On the other hand, if x and y are fixed and x , y, we define a0 : (0,π)→ R by

a0(θ) = sign
(

2x
1− e−2xπ e−2xθ − 2y

1− e−2yπ e−2yθ
)
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and obtain a ∈ L∞(0,π), ∥a∥∞ = 1, and

ζ(x,y) =
∣∣∣γa0(x)−γa0(y)

∣∣∣ = ∫ π

0

∣∣∣∣∣ 2x
1− e−2xπ e−2xθ − 2y

1− e−2yπ e−2yθ
∣∣∣∣∣dθ,

which completes the proof. �

Lemma 4.5. For every x,y ∈ R, ζ(−x,−y) = ζ(x,y).

Proof. It follows from the identity γa(−x) = γb(x) where b is defined by b(θ) = a(π−θ). �

Lemma 4.6. Define the functions ω : R→ (0,+∞) and τ : (0,+∞)→ (0,∞) by

ω(x) =
2x

1− e−2xπ , τ(y) =
ω′(y)
ω(y)

√
y2+1.

Then ω is strictly increasing on R and τ is strictly decreasing on (0,+∞). Moreover,
lim

y→0+
τ(y) = π, lim

y→∞
τ(y) = 1.

Proof. All statements of the lemma are easily verified with elementary calculus. �

Lemma 4.7. For every x,y ∈ R,

ζ(x,y) ≤ 2πρ(x,y). (4.5)

Proof. Since both sides of (4.5) are symmetric, we assume that x < y. Then

ζ(x,y) =
∫ π

0

∣∣∣∣∣ 2x
1− e−2xπ e−2xθ − 2x

1− e−2xπ e−2yθ +
2x

1− e−2xπ e−2yθ − 2y
1− e−2yπ e−2yθ

∣∣∣∣∣dθ
≤ ω(x)

∫ π

0

(
e−2xθ − e−2yθ

)
dθ+ (ω(y)−ω(x))

∫ π

0
e−2yθ dθ

= ω(x)
(

1
ω(x)

− 1
ω(y)

)
+ (ω(y)−ω(x))

1
ω(y)

= 2
(
1− ω(x)
ω(y)

)
.

The elemenatry inequality 1− 1
t ≤ ln(t) holds for all t ≥ 1. Applying it to t = ω(y)

ω(x) we get

1− ω(x)
ω(y)

≤ ln(ω(y))− ln(ω(x)).

Consider the case y > x ≥ 0. By the Cauchy’s mean-value theorem, there exists c ∈ (x,y)
such that

lnω(y)− lnω(x)
arcsinh(y)− arcsinh(x)

=
[lnω(x)]′

∣∣∣
x=c

arcsinh′(x)
∣∣∣
x=c

=
ω′(c)
ω(c)

√
c2+1 = τ(c),

where τ is given in Lemma 4.6. Since τ(c) ≤ π for all c > 0, we obtain (4.5) for all x < y.
In the case x < 0 ≤ y we apply the triangular inequality and Lemma 4.5:

ζ(x,y) ≤ ζ(x,0)+ ζ(0,y) = ζ(0,−x)+ ζ(0,y) ≤ 2π(ρ(x,0)+ρ(y,0)) = 2πρ(x,y). �
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Theorem 4.8. For each a ∈ L∞(0,π), the function γa satisfies ∥γa∥∞ ≤ ∥a∥∞ and is Lipschitz
continuous with respect to the metric ρ. As a consequence, G is a proper subset of VSO(R).

Proof. The inequality ∥γa∥∞ ≤ ∥a∥∞ follows from the definition of γa applying the trivial
estimate |a(θ)| ≤ ∥a∥∞. The Lipschitz continuity of the functions γa is a consequence of
Lemma 4.7. In order to justify the last statement of the theorem we note the function σ
defined on R by σ(x) := x1/3/(1+ x2) is uniformly continuous, but not Lipschitz continuous,
with respect to the usual metric. Therefore the function σ◦arcsinh belongs to VSO(R), but
it is not Lipschitz continuous with respect to ρ and therefore does not belong to G. �

5 Main result

Lemma 5.1. Given σ ∈ VSO(R) and ε > 0, there exists b ∈ L∞(R+) such that

sup
x∈R+

∣∣∣σ(x)−γv
b(x)

∣∣∣ < ε, (5.1)

where

γv
b(y) = 2y

∫ ∞

0
b(t)e−2yt dt, y ∈ R+. (5.2)

Proof. Let x,y ∈ (0,∞), by the Cauchy’s Mean Value Theorem the arcsinh-metric ρ satis-
fies ρ(x,y) ≤ |ln(x)− ln(y)| . So one gets that σ|R+ ∈ VSO(R+), where VSO(R+) consists of
uniformly continuous and bounded functions on R+ with respect to the metric ρln(a,b) =
|ln(a)− ln(b)|. Therefore, there exists b ∈ L∞(R+) such that supy∈R+

∣∣∣σ(y)−γV
b (y)

∣∣∣ < ε (see
[12]). �

In the same manner as above we can see that given σ ∈ VSO(R) and ε > 0 there exists
h ∈ L∞(R+) such that

sup
y∈R−

∣∣∣ f (y)−γv
h(−y)

∣∣∣ ≤ ε. (5.3)

The inequalities (5.1) and (5.3) are very important, because it gives a way to approximate
functions in VSO(R) by functions in the algebra generated by the set of all ” spectral func-
tions ” γa. The following lemmas say us that a function in VSO(R) can be approximated by
functions belonging to G in some subset of real numbers.

Lemma 5.2 (Properties of γa(x) for large values of x). Given a ∈ L∞(0,π), we denote by
νa the function

νa(x) = 2x
∫ π

0
a(θ)e−2xθ dθ, x ∈ R. (5.4)

i). Let a ∈ L∞(0,π). Given ε > 0 there exists M > 0 such that
sup
x≥M
|γa(x)− νa(x)| ≤ ε. (5.5)

ii). If a ∈ L∞(0,π) be such that a(θ) = 0 for all θ ∈ (π/2,π), then |γa(x)| ≤ ∥a∥∞
1+ e−xπ for

each x ∈ R.

iii). If b ∈ L∞(0,π) be such that b(θ) = 0 for all θ ∈ (0,π/2), then |γb(x)| ≤ ∥b∥∞
1+ exπ for each

x ∈ R.



C∗-algebra of Angular Toeplitz Operators 159

Proof. i). The proof is based on the following observation γa(x) = νa(x)+ e−2xπγa(x). The
proof of ii and iii are straightforward. �

As a consequence of (5.5) and the equality γa(−x) = γb(x), where b is given by the
formula b(θ) = a(π− θ), we get that for every ε > 0 there exists m > 0 such that

sup
x≤−m

∣∣∣γa(x)− νa(π−)(−x)
∣∣∣ = sup

x≤−m

∣∣∣γa(π−)(−x)− νa(π−)(−x)
∣∣∣ ≤ ε. (5.6)

Lemma 5.3. Let σ ∈ VSO(R). Given ε > 0. there exist a generating symbol a ∈ L∞(0,π)
and number L > 0 such that

sup
|x|>L
|σ(x)−γa(x)| ≤ ε. (5.7)

Proof. Given ε > 0 there is b ∈ L∞(R+) such that (5.1) holds. Write c = χ(0,π/2)b, hence

| f (x)−γc(x)| ≤
∣∣∣ f (x)−γv

b(x)
∣∣∣+ ∣∣∣γv

b(x)− νc(x)
∣∣∣+ |γc(x)− νc(x)| ≤ ε

2
+2∥b∥∞ e−xπ.

From this, there exists k > 0 such that supx≥k | f (x)−γc(x)| ≤ ε. The same argument applied
above proves that there are h ∈ L∞(0,π) with h(θ) = 0 for each θ ∈ [π/2,π) and m > 0 such
that supy≤−m | f (y)−γh(−y)| ≤ ε. However,

γh(−x) =
2xe−2xπ

1− e−2xπ

∫ π/2

0
h(θ)e2xθ dθ =

2x
1− e−2xπ

∫ π

π/2
h(π−β)e−2xβ dβ.

Let g(θ) = h(π− θ), thus g ∈ L∞(0,π) with g(θ) = 0 for each θ ∈ (0,π/2].
On the other hand, by Proposition 5.2 there are constants K,M > 0 such that

sup
x≤−K
|γc(x)| ≤ ε

2
, sup

y≥M
|γg(y)| ≤ ε

2
.

Taking a = c+g ∈ L∞(0,π), and L =max{K,M,k,m}, it follows easily that

sup
|x|>L
|σ(x)−γa(x)| ≤ ε,

which is the desired conclusion. �

Now, we are ready to prove the main result of the paper which states that the algebra
generated by the set of all “spectral functions” is dense in the C∗-algebra VSO(R). We
denote by Γ and Γ[0,π] the algebras of functions R→ C given by

Γ :=Alg {γa : a ∈ L∞(0,π)} =AlgG (5.8)

Γ[0,π] :=Alg
{
γa : a ∈ L∞(0,π), such that lim

θ→π
a(θ) and lim

θ→0
a(θ) exist

}
(5.9)

Note that Γ[0,π] ⊂ Γ. It is proved in [27, Lemma 7.2.3] that if a ∈ L∞(0,π) and the limits
limθ→0 a(θ) and limθ→π a(θ) exist, then γa is continuous on R and

lim
x→+∞

γa(x) = lim
θ→0

a(θ), lim
x→−∞

γa(x) = lim
θ→π

a(θ).
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Thus Γ[0,π] may be considered as a subset of C(R), where R = R∪ {+∞}∪ {−∞}. Further-
more, it is proved in [27, Theorem 7.2.4] that algebra Γ[0,π] is dense in C(R) with respect to
the topology generated by the sup-norm ∥ · ∥∞, i.e.

C
(
R
)
= uc(Γ[0,π]). (5.10)

Theorem 5.4. The algebra Γ is dense in VSO(R).

Proof. Let f ∈ VSO(R) and ε > 0. By Lemma 5.3 there exists a function a ∈ L∞(0,π) and
a constant L such that sup|x|>L | f (x)−γa(x)| ≤ ε2 . Let g : R→ [0,1] be a continuous function
with g(x) = 1 for each x ∈ [−L,L] and g(y) = 0 for each y ∈ [−2L,2L]. Define

h(x) = ( f −γa)(x)g(x) =

( f −γa)(x), if x ∈ [−L,L];
0, if x < [−2L,2L].

Note that h ∈ C(R), it follows from (5.10) that there exists σ ∈ Γ[0,π] such that ∥h−σ∥∞ ≤ ε.
Writing γ = γa+σ ∈ Γ, one gets ∥ f −γ∥∞ = ∥( f −γa)−σ∥∞ ≤ ∥h−σ∥∞ ≤ ε. �

The last theorem shows that C∗-algebra of angular Toeplitz operators is isometrically
isomorphic to VSO(R), while by Proposition 3.2 its closure in the strong operator topology
coincides with the C∗-algebra of angular operators, which is isometrically isomorphic to
L∞(R), see Corollary 2.3.
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