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Abstract

We introduce poly-Bergman type spaces on the Siegel domainDn ⊂ Cn, and prove
that they are isomorphic to tensor products of one-dimensional spaces generated by
orthogonal polynomials of two kinds: Laguerre and Hermite polynomials. The linear
span of all poly-Bergman type spaces is dense in the Hilbert spaceL2(Dn,dμλ), where
dμλ = (Im zn− |z1|2− ∙ ∙ ∙− |zn−1|2)λdx1dy1 ∙ ∙ ∙dxndyn andλ > −1.
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1 Introduction

In this paper we generalize the concept of the polyanalytic function for the Siegel domain
Dn ⊂ Cn, which is the unbounded realisation of the unit ballBn ⊂ Cn.

The spaces of polyanalytic functions on the unit discD, or on the upper half-plane as
its unbounded realisation, were introduced and studied in [1, 2, 5, 6]). Recall some known
facts. LetΠ⊂C be the upper half-plane and letl ∈N. We denote byA2

l (Π) [Ã2
l (Π)] the sub-

space ofL2(Π) consisting of alll-analytic functions [l-anti-analytic functions], i.e., the func-
tions satisfying the equation (∂/∂z̄)lϕ= 0 [(∂/∂z)lϕ= 0]. The function spaceA2

l (Π) is called
poly-Bergman space ofΠ. LetA2

(l)(Π) =A2
l (Π)	A2

l−1(Π) andÃ2
(l)(Π) = Ã2

l (Π)	Ã2
l−1(Π)

be the spaces of true-l-analytic functions and true-l-anti-analytic functions, respectively.
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Let χ± stand for the characteristic function ofR± = {x ∈ R : ±x ≥ 0}. The main result of
[10] says that the spaceL2(Π) admits the decomposition

L2(Π) =
∞⊕

l=1

A2
(l)(Π)⊕

∞⊕

l=1

Ã2
(l)(Π),

and that there exists an unitary operatorW : L2(Π)→ L2(Π) such that the restriction map-
pings

W :A2
(l)(Π)→ L2(R+)⊗Ll−1,

W : Ã2
(l)(Π)→ L2(R−)⊗Ll−1,

are isometric isomorphisms, whereLl is the one-dimensional space generated by the La-
guerre function of degreel and orderλ > −1. Note that the above restriction mappings from
poly-Bergman spaces and anti-poly-Bergman spaces are the analogue of the Bargmann type
transform.

For the Bergman spaceA2
λ(Dn) of the Siegel domainDn, the analogues of the classical

Bargmann transform and its inverse for five different types of commutative subgroups of
biholomorphisms ofDn were constructed in [8]. In particular, for the nilpotent case, an
isometric isomorphisms

U :A2
λ(Dn)→ L2(Rn−1×R+)

was explicitly described.
In this work the polyanalytic function spaces are defined via the complex structure ofCn

induced by the tangential Cauchy-Riemann equations, which were given for the Heisenberg
group in [3]. LetL = (l1, . . . , ln) ∈ Nn. The poly-Bergman type spaceA2

λL(Dn), or simply
denoted byA2

λL, is the subspace ofL2(Dn,dμλ) consisting of allL-analytic functions, i.e.,
functions that satisfy the equations

(
∂

∂zk
−2izk

∂

∂zn

)lk

f = 0, 1≤ k≤ n−1,

(
∂

∂zn

)ln

f = 0,

where, as usual,∂∂zk
= 1

2

(
∂
∂xk
− 1

i
∂
∂yk

)
and ∂

∂zk
= 1

2

(
∂
∂xk

+ 1
i
∂
∂yk

)
. In particular, a functionf is

analytic in the Siegel domain if it satisfies

∂ f
∂zk
−2izk

∂ f
∂zn

= 0, 1≤ k≤ n−1,

∂ f
∂zn

= 0.

Functions inA2
λL will be also called polyanalytic functions.

Anti-polyanalytic functions are just the complex conjugation of polyanalytic functions,
but the spaces of polyanalytic and anti-polyanalytic functions are mutually orthogonal. For
L = (l1, ..., ln) ∈ Nn, we define the anti-poly-Bergman type spaceÃ2

λL(Dn) (or simplyÃ2
λL)
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as the subspace ofL2(Dn,dμλ) consisting of allL-anti-analytic functions, i.e., functions
satisfying the equations

(
∂

∂zk
+2izk

∂

∂zn

)lk

f = 0, k= 1, ...,n−1,

(
∂

∂zn

)ln

f = 0.

We define the spaces of true-L-analytic and true-L-anti-analytic functions as

A2
λ(L) =A

2
λL	




n∑

j=1

A2
λ,L−ej


 ,

Ã2
λ(L) = Ã

2
λL	




n∑

j=1

Ã2
λ,L−ej


 ,

whereA2
λS = Ã2

λS = {0} if S < Nn, and{ek}nk=1 stand for the canonical basis ofRn.
The main results obtained in this work are as follows:

1. The spaceL2(Dn,dμλ) admits the decomposition

L2(Dn,dμλ) =



⊕

L∈Nn

A2
λ(L)



⊕


⊕

L∈Nn

Ã2
λ(L)


 .

2. There exists an unitary operator

W : L2(Dn,dμλ) −→ L2(Rn−1)⊗L2(Rn−1)⊗L2(R)⊗L2(R+,y
λdy)

such that for eachL ∈ Nn the restricted mappings

W :A2
λ(L)→ L2(Rn−1)⊗HL−e⊗L2(R+)⊗Lln−1,

W : Ã2
λ(L)→ HL−e⊗L2(Rn−1)⊗L2(R−)⊗Lln−1,

are isometric isomorphisms, whereHL−e is the one-dimensional space generated
by the producthl1−1(y1) ∙ ∙ ∙hln−1−1(yn−1) and {hj(y)}∞j=0 is the orthonormal basis for

L2(R,dy) consisting of the Hermite functions.

Letσ ∈ {±1}n andL ∈ Nn. The subspace ofL2(Dn,dμλ) consisting of all (L,σ)-analytic
functions is defined in Section 7. Such subspace is denoted byA2

λLσ, and is called mixed
poly-Bergman type space orσ-poly-Bergman type space. In particular, ifσ = L = (1, . . . ,1),
thenA2

λLσ is just the usual weighted Bergman space ofDn. We define the space of true-
(L,σ)-analytic functions as

A2
λ(L)σ =A2

λLσ	




n∑

k=1

A2
λ,L−ek,σ


 ,
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whereA2
λSσ = {0} if S < Nn. We prove thatL2(Dn,dμλ) admits the decomposition

L2(Dn,dμλ) =



⊕

L∈Nn

A2
λ(L)σ



⊕


⊕

L∈Nn

A2
λ(L),−σ


 .

We also establish the relationship between the poly-Bergman type spaces and theσ-poly-
Bergman type spaces.

2 CR Manifolds

For a smooth submanifoldM in Cn, recall thatTp(M) is the real tangent space ofM at the
point p. In general,Tp(M) is not invariant under the complex structure mapJ for Tp(Cn).
For a pointp ∈ M, the complex tangent space ofM at p is the vector space

Hp(M) = Tp(M)∩ J{Tp(M)}.

This space is called the holomorphic tangent space. Using the Euclidian inner product
on Tp(R2n), denote byXp(M) the totally real part of the tangent space ofM which is the
orthogonal complement ofHp(M) in Tp(M). We have thatTp(M) = Hp(M)⊕Xp(M) and
J(Xp(M)) is trasversal toTp(M). A submanifoldM of Cn is called a CR submanifold
of Cn if dimRHp(M) is independient ofp ∈ M. The complexifications ofTp(M), Hp(M)
andXp(M) are denoted byTp(M)⊗C, Hp(M)⊗C andXp(M)⊗C, respectively. Since the
spaceHp(M) is J-invariant, the complex structure mapJ on Tp(R2n)⊗C induce a complex
structure map onHp(M)⊗C by restriction. MoreoverHp(M)⊗C is the direct sum of the+i
and−i eigenspace ofJ which are denoted byH1,0

p (M) andH0,1
p (M), respectively.

The following result establishes the form of the basis ofHp(M). It also provides an
expression for the generators ofHp(M). We refer to [3] for its proof.

Theorem 2.1.Suppose M= {(x+ iy,w) ∈Cd×Cn−d : y= h(x,w)}, where h:Rd×Cn−d→Rd

is of class Cm (m≥ 2) with h(0) and Dh(0)= 0. A basis for H1,0
p (M) near the origin is given

by

Λk =
∂

∂wk
+2i

d∑

l=1




d∑

m=1

μlm
∂hm

∂wk

∂

∂zl


 , 1≤ k≤ n−d,

whereμlm is the(l,m)-th element of the d×d matrix

(

I − i
∂h
∂x

)−1

.

A basis for H0,1
p near the origin is given byΛ1, . . . ,Λn−d.

If the functionh is independient of the variablex, then the local basis ofH1,0
p (M) has

the following more simple form

Λk =
∂

∂wk
+2i

d∑

l=1

∂hl

∂wk

∂

∂zl
, 1≤ k≤ n−d. (2.1)
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We refer to Example 7.3-1 of [3] for the details on the following construction of the
Heisenberg group, which use the equation (2.1). For the real hypersurface inCn defined by

M = {(z′,zn) ∈ Cn−1×C : Im zn = |z
′|2},

the generators forH1,0(M) are given by

Λk = Λ−k− =
∂

∂zk
+2izk

∂

∂zn
, 1≤ k≤ n−1, (2.2)

and the generators forH0,1(M) are given by

Λk = Λ+
k+ =

∂

∂zk
−2izk

∂

∂zn
, 1≤ k≤ n−1. (2.3)

3 Cauchy-Riemann Equations for the Siegel Domain

Let dμ(z) = dx1dy1 . . .dxndyn stand for the standard Lebesgue measure inCn, wherez=
(z1, . . . ,zn) ∈ Cn andzk = xk+ iyk. We often rewritezas (z′,zn), wherez′ = (z1, . . . ,zn−1). The
standard norm inCn is denoted by| ∙ |. In the Siegel domain

Dn = {z= (z′,zn) ∈ Cn−1×C : Im zn− |z
′|2 > 0}

we consider the weighted Lebesgue measure

dμλ(z) = (Im zn− |z
′|2)λdμ(z), λ > −1.

LetA2
λ(Dn) be the weighted Bergman space, defined as the space of all holomorphic func-

tions inL2(Dn,dμλ). Thus, for f ∈ A2
λ(Dn),

∂ f
∂zk

= 0, k= 1, ...,n,

equivalently,

Λk f = 0, k= 1, ...,n−1,
∂

∂zn
f = 0.

We use all the powers of theΛk’s operators to define the first class of poly-Bergman type
spaces in the Siegel domain, i.e., we define a certain class of polyanalytic function spaces.
Fortunately, such spaces densely fill the spaceL2(Dn,dμλ), and are isomorphic to tensor
products of certainL2-spaces.

Let D = Cn−1×Π, whereΠ = R×R+ ⊂ C. We realize the poly-Bergman type spaces
as subspaces ofL2(D,dηλ) in order to apply Fourier transform techniques for their study.
Consider the following mapping fromD to Dn:

κ : w= (w′,un+ ivn) 7−→ z= (w′,un+ ivn+ i|w′|2), (i.e. z′ = w′).



118 Josúe Raḿırez Ortega and Armando Sánchez Nungaray

Consider also the unitary operatorU0 : L2(Dn,dμλ)→ L2(D,dηλ) given by

(U0 f )(w) = f (κ(w)),

where
dηλ(w) = vλndμ(w).

In [8] the authors showed that the spaceA0(D) = U0(A2
λ(Dn)) consists of all functions

ϕ(w′,wn) = (U0 f )(w) satisfying the equations

U0
∂
∂zk

U−1
0 ϕ =

(
∂
∂wk
−wk

∂
∂vn

)
ϕ = 0, 0≤ k≤ n−1,

U0
∂
∂zn

U−1
0 ϕ = ∂

∂wn
ϕ = 0,

(3.1)

where ∂
∂wn

= 1
2

(
∂
∂un

+ i ∂
∂vn

)
. For functions satisfying this last equation, the first type equation

in (3.1) can be rewritten as

U0
∂

∂zk
U−1

0 ϕ =

(
∂

∂wk
− iwk

∂

∂un

)

ϕ = 0, k= 1, ...,n−1. (3.2)

This equation justify why we are using theΔk’s operators because

U0ΛkU
−1
0 =

∂

∂wk
− iwk

∂

∂un
, k= 1, ...,n−1.

On the other hand, the differential operators∂/∂zk (k = 1, ...,n− 1) are used to define
the anti-analytic function space, but they can be replaced by the operators given in (2.2). In
particular,

U0ΛkU
−1
0 =

∂

∂wk
+ iwk

∂

∂un
, k= 1, ...,n−1.

In addition we have

U0
∂

∂zn
U−1

0 =
∂

∂wn
=

1
2

(
∂

∂un
− i

∂

∂vn

)

.

As expected, we use theΛk’s operators to define anti-polyanalytic function spaces.
To define mixed poly-Bergman type spaces we additionally use the differential operators

Λ+
k− =

∂

∂zk
−2izk

∂

∂zn
, 1≤ k≤ n−1, (3.3)

Λ−k+ = Λ+
k− =

∂

∂zk
+2izk

∂

∂zn
, 1≤ k≤ n−1. (3.4)

We have

U0Λ
+
k−U

−1
0 =

∂

∂wk
− iwk

∂

∂un
, k= 1, ...,n−1,

U0Λ
−
k+U−1

0 =
∂

∂wk
+ iwk

∂

∂un
, k= 1, ...,n−1.
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4 Orthogonal Polynomials

In this section we introduce Laguerre and Hermite polynomials, which will be used to
describe poly-Bergman type spaces. As usual, the Laguerre polynomials of orderλ are
defined by

Lλj (y) := eyy−λ

j!
dj

dyj
(e−yyj+λ), j = 0,1,2, ...

Laguerre polynomials constitute an orthogonal basis for the spaceL2(R+,yλe−ydy), thus the
set of Laguerre functions

`λj (y) = (−1) jcjL
λ
j (y)e−y/2, j = 0,1,2, ...

is an orthonormal basis ofL2(R+,yλdy), wherecj =
√

j!/Γ( j +λ+1) andΓ is the standard
gamma function. The second type of polynomials we are interested in is the set of Hermite
polynomials:

Hj(y) := (−1) jey2 dj

dyj
e−y2

, j = 0,1,2, ...

Hermite polynomials constitute an orthonormal basis for the spaceL2(R,e−y2
dy), thus the

set of Hermite functions

hj(y) =
(−1) j

(2n
√
πn!)1/2

Hj(y)e−y2/2, j = 0,1,2, ...

is an orthonormal basis ofL2(R). Therefore, the set of functions

hJ′(y1, . . . ,yn−1) =
n−1∏

k=1

hjk(yk), J′ = ( j1, . . . , jn−1) ∈ Zn−1
+ (4.1)

is an orthonormal basis ofL2(Rn−1). HereZ+ = {0}∪N andZ− = Z\N. For J′,L′ ∈ Zn−1
+ we

say thatJ′ ≤ L′ if jk ≤ lk with k= 1, ...,n−1.

5 Poly-Bergman Type Spaces

For L = (l1, ..., ln) ∈ Nn, we define the poly-Bergman type spaceA2
λL as the subspace of

L2(Dn,dμλ) consisting of all functionsf satisfying the equations

(
∂

∂zk
−2izk

∂

∂zn

)lk

f = 0, k= 1, ...,n−1,

(
∂

∂zn

)ln

f = 0.

Let {ej}nj=1 be the canonical basis ofRn. We define the space of true-L-analytic functions as

A2
λ(L) =A

2
λL	




n∑

j=1

A2
λ,L−ej


 ,
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whereA2
λS = {0} if S < Nn.

It is much more convenient to deal withA0,λL(D) = U0(A2
λL) ⊂ L2(D,dηλ) in order

to apply Fourier techniques for the study of the poly-Bergman type space. For a function
ϕ(w) = (U0 f )(w) ∈ A0,λL(D) we have

U0

(
Λk

)lk
U−1

0 ϕ =
(
∂
∂wk
− iwk

∂
∂un

)lk
ϕ = 0, k= 1, ...,n−1,

U0

(
∂
∂zn

)ln
U−1

0 ϕ = 1
2ln

(
∂
∂un

+ i ∂
∂vn

)ln
ϕ = 0.

Consider now the tensor decomposition

L2(D,dηλ) = L2(Cn−1)⊗L2(R)⊗L2(R+,v
λ
ndvn).

Takew = (w′,wn) ∈ Cn−1×Π, wherew′ = (w1, ...,wn−1) andwk = uk + ivk. We writew′ =
u′+ iv′, whereu′ = (u1, ...,un−1) andv′ = (v1, ...,vn−1), and we identifyw= (w′,un+ ivn) with
(u′,v′,un,vn). Then

L2(D,dηλ) = L2(Rn−1)⊗L2(Rn−1)⊗L2(R)⊗L2(R+,v
λ
ndvn), (5.1)

where the first (second) tensor factor space consists of functions in the real (imaginary) part
of the complex vectorw′. Let F denote the Fourier transform onL2(R):

(F f )(ξ) =
1
√

2π

∫

R
f (u)e−iξudu.

Let F(n−1) be the tensor product ofF with itself takenn−1 times. Now, according to
the decomposition (5.1) we introduce the unitary operators

U1 = I ⊗ I ⊗F ⊗ I ,

U2 = F(n−1)⊗ I ⊗ I ⊗ I .

Of course,U2U1 is just the Fourier transform with respect to the variableu= Rew.
Consider the change of variableζ = (ζ1, ..., ζn) 7→ z= (z1, ...,zn), whereζk = ξk+ ivk and

zk = xk+ iyk are related by

(
ξk

vk

)

=




√
|xn|

√
|xn|

−1
2
√
|xn|

1
2
√
|xn|




(
xk

yk

)

, k= 1, . . . ,n−1, (5.2)

and
ξn = xn, vn =

yn

2|xn|
.

Let ζ = (ζ′, ζn), whereζ′ = ξ′+ iv′ andξ′ = (ξ1, . . . , ξn−1). According to the tensor product
(5.1), consider the following unitary operators onL2(D,dηλ):

V1 : ψ(ζ′, ξn+ ivn) 7−→ Ψ(ζ′, xn+ iyn) =
1

(2|xn|)(λ+1)/2
ψ(ζ′, xn+ i

yn

2|xn|
),

V2 : Ψ(ζ′, xn+ iyn) 7−→ Φ(z′, xn+ iyn) = Ψ(
√
|xn|(x

′+y′)+ i
1

2
√
|xn|

(−x′+y′), xn+ iyn).
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Theorem 5.1. The unitary operator W= V2V1U2U1U0 maps L2(Dn,dμλ) onto

H = L2(D,dηλ) = L2(Rn−1)⊗L2(Rn−1)⊗L2(R)⊗L2(R+,y
λ
ndyn).

The poly-Bergman type spaceA2
λL is mapped by W to the subspace

H+
L = L2(Rn−1)⊗




⊕

0≤J′≤L′−e

HJ′


⊗L2(R+)⊗




ln−1⊕

jn=0

L jn


 ,

where e= (1, ...,1) ∈ Zn−1
+ , and

L jn = gen{`λjn(yn)} ⊂ L2(R+,y
λ
ndyn),

HJ′ = gen{hJ′(y
′)} ⊂ L2(Rn−1,dy′).

Corollary 5.2. The restriction of W to the spaceA2
λ(L) given by

W :A2
λ(L) −→H

+
(L) = L2(Rn−1)⊗HL′−e⊗L2(R+)⊗Lln−1

is an isomorphisms.

Proof of Theorem 5.1.Let A1,λL = U1(A0,λL(D)). The operatorU1 is the Fourier
transform with respect to the variableun = Rewn. Thenφ(w′, ξn+ ivn) = (U1ϕ)(w′, ξn+ ivn)
belongs toA1,λL if and only if

(
∂

∂wk
+ ξnwk

)lk

φ = 0, k= 1, ...,n−1,

iln

2ln

(

ξn+
∂

∂vn

)ln

φ = 0.

We now take the Fourier transform with respect to the variablesuk = Rewk. DefineA2,λL =

U2(A1,λL). Thenψ(ξ′+ iv′, ξn+ ivn) = (U2φ)(ξ′+ iv′, ξn+ ivn) belongs toA2,λL if and only if
[

i
2

(
ξk+

∂
∂vk

)
+ iξn

(
∂
∂ξk

+vk

)]lk
ψ = 0, k= 1, ...,n−1,

iln
2ln

(
ξn+

∂
∂vn

)ln
ψ = 0.

(5.3)

LetA′1,λL denote the image spaceV1(A2,λL). ThenΨ(ζ′, xn+ iyn) = (V1ψ)(ζ′, xn+ iyn) be-
longs toA′1,λL if and only if

[
i
2

(
ξk+

∂
∂vk

)
+ ixn

(
∂
∂ξk

+vk

)]lk
Ψ = 0, k= 1, ...,n−1,

iln |xn|ln

2ln

(
sign(xn)+2 ∂

∂yn

)ln
Ψ = 0.

(5.4)

TakeA′2,λL = V2(A′1,λL). ThenΦ(z′, xn+ iyn) = (V2Ψ)(z′, xn+ iyn) belongs toA′2,λL if and
only if

[
i
√
|xn|

(
1−sign(xn)

2 (xk− ∂
∂xk

)+ 1+sign(xn)
2 (yk+

∂
∂yk

)
)]lk

Φ = 0,

iln |xn|ln

2ln

(
sign(xn)+2 ∂

∂yn

)ln
Φ = 0.

(5.5)
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The general solution of the last equation in (5.5) is given by

Φ(z′, xn+ iyn) =
ln−1∑

jn=0

φ jn(z
′, xn)yjn

n e−(sgn xn)yn/2.

SinceΦ(z′, xn+ iyn) has to be inL2(D,dηλ), we must take only positive values ofxn. Mor-
ever, by rearranging polynomial terms we can expressΦ(z′, xn+ iyn) as

Φ(z′, xn+ iyn) = χ+(xn)
ln−1∑

jn=0

Φ jn(z
′, xn)`λjn(yn). (5.6)

where`λjn(y) is the Laguerre function inL2(R+) of degreejn. Further, the function

χ+(xn)Φ jn(z
′, xn)`λjn(yn) belongs toA3,λL if and only if

[

i
√
|xn|

(
∂

∂yk
+yk

)]lk

Φ jn(z
′, xn) = 0, xn > 0

for eachk= 1, ...,n−1. Then, the general solution of this system of equations has the form

Φ jn(z
′, xn) =

∑

0≤J′≤L′−e

Φ̃J′, jn(x
′, xn)(y′)J′e−|y

′|2/2, xn > 0.

We rewrite the general solution as

Φ jn(z
′, xn) =

∑

0≤J′≤L′−e

ΦJ(x′, xn)hJ′(y
′), xn > 0, (5.7)

whereJ = (J′, jn), andhJ′(y′) is the Hermite function given in (4.1). Therefore

Φ(z′, xn+ iyn) =

ln−1∑

jn=1





∑

0≤J′≤L′−e

χ+(xn)ΦJ(x′, xn)hJ′(y
′)




`λjn(yn).

This completes the proof.

6 Anti-Poly-Bergman Type Spaces

Anti-polyanalytic functions are just the complex conjugation of polyanalytic functions, but
the spaces of polyanalytic and anti-polyanalytic functions are mutually orthogonal. For
L = (l1, ..., ln) ∈ Nn, we define the anti-poly-Bergman type spaceÃ2

λL as the subspace of
L2(Dn,dμλ) consisting of all functionsf satisfying the equations

(
∂

∂zk
+2izk

∂

∂zn

)lk

f = 0, k= 1, ...,n−1,

(
∂

∂zn

)ln

f = 0.
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We define the space of true-L-anti-analytic functions as

Ã2
λ(L) = Ã

2
λL	




n∑

j=1

Ã2
λ,L−ej


 ,

whereÃ2
λS = {0} if S < Nn.

Theorem 6.1. The Hilbert space L2(Dn,dμλ) admits the decomposition

L2(Dn,dμλ) =



⊕

L∈Nn

A2
λ(L)



⊕


⊕

L∈Nn

Ã2
λ(L)


 .

Proof. We have

⊕

L∈Nn

H+
(L) = L2(Rn−1)⊗




⊕

L′∈Nn−1

HL′−e


⊗L2(R+)⊗



⊕

ln∈N

Lln−1




= L2(Rn−1)⊗L2(Rn−1)⊗L2(R+)⊗L2(R+).

Similarly, we have
⊕

L∈Nn

H−(L) = L2(Rn−1)⊗L2(Rn−1)⊗L2(R−)⊗L2(R+).

It is obvious that the direct sum of all the spacesH+
(L) andH−(L) is equal toL2(D,dηλ). Using

the fact thatW is unitary and corollaries 5.2 and 6.3 we obtain

L2(Dn,dμλ) = W∗
(
L2(D,dηλ)

)

= W∗





⊕

L∈Nn

H+
(L)



⊕


⊕

L∈Nn

H−(L)







=



⊕

L∈Nn

W∗
(
H+

(L)

)


⊕


⊕

L∈Nn

W∗
(
H−(L)

)



=



⊕

L∈Nn

A2
λ(L)



⊕


⊕

L∈Nn

Ã2
λ(L)


 .

�

Theorem 6.2. Under the unitary operator W, the anti-poly-Bergman type spaceÃ2
λL is

isomorphic to the subspace

H−L =




⊕

0≤J′≤L′−e

HJ′


⊗L2(Rn−1)⊗L2(R−)⊗




ln−1⊕

jn=0

L jn


 ,

where
HJ′ = gen{hJ′(x

′)} ⊂ L2(Rn−1,dx′).
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Corollary 6.3. The restriction of W to the spacẽA2
λ(L)

W : Ã2
λ(L) −→H

−
(L) = HL′−e⊗L2(Rn−1)⊗L2(R−)⊗Lln−1.

is an isomorphisms.

Proof of Theorem 6.2. This proof is similar to that of Theorem 5.1. Let̃A0,λL(D) =
U0(Ã2

λL) ⊂ L2(D,dηλ). Forϕ(w) = (U0 f )(w) ∈ Ã0,λL(D) we have

U0 (Λk)lk U−1
0 ϕ =

(
∂
∂wk

+ iwk
∂
∂un

)lk
ϕ = 0, k= 1, ...,n−1,

U0

(
∂
∂zn

)ln
U−1

0 ϕ = 1
2ln

(
∂
∂un
− i ∂

∂vn

)ln
ϕ = 0.

We take now the Fourier transform with respect to all the variablesuk = Rewk. Define
Ã2,λL =U2U1(Ã0,λL). Thenψ(ξ′+ iv′, ξn+ ivn)= (U2U1ϕ)(ξ′+ iv′, ξn+ ivn) belongs toÃ2,λL

if and only if
[

i
2

(
ξk− ∂

∂vk

)
− iξn

(
∂
∂ξk
−vk

)]lk
ψ = 0, k= 1, ...,n−1,

iln
2ln

(
ξn− ∂

∂vn

)ln
ψ = 0.

TakeÃ3,λL = V2V1(Ã2,λL). ThenΦ(z′, xn+ iyn) = (V2V1ψ)(z′, xn+ iyn) belongs toÃ3,λL if
and only if

[
i
√
|xn|

(
1−sign(xn)

2 (xk+
∂
∂xk

)+ 1+sign(xn)
2 (yk− ∂

∂yk
)
)]lk

Φ = 0,

iln |xn|ln

2ln

(
sign(xn)−2 ∂

∂yn

)ln
Φ = 0.

(6.1)

The general solution of the last equation in (6.1) is given by

Φ(z′, xn+ iyn) =
ln−1∑

jn=0

φ jn(z
′, xn)yjn

n e(sgn xn)yn/2.

SinceΦ(z′, xn+ iyn) has to be inL2(D,dηλ), we must take only negative values ofxn. More-
over, by rearranging polynomial terms we can expressΦ(z′, xn+ iyn) as

Φ(z′, xn+ iyn) = χ−(xn)
ln−1∑

jn=0

Φ jn(z
′, xn)`λjn(yn).

where`λjn(y) is the Laguerre function inL2(R+) of degreejn. Further, the function

χ−(xn)Φ jn(z
′, xn)`λjn(yn) belongs toÃ3,λL if and only if

[

i
√
|xn|

(
∂

∂xk
+ xk

)]lk

Φ jn(z
′, xn) = 0, xn < 0,

for eachk= 1, ...,n−1. Then, the general solution of this system of equations has the form

Φ jn(z
′, xn) =

∑

0≤J′≤L′−e

Φ̃J′, jn(y
′, xn)(x′)J′e−|x

′|2/2, xn < 0.
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We rewrite the general solution as

Φ jn(z
′, xn) =

∑

0≤J′≤L′−e

ΦJ(y′, xn)hJ′(x
′), xn < 0,

whereJ = (J′, jn), andhJ′(x′) is the Hermite function given in (4.1). Therefore

Φ(z′, xn+ iyn) =
ln−1∑

jn=1





∑

0≤J′≤L′−e

χ−(xn)ΦJ(y′, xn)hJ′(x
′)




`λjn(yn).

This completes the proof.

7 Mixed Poly-Bergman Type Spaces

Let us introduce the following notation:

Λ±1
k±1 := Λ±k±, D−1

k := ∂/∂zk, D+1
k := ∂/∂zk, M−1

k := zkI , M+1
k := zkI .

Certain choices of the operatorsΛ±k± will be taken to define mixed poly-Bergman type
spaces. For eachn-tupleσ = (σ1, ...,σn) ∈ {±1}n, introduce the operators

Λ
σn
kσk

= Dσk
k −2iσnMσk

k Dσn
n .

For L = (l1, ..., ln) ∈Nn we define the (L,σ)-poly-Bergman type spaceA2
λLσ as the subspace

of L2(Dn,dμλ) consisting of all functionsf satisfying the equations

(Λσn
kσk

)lk f = 0, k= 1, ...,n−1

(Dσn
n )ln f = 0.

(7.1)

We will refer toA2
λLσ as theσ-poly-Bergman type space or the mixed poly-Bergman

type space. We define the space of true-(L,σ)-analytic functions as

A2
λ(L)σ =A2

λLσ	




n∑

j=1

A2
λ,L−ej ,σ


 ,

whereA2
λSσ = {0} if S <Nn. Of course, forσ = e= (1, ...,1),A2

λLσ is just the poly-Bergman
type space, andA2

λL,−e is the anti-poly-Bergman type spacẽAλL.

Forσ ∈ {±1}n consider the following bijective mappings onDn andD, respectively:

Cσ : (z1, ...,zn−1,zn) 7→ (x1+σ1iy1, ... , xn−1+σn−1iyn−1, σnxn+ iyn),

C̃σ : (w1, ...,wn−1,un+ ivn) 7→ (u1+σ1iv1, ... ,un−1+σn−1ivn−1, σnun+ ivn),

i.e., we make complex conjugation in the variableszk = xk+ iyk andwk = uk+ ivk whenever
σk = −1 for k= 1, ...,n−1.
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Consider now the following unitary self-adjoint operators onL2(Dn,dμλ) andL2(D,dηλ),
respectively:

Tσ : f 7→ f ◦Cσ,

T̃σ : f 7→ f ◦ C̃σ.

It is easy to see that̃Tσ = U0TσU∗0. Mixed poly-Bergman type spaces can be realised as
spaces of polyanalytic functions underTσ.

Lemma 7.1. The operator Tσ maps theσ-poly-Bergman type space onto the poly-Bergman
type space:

Tσ(AλLσ) =AλL. (7.2)

Proof. Suppose thatσn = 1. It is easy to see thatT∗σΛkTσ =Λk if σk = 1, andT∗σΛkTσ =Λ+
k−

if σk = −1. That is,TσΛ+
kσk

T∗σ = Λk. Analogously, we haveTσΛ−kσk
T∗σ = Λk for σn = −1.

Therefore
TσΛ

σn
kσk

T∗σ = Λk

no matters ifσn = 1 or σn = −1. We have alsoTσDσn
n T∗σ = D+1

n . Finally, a functionf ∈
L2(Dn,dμλ) satisfy equations (7.1) if and only ifTσ f belongs toA2

λL. �

The set{1,−1}n is a group under the multiplicationστ := (σ1τ1, ...,σnτn), whereσ =

(σ1, ...,σn) andτ = (τ1, ..., τn). Of coursee= (1, ...,1) is the identity in this group.

Lemma 7.2. The operator Tσ maps the−σ-poly-Bergman type space onto the anti-poly-
Bergman type space:

Tσ(AλL,−σ) = ÃλL.

Moreover
Tσ(AλL,τ) =AλL,στ.

Proof. The set of operatorsTσ is a group andTσTτ = Tστ. Thus

Tσ(AλL,τ) = TσTτTτ(AλL,τ) = TσTτ(AλL) = Tστ(AλL) =AλL,στ.

�

SinceΛσn
kσk

= Λ
−σn
k,−σk

, the mixed poly-Bergman type spaceA2
λL,−σ consists of all conju-

gation functions ofA2
λL,σ. We define

Ã2
λLσ :=A2

λL,−σ,

Ã2
λ(L)σ :=A2

λ(L),−σ.

Theorem 7.3. The Hilbert space L2(Dn,dμλ) admits the decomposition

L2(Dn,dμλ) =



⊕

L∈Nn

A2
λ(L)σ



⊕


⊕

L∈Nn

Ã2
λ(L)σ


 .

Proof. Follows from lemmas 7.1, 7.2 and Theorem 6.1. �
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Let us see how mixed poly-Bergman type spaces are mapped by the unitary operator
W. Consider the unitary self-adjoint operator

Sσ = WTσW∗.

We haveSσ = σnV2T̃σV∗2 because ofU1T̃σ = σnT̃σU1, V1T̃σ = T̃σV1, andU2T̃σ = T̃σU2.
It is easy to see that

SσΦ = σn Φ◦h,

where
h :D 3 (z1, ... ,zn−1, xn+ iyn) 7→ (w1, ... ,wn−1,σnxn+ ixn) ∈ D

and (
uk

vk

)

=

( 1+σk
2

1−σk
2

1−σk
2

1+σk
2

)(
xk

yk

)

, k= 1, . . . ,n−1.

Obviouslywk = zk if σk = 1; otherwise this mapping interchange the real and imaginary
parts ofzk = xk+ iyk: wk = izk. On the other hand,

W(Aλ(L)σ) = S∗σWTσ(Aλ(L)σ) = SσH
+
(L).

Theorem 7.4. The true-(L,σ)-poly-Bergman type spaceA2
λ(L)σ is isomorphic to the sub-

space
Hσ

(L) =
(
Hσ

L−e⊗L2
σ(Rn−1)

)
⊗L2(Rσn)⊗Lln−1,

where HσL−e is the one-dimensional space generated by the Hermite function hL−e in the
variablesIm h(z)′, and L2

σ(Rn−1) is the space of L2-functions in the variableReh(z)′.
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