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Abstract

The paper is devoted to study classes of plane wave diffraction problems by a region
which involves a crack with impedance boundary conditions. Conditions on the wave
number and impedance parameters are found to ensure the well-posedness of the prob-
lems in a scale of Bessel potential spaces. Under such conditions, representations of
the solutions are also obtained upon the consideration of some associated operators
which, in a sense, combine operators of Wiener-Hopf and Hankel type.
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1 Introduction

The diffraction by regions containing cracks is a well recognized important problem in ap-
plied mathematics. Recently, several works increased significantly the knowledge about
the solutions of such problems and the most appropriate spaces framework where to in-
terpret these solutions. As a matter of fact, a great part of the recent interest goes to the
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mathematical analysis of the weak formulation of such kind of problems, and to an even-
tual possibility to increase regularity of the solution in a Sobolev spaces context. E.g., the
works [7, 8, 9, 10, 11, 12, 13, 14, 19, 35, 36, 38, 39, 40] follow this line of research, and
worked out already a corresponding detailed mathematical analysis about several classes of
diffraction problems (but mostly without cracks).

In the present work, we go further on our own research (cf. [12, 14]) as it concerns the
knowledge about the regularity of solutions of wave diffraction problems in the half-plane
with a crack geometry, by considering in here (possible different) boundary impedance con-
ditions on the crack. More specifically, we will derive seven different possible conditions
on the wave number and on the impedance paramentes such that the unique solutions for
the considered problems are obtained in Bessel potential spaces H1+ε, for a smoothness
parameter ε ∈ [0,1/2).

It is worth mentioning that the present methods are different from other somehow more
classical works which are based only on the Wiener-Hopf method and its generalizations.
Important tools in our technique are the Green formula and a convenient combination of
pseudo-differential operators with other types of operators. More precisely, we use here
a potential theory approach combined with the use of concrete extension operators, and a
corresponding integral description of the problems. Thus, this is also different from the most
classical approach due to the Malyuzhinets method [33], and corresponding representations
of solutions by using the so-called Sommerfeld integral transform (cf., e.g., [32]). It is also
clear that the present crack diffraction problems present an increase of the difficulties when
compared with the corresponding problems of wave diffraction by a half-plane. The main
difficulty is related to the different geometries of these two classes of problems, which for
the crack case is originating much more difficult operators and equations for deriving the
solutions of the problems.

2 Formulation of the problems

We will now introduce the general notation which will allow the mathematical formula-
tion of the problem. Let S(Rn) denote the Schwartz space of all rapidly vanishing func-
tions and S′(Rn) the dual space of tempered distributions on Rn. The Bessel potential
space Hs(Rn), with s ∈ R, is formed by the elements φ ∈ S′(Rn) such that ∥φ∥Hs(Rn) =

∥F −1(1+ |ξ|2)
s/2 · F φ∥L2(Rn) is finite. As the notation indicates, ∥ · ∥Hs(Rn) is a norm for the

space Hs(Rn) which makes it a Banach space. Here, F = Fx 7→ξ denotes the Fourier trans-
formation in Rn.

For a given Lipshitz domain D, on Rn, we denote by H̃s(D) the closed subspace of
Hs(Rn) whose elements have supports in D, and Hs(D) denotes the space of general-
ized functions on D which have extensions into Rn that belong to Hs(Rn). The space
H̃s(D) is endowed with the subspace topology, and on Hs(D) we introduce the norm
of the quotient space Hs(Rn)/H̃s(Rn\D). Throughout the paper we will use the notation
Rn
± := {x = (x1, . . . , xn−1, xn) ∈ Rn : ±xn > 0}. Note that the spaces H0(Rn

+) and H̃0(Rn
+) can

be identified, and we will denote them by L2(Rn
+).

LetΩ := {(x1, x2) ∈R2 : x1 > 0, x2 ∈R}, Γ1 := {(x1,0) : x1 ∈R}, and Γ2 := {(0, x2) : x2 ∈R}.
Let further C := {(x1,0) : 0 < x1 < a} ⊂ Γ1 for a certain positive number a and ΩC := Ω\C.
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Clearly, ∂Ω = Γ2 and ∂ΩC = Γ2∪C.
For our purposes below we introduce further notations: Ω1 := {(x1, x2) ∈R2 : x1 > 0, x2 >

0} and Ω2 := {(x1, x2) ∈ R2 : x1 > 0, x2 < 0}, then ∂Ωj = Sj ∪S, for j = 1,2, where S :=
{(x1,0) : x1 ≥ 0} ⊂ Γ1, S1 := {(0, x2) : x2 ≥ 0} ⊂ Γ2, and S2 := {(0, x2) : x2 ≤ 0} ⊂ Γ2. Finally,
we introduce the following unit normal vectors n1 =

−−−−−→
(0,−1) on Γ1 and n2 =

−−−−−→
(−1,0) on Γ2.

Let ε ∈ [0, 1
2 ). We are interested in studying the problem of existence and uniqueness of

an element u ∈ H1+ε(ΩC), such that(
∆+ k2

)
u = 0 in ΩC, (2.1)

and u satisfies one of the following two representative boundary conditions:
[
∂n1u

]+
C− p1 [u]+C = g1 on C,[

∂n1u
]−
C+ p2 [u]−C = g2 on C,

and

 [u]+S1
= h1 on S1,

[u]+S2
= h2 on S2,

(2.2)


[
∂n1u

]+
C− p1 [u]+C = g1 on C,[

∂n1u
]−
C+ p2 [u]−C = g2 on C,

and


[
∂n2u

]+
S1
= f1 on S1,[

∂n2u
]+
S2
= f2 on S2;

(2.3)

here the wave number k ∈ C \R and the numbers pj ∈ C are given. The elements [u]+Sj
and[

∂n2u
]+
Sj

denote the Dirichlet and the Neumann traces on Sj, j = 1,2, respectively, while by
[u]±C we denote the Dirichlet traces on C from both sides of the screen and by

[
∂n1u

]±
C we

denote the Neumann traces on C from both sides of the crack.
Throughout the paper on the given data we assume that hj ∈H1/2+ε(Sj), fj ∈H−1/2+ε(Sj),

and gj ∈ H−1/2+ε(C), for j = 1,2. Furthermore, we suppose that they satisfy the following
compatibility conditions:

χa(g+1 −g−1 ) ∈ rCH̃−1/2+ε(C), (2.4)

and

χ0
(
g1+ rC f1 ◦ ei π2

)
, χ0

(
g2− rC f2 ◦ e−i π2

)
∈ rCH̃−1/2+ε(C). (2.5)

Here, rC denotes the restriction operator to C and χa(x) := χ0(a− x), where χ0 ∈C∞([0,a]),
such that χ0(x) ≡ 1 for x ∈ [0,a/3] and χ0(x) ≡ 0 for x ∈ [2a/3,a].

From now on we will refer to:

• Problem PI−D as the one given by the conditions (2.1), (2.2), (2.4);

• Problem PI−N as the one given by the conditions (2.1), (2.3), (2.4), and (2.5).

Note that the compatibility conditions (2.4) and (2.5) are necessary for the well-posedness
of the problems PI−D and PI−N but only in the case ε = 0. For ε ∈ (0, 1

2 ) the compatibility
conditions are superfluous.
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3 The fundamental solution and potentials

We start this section by proving the uniqueness result for the problems in consideration.

Theorem 3.1. If ε ∈ [0, 1
2 ) and one of the following situations holds:

(a) (ℜek)(ℑmk) > 0, ℑm p1 ≥ 0, ℑm p2 ≥ 0,

(b) (ℜek)(ℑmk) < 0, ℑm p1 ≤ 0, ℑm p2 ≤ 0,

(c) |ℑmk| > |ℜek|, ℜe p1 ≤ 0, ℜe p2 ≤ 0,

(c′) |ℑmk| = |ℜek|, ℜe p1 < 0, ℜe p2 < 0,

(d) ℜek = 0, (ℑm p1)(ℑm p2) > 0,

(e) ℑm p1 , 0 , (ℑmk)2− (ℜek)2
+2(ℜek)(ℑmk)ℜe p1

ℑm p1
> 0 ,

ℜe p2 ≤ℜe p1
ℑm p2
ℑm p1

,

(f) ℑm p2 , 0 , (ℑmk)2− (ℜek)2
+2(ℜek)(ℑmk)ℜe p2

ℑm p2
> 0 ,

ℜe p1 ≤ℜe p2
ℑm p1
ℑm p2

,

then problems PI−D and PI−N have at most one solution.

Proof. The proof is standard and uses the Green’s formula (being sufficient to consider the
case ε = 0). Let R be a sufficiently large positive number and B(R) be the disk centered at
the origin with the radius R. Set ΩR :=ΩC∩B(R). Note that the domain ΩR has a piecewise
smooth boundary S R including both sides of C and denote by n(x) the outward unit normal
vector at the non-singular points x ∈ S R.

Let u be a solution of the homogeneous problem. Then the first Green’s identity for u
and its complex conjugate ū in the domain ΩR, together with zero boundary conditions on
S R yields∫

ΩR

[
|∇u|2− k2|u|2

]
dx = p1

∫
C
|[u]+|2dx + p2

∫
C
|[u]−|2dx+

∫
∂B(R)∩ΩC

(∂nu) ūdS R . (3.1)

From the real and imaginary parts of the last identity, we obtain∫
ΩR

[
|∇u|2+

(
(ℑmk)2− (ℜek)2

)
|u|2

]
dx − ℜe p1

∫
C
|[u]+|2dx − ℜe p2

∫
C
|[u]−|2dx

=ℜe
∫
∂B(R)∩ΩC

(∂nu) ūdS R , (3.2)

−2(ℜek)(ℑmk)
∫
ΩR

|u|2 dx − ℑmp1

∫
C
|[u]+|2dx − ℑm p2

∫
C
|[u]−|2dx

= ℑm
∫
∂B(R)∩ΩC

(∂nu) ūdS R . (3.3)
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Now, note that since u ∈ H1(ΩC) there exists a monotonic sequence of positive numbers
{Rj}, such that Rj→∞ as j→∞ and

lim
j→∞

∫
∂B(Rj)∩ΩC

(∂nu)ū dS Rj = 0. (3.4)

For each of the conditions (a), (b), and (d) the expression in the left hand side of (3.3) and
for the condition (c) and (c′) the expression in the left hand side of (3.2) are monotonic with
respect to R, and therefore (3.4) implies that the limits at infinity of the expressions in the
left and right hand sides of (3.2) and (3.3) exist and are equal to 0. Thus u = 0 in ΩC.

For the condition (e), equalities (3.2) and (3.3) give us∫
ΩR

[
|∇u|2+

(
(ℑmk)2− (ℜek)2

+2(ℜek)(ℑmk)
ℜe p1

ℑmp1

)
|u|2

]
dx

+
(
ℜe p1

ℑm p2

ℑm p1
−ℜe p2

) ∫
C
|[u]−|2dx

=ℜe
∫
∂B(R)∩ΩC

(∂nu) ūdS R −
ℜe p1

ℑmp1
ℑm

∫
∂B(R)∩ΩC

(∂nu) ūdS R ,

with the expression in the left hand side which is also monotonic with respect to R, and
therefore (3.4) implies that limit at infinity exists and equals to 0. Similar arguments work
for the condition (f). Thus u = 0 in ΩC also for the conditions (e) and (f). �

Now, without loss of generality, we assume that ℑmk > 0; the complementary case
ℑmk < 0 is treated with obvious modifications. Let us denote the standard fundamental
solution of the Helmholtz equation (in two dimensions) by

K(x) := − i
4

H(1)
0 (k|x|) ,

where H(1)
0 (k|x|) is the Hankel function of the first kind of order zero (cf. [20, §3.4]). Fur-

thermore, we introduce the single and double layer potentials on Γj:

Vj(ψ)(x) =
∫
Γj

K(x− y)ψ(y)dyΓj , x < Γj ,

Wj(φ)(x) =
∫
Γj

[∂n j(y)K(x− y)]φ(y)dyΓj , x < Γj ,

where j = 1,2 and ψ, φ are density functions. Note that for j = 1 sometimes we will write
R instead of Γ1. In this case, for example, the single layer potential defined above has the
form

V1(ψ)(x1, x2) =
∫
R
K(x1− y, x2)ψ(y)dy, x2 , 0.

Set R2
± := {(x1, x2) ∈ R2 : x2 ≷ 0} and let us first consider the operators V := V1 and

W :=W1.
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Theorem 3.2 (Cf., e.g., [10]). The single and double layer potentials V and W are contin-
uous operators

V : Hs(R)→ Hs+1+ 1
2 (R2
±), W : Hs+1(R)→ Hs+1+ 1

2 (R2
±) (3.5)

for all s ∈ R and satisfy following well-known limit relations:

[V(ψ)]+R = [V(ψ)]−R =:H(ψ), [∂nV(ψ)]±R =: [∓1
2

I](ψ) ,
(3.6)

[W(φ)]±R =: [±1
2

I](φ), [∂nW(φ)]+R = [∂nW(φ)]−R =:L(φ) ,

where

H(ψ)(z) :=
∫
R
K(z− y)ψ(y)dy , z ∈ R , (3.7)

L(φ)(z) := lim
R2
+∋x→z∈R

∂n(x)

∫
R

[∂n(y)K(y− x)]φ(y)dy , z ∈ R , (3.8)

and I denotes the identity operator.

In our further considerations we will use the even and odd extension operators defined
by

ℓeφ(y) =
{
φ(y), y ∈ R±
φ(−y), y ∈ R∓

and ℓoφ(y) =
{
φ(y), y ∈ R±
−φ(−y), y ∈ R∓

,

respectively.

Remark 3.3 (Cf. [19]). The following operators

ℓe : Hε+ 1
2 (R±) −→ Hε+ 1

2 (R), ℓo : rR± H̃ε+ 1
2 (R±) −→ Hε+ 1

2 (R),

ℓo : Hε− 1
2 (R±) −→ Hε− 1

2 (R), ℓe : rR± H̃ε− 1
2 (R±) −→ Hε− 1

2 (R),

are continuous for all ε ∈ [0,1/2).

Lemma 3.4 (Cf. [10]). If ε ∈ [0, 1
2 ), then

rΓ2 ◦V ◦ ℓoψ = 0, rΓ2 ◦W ◦ ℓoφ̃ = 0,

rΓ2 ◦∂n2V ◦ ℓeψ̃ = 0, rΓ2 ◦∂n2W ◦ ℓeφ = 0

for all ψ ∈ Hε− 1
2 (S) , ψ̃ ∈ rSH̃ε− 1

2 (S) , φ ∈ Hε+ 1
2 (S) , and φ̃ ∈ rSH̃ε+ 1

2 (S).

Note that analogous results are valid for the operators V2 and W2.
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4 The problems in the form of Wiener-Hopf plus Hankel equa-
tions

In the present section, we will equivalently write our problems in the form of single equa-
tions characterized by particular operators which will depend on algebraic sums of Wiener-
Hopf and Hankel operators. These operators will be originated by an appropriate use of
certain pseudodifferential operators (introduced in the last section), and also a convenient
use of odd and even extension operators. In view to formalize these operators later on, we
will now introduce the reflection operator J given by the rule

Jψ(y) = ψ(−y) for all y ∈ R.

Lemma 4.1. Let one of the conditions (a)–(f) of Theorem 3.1 be satisfied, then operators

Φj :=
1
2

I+ pjH : H−
1
2+ε(R) −→ H−

1
2+ε(R), j = 1,2, (4.1)

are invertible.

Proof. Note that the invertibility of the operators (4.1) can be easily derived from the anal-
ogous results on operators L− pj

2 I from [10, Section 5], using the mapping properties of the
operatorH and the identities LH =HL = − 1

4 I; cf. [7, 8, 10]. �

From now on we assume that one of the conditions (a)–(f) of Theorem 3.1 is satisfied.

4.1 The PI−D problem

We start by considering the boundary value problem PI−D in the following equivalent form:
Find uj ∈ H1+ε(Ωj), j = 1,2, such that (

∆+ k2
)
uj = 0 in Ω j, (4.2)[

uj
]+
Sj
= hj on Sj, (4.3)[

∂n1u1
]+
C− p1 [u1]+C = g1,

[
∂n1u2

]−
C+ p2 [u2]−C = g2 on C, (4.4)

and
[u1]+Cc − [u2]−Cc = 0,

[
∂n1u1

]+
Cc −

[
∂n1u2

]−
Cc = 0 on Cc, (4.5)

where Cc = S\C.
Let us consider the following functions

u1 := −V1Φ
−1
1 ℓorSψ+H1 in Ω1, (4.6)

and
u2 := V1Φ

−1
2 ℓorS(ψ−φ)+H2 in Ω2, (4.7)

where
H1 := −V1Φ

−1
1

(
ℓo(ℓ+g1+2p1[W2(ℓeh1)]+S)

)
+2W2(ℓeh1) in Ω1,
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and
H2 := V1Φ

−1
2

(
ℓo(ℓ+g2−2p2[W2(ℓeh2)]+S)

)
+2W2(ℓeh2) in Ω2;

here ψ and φ are arbitrary elements of the spaces H̃−
1
2+ε(Cc) and H̃

1
2+ε(Cc), respectively;

ℓ+g1 ∈ H−
1
2+ε(S) is any fixed extension of g1 ∈ H−

1
2+ε(C), while ℓ+g2 ∈ H−

1
2+ε(S) denotes

the extension of g2 ∈ H−
1
2+ε(C) which satisfies the condition rCc(ℓ+g1−ℓ+g2) = 0. Note that

such extension exists due to the compatibility condition (2.4). Furthermore, the operators
Φ−1

1 and Φ−1
2 denote the inverse of the operators Φ1 and Φ2, respectively, cf. (4.1). Note

also that, the functions H1 and H2 are well defined and are known.
Using the results from Section 3 and noting that Φ−1

j ℓo = ℓorSΦ−1
j ℓo (cf. [10]) it is easy

to verify that uj, j = 1,2, belong to the spaces H1+ε(Ωj) and satisfy equations (4.2)-(4.4).
Thus it remains to satisfy the conditions (4.5). The first condition of (4.5) gives us

−rCcH(Φ−1
1 +Φ

−1
2 )ℓorsψ+ rCcHΦ−1

2 ℓorsφ = H1
ID,

where
H1

ID := [H2]−Cc − [H1]+Cc ∈ H
1
2+ε(Cc).

From the second condition of (4.5), we have

0 =
[
∂n1u1

]+
Cc −

[
∂n1u2

]−
Cc =

[
∂n1u1

]+
Cc − p1[u1]+Cc −

[
∂n1u2

]−
Cc − p2[u2]−Cc + (p1+ p2)[u1]+Cc ,

which leads us to the following equation

−(p1+ p2)rCcHΦ−1
1 ℓorsψ+ rCcℓorsφ = H2

ID,

where
H2

ID := −(p1+ p2)[H1]+Cc ∈ H
1
2+ε(Cc).

Thus we arrived to the following equation

rCcKℓorSΥ = HID, (4.8)

where

K :=

 −H(Φ−1
1 +Φ

−1
2 ) HΦ−1

2

−(p1+ p2)HΦ−1
1 I

 , Υ :=
(
ψ

φ

)
,

and HID := (H1
ID,H

2
ID)⊤ is a known vector function. Therefore we need to investigate the

invertibility of the operator

rCcKℓorS :
H̃−

1
2+ε(Cc)
⊕

H̃
1
2+ε(Cc)

−→
H

1
2+ε(Cc)
⊕

H
1
2+ε(Cc)

. (4.9)

With the help of the operator J and the shift convolution operators

Op(τ±a) := F −1τ±a · F ,
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where τb(ξ) := eibξ, ξ ∈ R, we equivalently reduce the problem to the invertibility of the
operator

rR+K−− :
H̃−

1
2+ε(R+)
⊕

H̃
1
2+ε(R+)

−→
H

1
2+ε(R+)
⊕

H
1
2+ε(R+)

, (4.10)

where
K−− :=Kdiag{I−Op(τ−2a)J, I−Op(τ−2a)J}.

Let us note here that because of Theorem 3.1 and having in mind the exhibited limit rela-
tions of the potentials, we already know that KerrR+K−− = {0}.

4.2 The PI−N problem

As in the previous subsection, the boundary value problem PI−N can be equivalently rewrit-
ten in the following form: Find uj ∈ H1+ε(Ωj), j = 1,2, such that(

∆+ k2
)
uj = 0 in Ωj, (4.11)[

∂n2uj
]+
Sj
= fj on Sj, (4.12)[

∂n1u1
]+
C− p1 [u1]+C = g1,

[
∂n1u2

]−
C+ p2 [u2]−C = g2 on C, (4.13)

and
[u1]+Cc − [u2]−Cc = 0,

[
∂n1u1

]+
Cc −

[
∂n1u2

]−
Cc = 0 on Cc, (4.14)

where Cc = S\C.
Let us consider the following functions

u1 := −V1Φ
−1
1 ℓerSψ+F1 in Ω1, (4.15)

and
u2 := V1Φ

−1
2 ℓerS(ψ−φ)+F2 in Ω2, (4.16)

where
F1 := −V1B−1

1

(
ℓe(ℓ+g1+2[∂n1V2(ℓo f1)]+S)

)
−2V2(ℓo f1) in Ω1,

and
F2 := V1B−1

2

(
ℓe(ℓ+g2+2[∂n1V2(ℓo f2)]+S)

)
−2V2(ℓo f2) in Ω2;

here ψ and φ are arbitrary elements of the spaces H̃−
1
2+ε(Cc) and H̃

1
2+ε(Cc), respectively,

as above. Note also that, the functions F1 and F2 are well defined (cf. Remark 3.3 and
compatibility conditions (2.5)) and are known.

Using the results from Section 3 and noting thatΦ−1
j ℓe = ℓerSΦ−1

j ℓo (cf. [10]) it we have
that uj, j = 1,2 belong to the spaces H1+ε(Ωj) and satisfy the equations (4.2)-(4.4). The first
condition of (4.5) gives us

−rCcH(Φ−1
1 +Φ

−1
2 )ℓersψ+ rCcHΦ−1

2 ℓersφ = F1
IN ,



54 L. P. Castro and D. Kapanadze

where
F1

IN := [F2]−Cc − [F1]+Cc ∈ H
1
2+ε(Cc).

On the other hand, the second condition of (4.14) leads us to

0 =
[
∂n1u1

]+
Cc −

[
∂n1u2

]−
Cc =

[
∂n1u1

]+
Cc − p1[u1]+Cc −

[
∂n1u2

]−
Cc − p2[u2]−Cc + (p1+ p2)[u1]+Cc ,

which gives rise to the equation

−(p1+ p2)rCcHΦ−1
1 ℓersψ+ rCcℓersφ = F2

IN ,

where
F2

IN := −(p1+ p2)[F1]+Cc ∈ H
1
2+ε(Cc).

Thus, altogether, we arrived to the following equation

rCcKℓerSΥ = FIN , (4.17)

where

K :=

 −H(Φ−1
1 +Φ

−1
2 ) HΦ−1

2

−(p1+ p2)HΦ−1
1 I

 , Υ :=
(
ψ

φ

)
,

and FIN := (F1
IN ,F

2
IN)⊤ is a known vector function. Therefore, by similar arguments as

above, we need to investigate the invertibility of the operator

rR+K++ :
H̃−

1
2+ε(R+)
⊕

H̃
1
2+ε(R+)

−→
H

1
2+ε(R+)
⊕

H
1
2+ε(R+).

(4.18)

where
K++ :=Kdiag{I+Op(τ−2a)J, I+Op(τ−2a)J}.

and having the property KerrR+K++ = {0}.

5 Analysis of Wiener-Hopf plus and minus Hankel operators

In this section we will consider general operators with the global structure of Wiener-Hopf
plus and minus Hankel operators, and we will recall – in an appropriate framework for
our purposes – some known operator relations between these operators and Wiener-Hopf
operators.

In view of this, let us also recall that two bounded linear operators T and S (acting
between Banach spaces) are said to be equivalent if T = ES F for some boundedly invertible
operators E and F. In such a case we will write T ∼ S . In addition, when the use of
identity extension operators is needed in combination with the related operators T and S ,
such corresponding relations are referred to as a (toplinear) equivalence after extension (see
[2, 18] for a detailed description about such operator relations).

Let us define

Λs
±(ξ) := (ξ± i)s = (1+ ξ2)

s
2 exp

{
s iarg(ξ± i)

}
,
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with a branch chosen in such a way that arg(ξ± i)→ 0 as ξ→ +∞, i.e., with a cut along the
negative real axis (see Example 1.7 in [22] for additional information about the properties
of these functions). In addition, we will also use the notation

ζ(ξ) :=
Λ−(ξ)
Λ+(ξ)

=
ξ− i
ξ+ i

, ξ ∈ R .

Lemma 5.1. [22, §4] Let s,r ∈ R, and consider the operators

Λs
+(D) = (D+ i)s

Λs
−(D) = rR+(D− i)sℓ(r) ,

where (D± i)±s = F −1(ξ ± i)±s · F , and ℓ(r) : Hr(R+)→ Hr(R) is any bounded extension
operator in these spaces (which particular choice does not change the definition of Λs

−(D)).
These operators arrange isomorphisms in the following space settings

Λs
+(D) : H̃r(R+)→ H̃r−s(R+),

Λs
−(D) : Hr(R+)→ Hr−s(R+)

(for any s,r ∈ R).

Bearing in mind the purpose of this section, let Aij = Op(aij) = F −1aij · F and Bij =

Op(bij) be pseudodifferential operators of order µij ∈ R; thus, ⟨·⟩−µijaij, ⟨·⟩−µijbij ∈ L∞(R),
where ⟨ξ⟩ := (1+ ξ2)

1
2 and i, j = 1,2. Since the operators rR+(Aij +BijJ) arrange continuous

maps
rR+(Aij+BijJ) : H̃s(R+)→ Hs−µij(R+)

for all s ∈ R, then 2×2 matrix operator

A+BJ =

 A11+B11J A12+B12J

A21+B21J A22+B22J

 , A = (Aij)i,j=1,2, B = (Bij)i,j=1,2

arrange continuous maps

rR+(A+BJ) :
H̃−

1
2+ε(R+)
⊕

H̃
1
2+ε(R+)

→
H

1
2+ε(R+)
⊕

H
1
2+ε(R+)

where Aij = Op(aij), Bij = Op(τ−2aaij), for i, j = 1,2, and

a11(ξ) := −σ(H)(ξ)([σ(Φ1)(ξ)]−1+ [σ(Φ2)(ξ)]−1),

a12(ξ) := σ(H)(ξ)[σ(Φ2)(ξ)]−1,

a21(ξ) := −(p1+ p2)σ(H)(ξ)[σ(Φ1)(ξ)]−1,

a22(ξ) := 1.

Recall that the complete symbols of the pseudodifferential operators H and Φj are
(cf. [10, 11]):

σ(H)(ξ) = − i
2w(ξ)

and σ(Φj)(ξ) =
1
2
− pj

i
2w(ξ)

, (5.1)
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where w = w(ξ) := (ϱ2+ρ2)
1
4 (cos α2 + i sin α

2 ), with

ϱ = ϱ(ξ) := (ℜek)2− (ℑmk)2− ξ2 ,

ρ := 2(ℜek)(ℑmk)

and

α :=



arctan ρ
|ϱ| if ϱ > 0, ρ > 0

π
2 if ϱ = 0, ρ > 0
π− arctan ρ

|ϱ| if ϱ < 0, ρ > 0
π if ρ = 0
2π− arctan |ρ||ϱ| if ϱ > 0, ρ < 0
3π
2 if ϱ = 0, ρ < 0
π+ arctan |ρ||ϱ| if ϱ < 0, ρ < 0

. (5.2)

Lemma 5.1 allows us to construct an equivalence relation between rR+(A+BJ) and

rR+(A+BJ) : [L2(R+)]2→ [L2(R+)]2, (5.3)

which is explicitly given by the following identity

rR+(A+BJ) := diag{Λ
1
2+ε
− ,Λ

1
2+ε
− }rR+(A+BJ)diag{Λ

1
2−ε
+ ,Λ

− 1
2−ε
+ } , (5.4)

whereA := (Aij)i,j=1,2, B := (Bij)i,j=1,2, with

Aij := (D− i)
1
2+εAij(D+ i)−rj , Bij := (D− i)

1
2+εBijJ(D+ i)−rj J, (5.5)

for r1 := − 1
2 + ε, r2 := 1

2 + ε. Due to the fact that Λs−µ
− : Hs−µ(R+)→ L2(R+) and Λ−s

+ :
L2(R+)→ H̃s(R+) are invertible operators (cf. Lemma 5.1), the identity (5.4) shows that

rR+(A+BJ) ∼ rR+(A+BJ) .

Note that

Λs
+(−ξ) = Λs

−(ξ)esπi, Λs
−(−ξ) = Λs

+(ξ)e−sπi

which in particular allow us to describe the operators Aij and Bij and their symbols in the
following way

Aij = Op(ãij) , ãij(ξ) = Λ
1
2+ε
− (ξ)aij(ξ)Λ

−r j
+ (ξ) ,

Bij = Op(b̃ij) , b̃ij(ξ) = Λ
1
2+ε
− (ξ)bij(ξ)Λ

−r j
+ (−ξ) = Λ

1
2+ε−r j
− (ξ)bij(ξ)e−r jπi .

In particular, we have σ(A)(ξ) = (ãij(ξ))i,j=1,2 with

ã11(ξ) = ⟨ξ⟩ζε(ξ)a11(ξ), ã12(ξ) = ζ
1
2+ε(ξ)a12(ξ),

ã21(ξ) = ⟨ξ⟩ζε(ξ)a21(ξ), ã22(ξ) = ζ
1
2+ε(ξ)a22(ξ),
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and σ(B)(ξ) = (b̃ij(ξ))i,j=1,2, where

b̃11(ξ) = i(ξ− i)τ−2a(ξ)e−επi a11(ξ),

b̃12(ξ) = −iτ−2a(ξ)e−επi a12(ξ),

b̃21(ξ) = i (ξ− i)−1τ−2a(ξ)e−επi a21(ξ),

b̃22(ξ) = −iτ−2a(ξ)e−επi a22(ξ).

Thus
rR+K++ ∼ rR+(A+BJ) and rR+K−− ∼ rR+(A−BJ). (5.6)

Further, let us consider a pseudodifferential operator Op(Ξ) with 4× 4 matrix symbol
Ξ(ξ) partitioned into four 2×2 blocks αij, i, j = 1,2:

Ξ(ξ) :=
(
α11(ξ) α12(ξ)
α21(ξ) α22(ξ)

)
(5.7)

with

α11(ξ) := σ(A)(ξ)−σ(B)(ξ)[σ(A)(−ξ)]−1σ(B)(−ξ) ,
α12(ξ) := −σ(B)(ξ) [σ(A)(−ξ)]−1 ,

α21(ξ) := [σ(A)(−ξ)]−1σ(B)(−ξ) ,
α22(ξ) := [σ(A)(−ξ)]−1 .

The direct calculation shows that α11 is the null matrix, i.e., α11(ξ) ≡ 0, while

α12(ξ) = −iτ−2a(ξ)eεπiζ
1
2+ε(ξ)

 1 0

0 1

 ,
α21(ξ) = iτ2a(ξ)eεπiζε(ξ)

 −ζ−
1
2 (ξ) 0

0 ζ
1
2 (ξ)

 ,
α22(ξ) = ζε(ξ)e2επi 1

ρ(ξ)

 −ζ− 1
2 (ξ)a22(ξ) ζ−

1
2 (ξ)a12(ξ)

−⟨ξ⟩a21(ξ) ⟨ξ⟩a11(ξ)

 ,
where

ρ(ξ) := ⟨ξ⟩ζ− 1
2 (ξ)(−a11(ξ)a22(ξ)+a21(ξ)a12(ξ)) =

⟨ξ⟩ζ− 1
2 (ξ)σ(H)(ξ)

σ(Φ1)(ξ)σ(Φ2)(ξ)
.

Under the above conditions it is straightforward to conclude that

rR+Op(Ξ) : [L2(R+)]4→ [L2(R+)]4 (5.8)

is a continuous operator. Moreover, it is easy to see that the determinant of the symbol of
this operator, as well as ρ(ξ), is always nonzero, for all ξ ∈ R.

The importance of the operator rR+Op(Ξ) is clarified by the next result.
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Theorem 5.2. (i) The operators

rR+A± rR+BJ : [L2(R+)]2→ [L2(R+)]2

(defined in (5.3)–(5.5)) are both invertible if and only if the operator rR+Op(Ξ) (given
in (5.8)) is invertible.

(ii) The operators rR+A+ rR+BJ and rR+A− rR+BJ have both the Fredholm property if
and only if rR+Op(Ξ) has the Fredholm property. In addition, if all three operators
are Fredholm, their Fredholm indices satisfy the identity

Ind (rR+A+ rR+BJ)+ Ind (rR+A− rR+BJ) = Ind rR+Op(Ξ) . (5.9)

We would like to notice here that this theorem is a consequence of a even stronger
result which basically states that rR+Op(Ξ) is (toplinear) equivalent after extension to a
diagonal block matrix operator whose diagonal entries are the operators rR+A+ rR+BJ
and rR+A− rR+BJ. Moreover, it is interesting to clarify that all the necessary operators
to identify such (toplinear) equivalence after extension relation can be written explicitly
(see [15, 16, 17, 18]).

Having in mind the Theorem 5.2, now we would like to investigate the Wiener-Hopf
operator

rR+Op(Ξ) : [L2(R+)]4→ [L2(R+)]4. (5.10)

We then realize that Ξ belongs to the C∗−algebra of the semi-almost periodic two by
two matrix functions on the real line ([S AP(R)]4×4); see [41]. We recall that [S AP(R)]4×4

is the smallest closed subalgebra of [L∞(R)]4×4 that contains the (classical) algebra of (four
by four) almost periodic elements ([AP]4×4) and the (four by four) continuous matrices with
possible jumps at infinity.

Due to a known characterization of the structure of [S AP(R)]4×4 (see [4, 5, 41]), we can
choose a continuous function on the real line, say γ, such that γ(−∞) = 0, γ(+∞) = 1, and

Ξ = (1−γ)Ξl+γΞr +Ξ0,

where Ξ0 is a continuous four by four matrix function with zero limit at infinity, and Ξl and
Ξr are matrices with almost periodic elements, uniquely determined by Ξ, and that in our
case have the following form (due to the behavior of Ξ at ±∞):

Ξl =



0 0 iτ−2a e−επi 0

0 0 0 iτ−2a e−επi

iτ2a e−επi 0 1
2 0

0 −iτ2a e−επi − (p1+p2)
2 −1


,

Ξr =



0 0 −iτ−2a eεπi 0

0 0 0 −iτ−2a eεπi

−iτ2a eεπi 0 1
2 e2επi 0

0 iτ2a eεπi (p1+p2)
2 e2επi −e2επi


.
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It is worth noting here that so far we have assumed

ω(ξ)→ i|ξ| as ξ→±∞, ζν(ξ)→ 1 as ξ→∞ and ζν(ξ)→ e−2πνi as ξ→−∞.

For a given Banach algebra (with unit element)M, byGMwe will denote the collection
of all invertible elements ofM.

Definition 5.3 (See, e.g., [23] or §6.3 in [6]). An invertible almost periodic matrix function
Φ ∈ G[AP]4×4 admits a canonical right AP-factorization if

Φ = Φ−Φ+ , (5.11)

where Φ± ∈ G[AP±]4×4, with AP± denoting the intersection of AP with the non-tangential
limits of functions in H∞(C±) (the set of all bounded and analytic functions in C±).

Proposition 5.4. (Cf., e.g., [6, Proposition 2.22]) Let A ⊂ (0,∞) be an unbounded set and
let

{Iα}α∈A = {(xα,yα)}α∈A

be a family of intervals Iα ⊂ R such that |Iα| = yα − xα→∞ as α→∞. If φ ∈ AP, then the
limit

M(φ) := lim
α→∞

1
|Iα|

∫
Iα
φ(x) dx

exists, is finite, and is independent of the particular choice of the family {Iα}.

Definition 5.5. (i) For any φ ∈ AP, the number that has just been introduced in Proposi-
tion 5.4, M(φ), is called the Bohr mean value (or simply the mean value) of φ. In the matrix
case the Bohr mean value is defined entry-wise.

(ii) For a matrix function Φ ∈ G[AP]4×4 admitting a canonical right AP factorization
(5.11), we may define the new matrix

d(Φ) := M(Φ−)M(Φ+) , (5.12)

which is known as the geometric mean of Φ.

It is worth mentioning that (5.12) is independent of the particular choice of the (canoni-
cal) right AP factorization of Φ, and that this definition is consistent with the corresponding
one for the scalar case (which can be defined in a somehow more global way).

Theorem 5.6. For ε ∈ [0, 1
2 ), the operator rR+Op(Ξ) : [L2(R+)]2→ [L2(R+)]2, with Ξ given

by (5.7), is a Fredholm operator with zero Fredholm index.

Proof. The matrices Ξl and Ξr admit the following right canonical AP-factorizations:

Ξl = (Ξl)l(Ξl)r, and Ξr = (Ξr)l(Ξr)r, (5.13)



60 L. P. Castro and D. Kapanadze

where

(Ξl)l =


e−2επi 0 2i τ−2a e−επi 0

0 e−2επi −(p1+ p2)iτ−2a e−επi −i τ−2a e−επi

0 0 1 0

0 0 0 1


,

(Ξl)r =


2 0 0 0

p1+ p2 −1 0 0

i τ2a e−επi 0 1
2 0

0 −i τ2a e−επi − p1+p2
2 −1


,

(Ξr)l =


1 0 −2 i τ−2a e−επi 0

0 1 −(p1+ p2) i τ−2a e−επi i τ−2a e−επi

0 0 1 0

0 0 0 1


,

(Ξr)r =


2 0 0 0

p1+ p2 1 0 0

−i τ2a eεπi 0 1
2 e2επi 0

0 i τ2a eεπi p1+p2
2 e2επi −e2επi


(in which the necessary factor properties are evident; cf. Definition 5.3).

Having built the factorizations (5.13), we can now apply Theorem 3.2 in [23] or The-
orem 10.11 in [6] in view of proving the Fredholm property for rR+Op(Ξ). Indeed, within
our case of Ξ ∈ G[S AP(R)]4×4 and whose local representatives at infinity admit canonical
right AP-factorizations (5.13), applying that theorems we have that rR+Op(Ξ) is a Fredholm
operator if and only if

sp
[
d−1(Ξr)d (Ξl)

]
∩ (−∞,0] = ∅ ,

where sp
[
d−1(Ξr)d (Ξl)

]
stands for the set of eigenvalues of the matrix

d−1(Ξr)d (Ξl) := [d (Ξr)]−1 d (Ξl) .

Noticing that directly from the definition of the Bohr mean value we have M(c) = c for
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any complex constant c and M(τ±2a) = 0, it follows

d (Ξl) = M[(Ξl)l] M[(Ξl)r]

=


e−2επi 0 0 0

0 e−2επi 0 0

0 0 1 0

0 0 0 1




2 0 0 0

p1+ p2 −1 0 0

0 0 1
2 0

0 0 − p1+p2
2 −1



=


2e−2επi 0 0 0

(p1+ p2)e−2επi −e−2επi 0 0

0 0 1
2 0

0 0 − p1+p2
2 −1


,

d (Ξr) = M[(Ξr)l] M[(Ξr)r] =


2 0 0 0

p1+ p2 1 0 0

0 0 1
2 e2επi 0

0 0 p1+p2
2 e2επi e2επi


.

As a consequence,

d−1(Ξr)d (Ξl) =


e−2επi 0 0 0

0 −e−2επi 0 0

0 0 e−2επi 0

0 0 −(p1+ p2)e−2επi −e2επi


and

sp
[
d−1(Ξr)d (Ξl)

]
∩ (−∞,0] = {±e−2επi}∩ (−∞,0] = ∅ , (5.14)

which allows us to conclude that rR+Op(Ξ) : [L2(R+)]4→ [L2(R+)]4 is a Fredholm operator
(for the case under consideration of 0 ≤ ε < 1/2; cf. Section 2).

The zero Fredholm index is obtained from the formula (cf. Theorem 10.21 in [6])

Ind rR+Op(Ξ) = −ind [detΞ]−
4∑

j=1

(1
2
−

{1
2
− 1

2π
arg ξj

})
,

where ind [detΞ] denotes the Cauchy index of the determinant of Ξ, the numbers ξj ∈
C\(−∞,0], j = 1, ...,4 are the eigenvalues of the matrix d−1(Ξr)d (Ξl) and {·} stands for
the fractional part of a real number. �

From the derived condition (5.14), it follows that if we would allow the case ε= 1/2 then
our operators would not have the Fredholm property (and therefore would not be invertible
operators).
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Corollary 5.7. Let ε ∈ [0, 1
2 ). The Wiener-Hopf plus and minus Hankel operators (4.10)

and (4.18) (related to the problems PI−D and PI−N) are invertible operators.

Proof. Bearing in mind the equivalence relations (5.6), we have:

dimCoKerrR+K++ = dimCoKerrR+(A+BJ), (5.15)

dimKerrR+K++ = dimKerrR+(A+BJ). (5.16)

and

dimCoKerrR+K−− = dimCoKerrR+(A−BJ), (5.17)

dimKerrR+K−− = dimKerrR+(A−BJ). (5.18)

From Theorem 5.2 and Theorem 5.6, we obtain that rR+(A+BJ) and rR+(A−BJ) are
Fredholm operators. Moreover, recalling that KerrR+K++ = {0} and KerrR+K−− = {0}, from
identities (5.9), (5.15)–(5.18) and Theorem 5.6 it follows

0 = Ind rR+(A+BJ)+ Ind rR+(A−BJ)

= Ind rR+K+++ Ind rR+K−−
= (0−dimCoKerrR+K++)+ (0−dimCoKerrR+K−−) .

Thus, we have

dimCoKerrR+K++ = dimCoKerrR+K−− = 0

and so we reach to the conclusion that both operators in (4.10) and (4.18) are invertible. �

Due to a direct combination of the results of sections 3 and 4, and Corollary 5.7, we
now obtain the main conclusion of the present work for the problems in consideration.

Theorem 5.8. Let ε ∈ [0, 1
2 ) and assume that one of the conditions (a)–(f) of Theorem 3.1

is satisfied.

(i) The Problem PI−D has a unique solution which is representable as a pair (u1,u2)
defined by the formulas (4.6) and (4.7), where the components φ and ψ of the unique
solution Υ of the equation (4.8) are used.

(ii) The Problem PI−N has a unique solution which is representable as a pair (u1,u2)
defined by the formulas (4.15) and (4.16), where the components φ and ψ of the
unique solution Υ of the equation (4.17) are used.

Moreover, all these problems are well-posed (since the resolvent operators are continuous).
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