Poly-Bergman Type Spaces on the Siegel Domain

Josué Ramírez Ortega*
Facultad de Matemáticas, Universidad Veracruzana, Lomas del Estadio s/n, Zona Universitaria Xalapa, Veracruz, México
\section*{Armando Sánchez Nungaray ${ }^{\dagger}$}
Facultad de Matemáticas, Universidad Veracruzana, Lomas del Estadio s/n, Zona Universitaria Xalapa, Veracruz, México

(Communicated by Vladimir Rabinovich)

Abstract

We introduce poly-Bergman type spaces on the Siegel domain $D_{n} \subset \mathbb{C}^{n}$, and prove that they are isomorphic to tensor products of one-dimensional spaces generated by orthogonal polynomials of two kinds: Laguerre and Hermite polynomials. The linear span of all poly-Bergman type spaces is dense in the Hilbert space $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$, where $d \mu_{\lambda}=\left(\operatorname{Im} z_{n}-\left|z_{1}\right|^{2}-\cdots-\left|z_{n-1}\right|^{2}\right)^{\lambda} d x_{1} d y_{1} \cdots d x_{n} d y_{n}$ and $\lambda>-1$.

AMS Subject Classification: Primary 32A36; Secondary 30H20.
Keywords: Bergman spaces, Siegel domain, Polyanalytic functions.

1 Introduction

In this paper we generalize the concept of the polyanalytic function for the Siegel domain $D_{n} \subset \mathbb{C}^{n}$, which is the unbounded realisation of the unit ball $\mathbb{B}^{n} \subset \mathbb{C}^{n}$.

The spaces of polyanalytic functions on the unit disc \mathbb{D}, or on the upper half-plane as its unbounded realisation, were introduced and studied in $[1,2,5,6]$). Recall some known facts. Let $\Pi \subset \mathbb{C}$ be the upper half-plane and let $l \in \mathbb{N}$. We denote by $\mathcal{A}_{l}^{2}(\Pi)\left[\tilde{\mathcal{A}}_{l}^{2}(\Pi)\right]$ the subspace of $L^{2}(\Pi)$ consisting of all l-analytic functions [l-anti-analytic functions], i.e., the functions satisfying the equation $(\partial / \partial \bar{z})^{l} \varphi=0\left[(\partial / \partial z)^{l} \varphi=0\right]$. The function space $\mathcal{A}_{l}^{2}(\Pi)$ is called poly-Bergman space of Π. Let $\mathcal{A}_{(l)}^{2}(\Pi)=\mathcal{A}_{l}^{2}(\Pi) \ominus \mathcal{A}_{l-1}^{2}(\Pi)$ and $\tilde{\mathcal{A}}_{(l)}^{2}(\Pi)=\tilde{\mathcal{A}}_{l}^{2}(\Pi) \ominus \tilde{\mathcal{A}}_{l-1}^{2}(\Pi)$ be the spaces of true-l-analytic functions and true-l-anti-analytic functions, respectively.

[^0]Let $\chi_{ \pm}$stand for the characteristic function of $\mathbb{R}_{ \pm}=\{x \in \mathbb{R}: \pm x \geq 0\}$. The main result of [10] says that the space $L^{2}(\Pi)$ admits the decomposition

$$
L^{2}(\Pi)=\bigoplus_{l=1}^{\infty} \mathcal{A}_{(l)}^{2}(\Pi) \oplus \bigoplus_{l=1}^{\infty} \tilde{\mathcal{A}}_{(l)}^{2}(\Pi)
$$

and that there exists an unitary operator $W: L^{2}(\Pi) \rightarrow L^{2}(\Pi)$ such that the restriction mappings

$$
\begin{aligned}
& W: \mathcal{A}_{(l)}^{2}(\Pi) \rightarrow L^{2}\left(\mathbb{R}_{+}\right) \otimes \mathcal{L}_{l-1} \\
& W: \tilde{\mathcal{A}}_{(l)}^{2}(\Pi) \rightarrow L^{2}\left(\mathbb{R}_{-}\right) \otimes \mathcal{L}_{l-1}
\end{aligned}
$$

are isometric isomorphisms, where \mathcal{L}_{l} is the one-dimensional space generated by the Laguerre function of degree l and order $\lambda>-1$. Note that the above restriction mappings from poly-Bergman spaces and anti-poly-Bergman spaces are the analogue of the Bargmann type transform.

For the Bergman space $\mathcal{A}_{\lambda}^{2}\left(D_{n}\right)$ of the Siegel domain D_{n}, the analogues of the classical Bargmann transform and its inverse for five different types of commutative subgroups of biholomorphisms of D_{n} were constructed in [8]. In particular, for the nilpotent case, an isometric isomorphisms

$$
U: \mathcal{A}_{\lambda}^{2}\left(D_{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n-1} \times \mathbb{R}_{+}\right)
$$

was explicitly described.
In this work the polyanalytic function spaces are defined via the complex structure of \mathbb{C}^{n} induced by the tangential Cauchy-Riemann equations, which were given for the Heisenberg group in [3]. Let $L=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}^{n}$. The poly-Bergman type space $\mathcal{A}_{\lambda L}^{2}\left(D_{n}\right)$, or simply denoted by $\mathcal{A}_{\lambda L}^{2}$, is the subspace of $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ consisting of all L-analytic functions, i.e., functions that satisfy the equations

$$
\begin{aligned}
\left(\frac{\partial}{\partial \overline{z_{k}}}-2 i z_{k} \frac{\partial}{\partial \overline{z_{n}}}\right)^{l_{k}} f & =0, \quad 1 \leq k \leq n-1, \\
\left(\frac{\partial}{\partial \overline{z_{n}}}\right)^{l_{n}} f & =0
\end{aligned}
$$

where, as usual, $\frac{\partial}{\partial \bar{z}_{k}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{k}}-\frac{1}{i} \frac{\partial}{\partial y_{k}}\right)$ and $\frac{\partial}{\partial z_{k}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{k}}+\frac{1}{i} \frac{\partial}{\partial y_{k}}\right)$. In particular, a function f is analytic in the Siegel domain if it satisfies

$$
\begin{aligned}
\frac{\partial f}{\partial \overline{z_{k}}}-2 i z_{k} \frac{\partial f}{\partial \overline{z_{n}}} & =0, \quad 1 \leq k \leq n-1 \\
\frac{\partial f}{\partial \overline{z_{n}}} & =0
\end{aligned}
$$

Functions in $\mathcal{A}_{\lambda L}^{2}$ will be also called polyanalytic functions.
Anti-polyanalytic functions are just the complex conjugation of polyanalytic functions, but the spaces of polyanalytic and anti-polyanalytic functions are mutually orthogonal. For $L=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}^{n}$, we define the anti-poly-Bergman type space $\tilde{\mathcal{A}}_{\lambda L}^{2}\left(D_{n}\right)$ (or simply $\left.\tilde{\mathscr{A}}_{\lambda L}^{2}\right)$
as the subspace of $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ consisting of all L-anti-analytic functions, i.e., functions satisfying the equations

$$
\begin{aligned}
\left(\frac{\partial}{\partial z_{k}}+2 i \overline{z_{k}} \frac{\partial}{\partial z_{n}}\right)^{l_{k}} f & =0, \quad k=1, \ldots, n-1 \\
\left(\frac{\partial}{\partial z_{n}}\right)^{l_{n}} f & =0
\end{aligned}
$$

We define the spaces of true- L-analytic and true- L-anti-analytic functions as

$$
\begin{aligned}
& \mathcal{A}_{\lambda(L)}^{2}=\mathcal{A}_{\lambda L}^{2} \ominus\left(\sum_{j=1}^{n} \mathcal{A}_{\lambda, L-e_{j}}^{2}\right), \\
& \tilde{\mathcal{A}}_{\lambda(L)}^{2}=\tilde{\mathcal{A}}_{\lambda L}^{2} \ominus\left(\sum_{j=1}^{n} \tilde{\mathcal{A}}_{\lambda, L-e_{j}}^{2}\right),
\end{aligned}
$$

where $\mathcal{A}_{\lambda S}^{2}=\tilde{\mathcal{A}}_{\lambda S}^{2}=\{0\}$ if $S \notin \mathbb{N}^{n}$, and $\left\{e_{k}\right\}_{k=1}^{n}$ stand for the canonical basis of \mathbb{R}^{n}.
The main results obtained in this work are as follows:

1. The space $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ admits the decomposition

$$
L^{2}\left(D_{n}, d \mu_{\lambda}\right)=\left(\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{A}_{\lambda(L)}^{2}\right) \bigoplus\left(\bigoplus_{L \in \mathbb{N}^{n}} \tilde{\mathcal{A}}_{\lambda(L)}^{2}\right)
$$

2. There exists an unitary operator

$$
W: L^{2}\left(D_{n}, d \mu_{\lambda}\right) \longrightarrow L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}(\mathbb{R}) \otimes L^{2}\left(\mathbb{R}_{+}, y^{\lambda} d y\right)
$$

such that for each $L \in \mathbb{N}^{n}$ the restricted mappings

$$
\begin{aligned}
& W: \mathcal{A}_{\lambda(L)}^{2} \rightarrow L^{2}\left(\mathbb{R}^{n-1}\right) \otimes H_{L-e} \otimes L^{2}\left(\mathbb{R}_{+}\right) \otimes \mathcal{L}_{l_{n}-1} \\
& W: \tilde{\mathcal{A}}_{\lambda(L)}^{2} \rightarrow H_{L-e} \otimes L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}_{-}\right) \otimes \mathcal{L}_{l_{n}-1}
\end{aligned}
$$

are isometric isomorphisms, where H_{L-e} is the one-dimensional space generated by the product $h_{l_{1}-1}\left(y_{1}\right) \cdots h_{l_{n-1}-1}\left(y_{n-1}\right)$ and $\left\{h_{j}(y)\right\}_{j=0}^{\infty}$ is the orthonormal basis for $L^{2}(\mathbb{R}, d y)$ consisting of the Hermite functions.

Let $\sigma \in\{ \pm 1\}^{n}$ and $L \in \mathbb{N}^{n}$. The subspace of $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ consisting of all (L, σ)-analytic functions is defined in Section 7. Such subspace is denoted by $\mathcal{A}_{\lambda L \sigma}^{2}$, and is called mixed poly-Bergman type space or σ-poly-Bergman type space. In particular, if $\sigma=L=(1, \ldots, 1)$, then $\mathcal{A}_{\lambda L \sigma}^{2}$ is just the usual weighted Bergman space of D_{n}. We define the space of true(L, σ)-analytic functions as

$$
\mathcal{A}_{\lambda(L) \sigma}^{2}=\mathcal{A}_{\lambda L \sigma}^{2} \ominus\left(\sum_{k=1}^{n} \mathcal{A}_{\lambda, L-e_{k}, \sigma}^{2}\right)
$$

where $\mathcal{A}_{\lambda S \sigma}^{2}=\{0\}$ if $S \notin \mathbb{N}^{n}$. We prove that $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ admits the decomposition

$$
L^{2}\left(D_{n}, d \mu_{\lambda}\right)=\left(\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{A}_{\lambda(L) \sigma}^{2}\right) \bigoplus\left(\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{A}_{\lambda(L),-\sigma}^{2}\right)
$$

We also establish the relationship between the poly-Bergman type spaces and the σ-polyBergman type spaces.

2 CR Manifolds

For a smooth submanifold M in \mathbb{C}^{n}, recall that $T_{p}(M)$ is the real tangent space of M at the point p. In general, $T_{p}(M)$ is not invariant under the complex structure map J for $T_{p}\left(\mathbb{C}^{n}\right)$. For a point $p \in M$, the complex tangent space of M at p is the vector space

$$
H_{p}(M)=T_{p}(M) \cap J\left\{T_{p}(M)\right\}
$$

This space is called the holomorphic tangent space. Using the Euclidian inner product on $T_{p}\left(\mathbb{R}^{2 n}\right)$, denote by $X_{p}(M)$ the totally real part of the tangent space of M which is the orthogonal complement of $H_{p}(M)$ in $T_{p}(M)$. We have that $T_{p}(M)=H_{p}(M) \oplus X_{p}(M)$ and $J\left(X_{p}(M)\right)$ is trasversal to $T_{p}(M)$. A submanifold M of \mathbb{C}^{n} is called a CR submanifold of \mathbb{C}^{n} if $\operatorname{dim}_{\mathbb{R}} H_{p}(M)$ is independient of $p \in M$. The complexifications of $T_{p}(M), H_{p}(M)$ and $X_{p}(M)$ are denoted by $T_{p}(M) \otimes \mathbb{C}, H_{p}(M) \otimes \mathbb{C}$ and $X_{p}(M) \otimes \mathbb{C}$, respectively. Since the space $H_{p}(M)$ is J-invariant, the complex structure map J on $T_{p}\left(\mathbb{R}^{2 n}\right) \otimes \mathbb{C}$ induce a complex structure map on $H_{p}(M) \otimes \mathbb{C}$ by restriction. Moreover $H_{p}(M) \otimes \mathbb{C}$ is the direct sum of the $+i$ and $-i$ eigenspace of J which are denoted by $H_{p}^{1,0}(M)$ and $H_{p}^{0,1}(M)$, respectively.

The following result establishes the form of the basis of $H_{p}(M)$. It also provides an expression for the generators of $H_{p}(M)$. We refer to [3] for its proof.

Theorem 2.1. Suppose $M=\left\{(x+i y, w) \in \mathbb{C}^{d} \times \mathbb{C}^{n-d}: \quad y=h(x, w)\right\}$, where $h: \mathbb{R}^{d} \times \mathbb{C}^{n-d} \rightarrow \mathbb{R}^{d}$ is of class $C^{m}(m \geq 2)$ with $h(0)$ and $D h(0)=0$. A basis for $H_{p}^{1,0}(M)$ near the origin is given by

$$
\Lambda_{k}=\frac{\partial}{\partial w_{k}}+2 i \sum_{l=1}^{d}\left(\sum_{m=1}^{d} \mu_{l m} \frac{\partial h_{m}}{\partial w_{k}} \frac{\partial}{\partial z_{l}}\right), \quad 1 \leq k \leq n-d
$$

where $\mu_{l m}$ is the (l, m)-th element of the $d \times d$ matrix

$$
\left(I-i \frac{\partial h}{\partial x}\right)^{-1}
$$

A basis for $H_{p}^{0,1}$ near the origin is given by $\overline{\Lambda_{1}}, \ldots, \overline{\Lambda_{n-d}}$.
If the function h is independient of the variable x, then the local basis of $H_{p}^{1,0}(M)$ has the following more simple form

$$
\begin{equation*}
\Lambda_{k}=\frac{\partial}{\partial w_{k}}+2 i \sum_{l=1}^{d} \frac{\partial h_{l}}{\partial w_{k}} \frac{\partial}{\partial z_{l}}, \quad 1 \leq k \leq n-d \tag{2.1}
\end{equation*}
$$

We refer to Example 7.3-1 of [3] for the details on the following construction of the Heisenberg group, which use the equation (2.1). For the real hypersurface in \mathbb{C}^{n} defined by

$$
M=\left\{\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}: \quad \operatorname{Im} z_{n}=\left|z^{\prime}\right|^{2}\right\}
$$

the generators for $H^{1,0}(M)$ are given by

$$
\begin{equation*}
\Lambda_{k}=\Lambda_{k-}^{-}=\frac{\partial}{\partial z_{k}}+2 i \overline{z_{k}} \frac{\partial}{\partial z_{n}}, \quad 1 \leq k \leq n-1 \tag{2.2}
\end{equation*}
$$

and the generators for $H^{0,1}(M)$ are given by

$$
\begin{equation*}
\overline{\Lambda_{k}}=\Lambda_{k+}^{+}=\frac{\partial}{\partial \overline{z_{k}}}-2 i z_{k} \frac{\partial}{\partial \overline{z_{n}}}, \quad 1 \leq k \leq n-1 \tag{2.3}
\end{equation*}
$$

3 Cauchy-Riemann Equations for the Siegel Domain

Let $d \mu(z)=d x_{1} d y_{1} \ldots d x_{n} d y_{n}$ stand for the standard Lebesgue measure in \mathbb{C}^{n}, where $z=$ $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $z_{k}=x_{k}+i y_{k}$. We often rewrite z as $\left(z^{\prime}, z_{n}\right)$, where $z^{\prime}=\left(z_{1}, \ldots, z_{n-1}\right)$. The standard norm in \mathbb{C}^{n} is denoted by $|\cdot|$. In the Siegel domain

$$
D_{n}=\left\{z=\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}: \operatorname{Im} z_{n}-\left|z^{\prime}\right|^{2}>0\right\}
$$

we consider the weighted Lebesgue measure

$$
d \mu_{\lambda}(z)=\left(\operatorname{Im} z_{n}-\left|z^{\prime}\right|^{2}\right)^{\lambda} d \mu(z), \quad \lambda>-1
$$

Let $\mathcal{A}_{\lambda}^{2}\left(D_{n}\right)$ be the weighted Bergman space, defined as the space of all holomorphic functions in $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$. Thus, for $f \in \mathcal{A}_{\lambda}^{2}\left(D_{n}\right)$,

$$
\frac{\partial f}{\partial \bar{z}_{k}}=0, \quad k=1, \ldots, n
$$

equivalently,

$$
\begin{aligned}
\bar{\Lambda}_{k} f & =0, \quad k=1, \ldots, n-1 \\
\frac{\partial}{\partial \bar{z}_{n}} f & =0
\end{aligned}
$$

We use all the powers of the $\bar{\Lambda}_{k}$'s operators to define the first class of poly-Bergman type spaces in the Siegel domain, i.e., we define a certain class of polyanalytic function spaces. Fortunately, such spaces densely fill the space $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$, and are isomorphic to tensor products of certain L^{2}-spaces.

Let $\mathcal{D}=\mathbb{C}^{n-1} \times \Pi$, where $\Pi=\mathbb{R} \times \mathbb{R}_{+} \subset \mathbb{C}$. We realize the poly-Bergman type spaces as subspaces of $L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)$ in order to apply Fourier transform techniques for their study. Consider the following mapping from \mathcal{D} to D_{n} :

$$
\kappa: w=\left(w^{\prime}, u_{n}+i v_{n}\right) \longmapsto z=\left(w^{\prime}, u_{n}+i v_{n}+i\left|w^{\prime}\right|^{2}\right), \quad\left(\text { i.e. } z^{\prime}=w^{\prime}\right)
$$

Consider also the unitary operator $U_{0}: L^{2}\left(D_{n}, d \mu_{\lambda}\right) \rightarrow L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)$ given by

$$
\left(U_{0} f\right)(w)=f(\kappa(w)),
$$

where

$$
d \eta_{\lambda}(w)=v_{n}^{\lambda} d \mu(w) .
$$

In [8] the authors showed that the space $\mathcal{A}_{0}(\mathcal{D})=U_{0}\left(\mathcal{A}_{\lambda}^{2}\left(D_{n}\right)\right)$ consists of all functions $\varphi\left(w^{\prime}, w_{n}\right)=\left(U_{0} f\right)(w)$ satisfying the equations

$$
\begin{align*}
& U_{0} \frac{\partial}{\partial \bar{z} k} U_{0}^{-1} \varphi=\left(\frac{\partial}{\partial \bar{w}_{k}}-w_{k} \frac{\partial}{\partial v_{n}}\right) \varphi=0, \quad 0 \leq k \leq n-1, \tag{3.1}\\
& U_{0} \frac{\partial}{\partial \bar{z}_{n}} U_{0}^{-1} \varphi=\frac{\partial}{\partial \overline{\bar{x}_{n}}} \varphi=0,
\end{align*}
$$

where $\frac{\partial}{\partial \overline{\bar{w}_{n}}}=\frac{1}{2}\left(\frac{\partial}{\partial u_{n}}+i \frac{\partial}{\partial v_{n}}\right)$. For functions satisfying this last equation, the first type equation in (3.1) can be rewritten as

$$
\begin{equation*}
U_{0} \frac{\partial}{\partial \bar{z}_{k}} U_{0}^{-1} \varphi=\left(\frac{\partial}{\partial \bar{w}_{k}}-i w_{k} \frac{\partial}{\partial u_{n}}\right) \varphi=0, \quad k=1, \ldots, n-1 . \tag{3.2}
\end{equation*}
$$

This equation justify why we are using the Δ_{k} 's operators because

$$
U_{0} \bar{\Lambda}_{k} U_{0}^{-1}=\frac{\partial}{\partial \bar{w}_{k}}-i w_{k} \frac{\partial}{\partial u_{n}}, \quad k=1, \ldots, n-1 .
$$

On the other hand, the differential operators $\partial / \partial z_{k}(k=1, \ldots, n-1)$ are used to define the anti-analytic function space, but they can be replaced by the operators given in (2.2). In particular,

$$
U_{0} \Lambda_{k} U_{0}^{-1}=\frac{\partial}{\partial w_{k}}+i \bar{w}_{k} \frac{\partial}{\partial u_{n}}, \quad k=1, \ldots, n-1 .
$$

In addition we have

$$
U_{0} \frac{\partial}{\partial z_{n}} U_{0}^{-1}=\frac{\partial}{\partial w_{n}}=\frac{1}{2}\left(\frac{\partial}{\partial u_{n}}-i \frac{\partial}{\partial v_{n}}\right) .
$$

As expected, we use the Λ_{k} 's operators to define anti-polyanalytic function spaces.
To define mixed poly-Bergman type spaces we additionally use the differential operators

$$
\begin{gather*}
\Lambda_{k-}^{+}=\frac{\partial}{\partial z_{k}}-2 i \overline{z_{k}} \frac{\partial}{\partial \overline{z_{n}}}, \quad 1 \leq k \leq n-1, \tag{3.3}\\
\Lambda_{k+}^{-}=\overline{\Lambda_{k-}^{+}}=\frac{\partial}{\partial \overline{z_{k}}}+2 i z_{k} \frac{\partial}{\partial z_{n}}, \quad 1 \leq k \leq n-1 . \tag{3.4}
\end{gather*}
$$

We have

$$
\begin{aligned}
& U_{0} \Lambda_{k-}^{+} U_{0}^{-1}=\frac{\partial}{\partial w_{k}}-i \bar{w}_{k} \frac{\partial}{\partial u_{n}}, \quad k=1, \ldots, n-1, \\
& U_{0} \Lambda_{k+}^{-} U_{0}^{-1}=\frac{\partial}{\partial \bar{w}_{k}}+i w_{k} \frac{\partial}{\partial u_{n}}, \quad k=1, \ldots, n-1 .
\end{aligned}
$$

4 Orthogonal Polynomials

In this section we introduce Laguerre and Hermite polynomials, which will be used to describe poly-Bergman type spaces. As usual, the Laguerre polynomials of order λ are defined by

$$
L_{j}^{\lambda}(y):=e^{y} \frac{y^{-\lambda}}{j!} \frac{d^{j}}{d y^{j}}\left(e^{-y} y^{j+\lambda}\right), \quad j=0,1,2, \ldots
$$

Laguerre polynomials constitute an orthogonal basis for the space $L^{2}\left(\mathbb{R}_{+}, y^{\lambda} e^{-y} d y\right)$, thus the set of Laguerre functions

$$
\ell_{j}^{\lambda}(y)=(-1)^{j} c_{j} L_{j}^{\lambda}(y) e^{-y / 2}, \quad j=0,1,2, \ldots
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}_{+}, y^{\lambda} d y\right)$, where $c_{j}=\sqrt{j!/ \Gamma(j+\lambda+1)}$ and Γ is the standard gamma function. The second type of polynomials we are interested in is the set of Hermite polynomials:

$$
H_{j}(y):=(-1)^{j} e^{y^{2}} \frac{d^{j}}{d y^{j}} e^{-y^{2}}, \quad j=0,1,2, \ldots
$$

Hermite polynomials constitute an orthonormal basis for the space $L^{2}\left(\mathbb{R}, e^{-y^{2}} d y\right)$, thus the set of Hermite functions

$$
h_{j}(y)=\frac{(-1)^{j}}{\left(2^{n} \sqrt{\pi} n!\right)^{1 / 2}} H_{j}(y) e^{-y^{2} / 2}, \quad j=0,1,2, \ldots
$$

is an orthonormal basis of $L^{2}(\mathbb{R})$. Therefore, the set of functions

$$
\begin{equation*}
h_{J^{\prime}}\left(y_{1}, \ldots, y_{n-1}\right)=\prod_{k=1}^{n-1} h_{j_{k}}\left(y_{k}\right), \quad J^{\prime}=\left(j_{1}, \ldots, j_{n-1}\right) \in \mathbb{Z}_{+}^{n-1} \tag{4.1}
\end{equation*}
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}^{n-1}\right)$. Here $\mathbb{Z}_{+}=\{0\} \cup \mathbb{N}$ and $\mathbb{Z}_{-}=\mathbb{Z} \backslash \mathbb{N}$. For $J^{\prime}, L^{\prime} \in \mathbb{Z}_{+}^{n-1}$ we say that $J^{\prime} \leq L^{\prime}$ if $j_{k} \leq l_{k}$ with $k=1, \ldots, n-1$.

5 Poly-Bergman Type Spaces

For $L=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}^{n}$, we define the poly-Bergman type space $\mathcal{A}_{\lambda L}^{2}$ as the subspace of $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ consisting of all functions f satisfying the equations

$$
\begin{aligned}
\left(\frac{\partial}{\partial \bar{z}_{k}}-2 i z_{k} \frac{\partial}{\partial \bar{z}_{n}}\right)^{l_{k}} f & =0, \quad k=1, \ldots, n-1, \\
\left(\frac{\partial}{\partial \bar{z}_{n}}\right)^{l_{n}} f & =0 .
\end{aligned}
$$

Let $\left\{e_{j}\right\}_{j=1}^{n}$ be the canonical basis of \mathbb{R}^{n}. We define the space of true- L-analytic functions as

$$
\mathcal{A}_{\lambda(L)}^{2}=\mathcal{A}_{\lambda L}^{2} \ominus\left(\sum_{j=1}^{n} \mathcal{A}_{\lambda, L-e_{j}}^{2}\right),
$$

where $\mathcal{A}_{\lambda S}^{2}=\{0\}$ if $S \notin \mathbb{N}^{n}$.
It is much more convenient to deal with $\mathcal{A}_{0, \lambda L}(\mathcal{D})=U_{0}\left(\mathcal{A}_{\lambda L}^{2}\right) \subset L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)$ in order to apply Fourier techniques for the study of the poly-Bergman type space. For a function $\varphi(w)=\left(U_{0} f\right)(w) \in \mathcal{A}_{0, \lambda L}(\mathcal{D})$ we have

$$
\begin{aligned}
U_{0}\left(\bar{\Lambda}_{k}\right)^{l_{k}} U_{0}^{-1} \varphi & =\left(\frac{\partial}{\partial \bar{w}_{k}}-i w_{k} \frac{\partial}{\partial u_{n}}\right)^{l_{k}} \varphi=0, \quad k=1, \ldots, n-1, \\
U_{0}\left(\frac{\partial}{\partial \bar{z}_{n}}\right)^{l_{n}} U_{0}^{-1} \varphi & =\frac{1}{2^{l_{n}}}\left(\frac{\partial}{\partial u_{n}}+i \frac{\partial}{\partial v_{n}}\right)^{l_{n}} \varphi=0 .
\end{aligned}
$$

Consider now the tensor decomposition

$$
L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)=L^{2}\left(\mathbb{C}^{n-1}\right) \otimes L^{2}(\mathbb{R}) \otimes L^{2}\left(\mathbb{R}_{+}, v_{n}^{\lambda} d v_{n}\right)
$$

Take $w=\left(w^{\prime}, w_{n}\right) \in \mathbb{C}^{n-1} \times \Pi$, where $w^{\prime}=\left(w_{1}, \ldots, w_{n-1}\right)$ and $w_{k}=u_{k}+i v_{k}$. We write $w^{\prime}=$ $u^{\prime}+i v^{\prime}$, where $u^{\prime}=\left(u_{1}, \ldots, u_{n-1}\right)$ and $v^{\prime}=\left(v_{1}, \ldots, v_{n-1}\right)$, and we identify $w=\left(w^{\prime}, u_{n}+i v_{n}\right)$ with $\left(u^{\prime}, v^{\prime}, u_{n}, v_{n}\right)$. Then

$$
\begin{equation*}
L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)=L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}(\mathbb{R}) \otimes L^{2}\left(\mathbb{R}_{+}, v_{n}^{\lambda} d v_{n}\right) \tag{5.1}
\end{equation*}
$$

where the first (second) tensor factor space consists of functions in the real (imaginary) part of the complex vector w^{\prime}. Let F denote the Fourier transform on $L^{2}(\mathbb{R})$:

$$
(F f)(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(u) e^{-i \xi u} d u
$$

Let $F_{(n-1)}$ be the tensor product of F with itself taken $n-1$ times. Now, according to the decomposition (5.1) we introduce the unitary operators

$$
\begin{gathered}
U_{1}=I \otimes I \otimes F \otimes I, \\
U_{2}=F_{(n-1)} \otimes I \otimes I \otimes I .
\end{gathered}
$$

Of course, $U_{2} U_{1}$ is just the Fourier transform with respect to the variable $u=\operatorname{Re} w$.
Consider the change of variable $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \mapsto z=\left(z_{1}, \ldots, z_{n}\right)$, where $\zeta_{k}=\xi_{k}+i v_{k}$ and $z_{k}=x_{k}+i y_{k}$ are related by

$$
\binom{\xi_{k}}{v_{k}}=\left(\begin{array}{cc}
\sqrt{\left|x_{n}\right|} & \sqrt{\left|x_{n}\right|} \tag{5.2}\\
\frac{-1}{2 \sqrt{\left|x_{n}\right|}} & \frac{1}{2 \sqrt{\left|x_{n}\right|}}
\end{array}\right)\binom{x_{k}}{y_{k}}, \quad k=1, \ldots, n-1
$$

and

$$
\xi_{n}=x_{n}, \quad v_{n}=\frac{y_{n}}{2\left|x_{n}\right|}
$$

Let $\zeta=\left(\zeta^{\prime}, \zeta_{n}\right)$, where $\zeta^{\prime}=\xi^{\prime}+i v^{\prime}$ and $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n-1}\right)$. According to the tensor product (5.1), consider the following unitary operators on $L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)$:

$$
\begin{gathered}
V_{1}: \psi\left(\zeta^{\prime}, \xi_{n}+i v_{n}\right) \longmapsto \Psi\left(\zeta^{\prime}, x_{n}+i y_{n}\right)=\frac{1}{\left(2\left|x_{n}\right|\right)^{(\lambda+1) / 2}} \psi\left(\zeta^{\prime}, x_{n}+i \frac{y_{n}}{2\left|x_{n}\right|}\right), \\
V_{2}: \Psi\left(\zeta^{\prime}, x_{n}+i y_{n}\right) \longmapsto \Phi\left(z^{\prime}, x_{n}+i y_{n}\right)=\Psi\left(\sqrt{\left|x_{n}\right|}\left(x^{\prime}+y^{\prime}\right)+i \frac{1}{2 \sqrt{\left|x_{n}\right|}}\left(-x^{\prime}+y^{\prime}\right), x_{n}+i y_{n}\right)
\end{gathered}
$$

Theorem 5.1. The unitary operator $W=V_{2} V_{1} U_{2} U_{1} U_{0}$ maps $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ onto

$$
\mathcal{H}=L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)=L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}(\mathbb{R}) \otimes L^{2}\left(\mathbb{R}_{+}, y_{n}^{\lambda} d y_{n}\right)
$$

The poly-Bergman type space $\mathcal{A}_{\lambda L}^{2}$ is mapped by W to the subspace

$$
\mathcal{H}_{L}^{+}=L^{2}\left(\mathbb{R}^{n-1}\right) \otimes\left(\bigoplus_{0 \leq J^{\prime} \leq L^{\prime}-e} H_{J^{\prime}}\right) \otimes L^{2}\left(\mathbb{R}_{+}\right) \otimes\left(\bigoplus_{j_{n}=0}^{l_{n}-1} \mathcal{L}_{j_{n}}\right)
$$

where $e=(1, \ldots, 1) \in \mathbb{Z}_{+}^{n-1}$, and

$$
\begin{aligned}
& \mathcal{L}_{j_{n}}=\operatorname{gen}\left\{\ell_{j_{n}}^{\lambda}\left(y_{n}\right)\right\} \subset L^{2}\left(\mathbb{R}_{+}, y_{n}^{\lambda} d y_{n}\right), \\
& H_{J^{\prime}}=\operatorname{gen}\left\{h_{J^{\prime}}\left(y^{\prime}\right)\right\} \subset L^{2}\left(\mathbb{R}^{n-1}, d y^{\prime}\right) .
\end{aligned}
$$

Corollary 5.2. The restriction of W to the space $\mathcal{A}_{\lambda(L)}^{2}$ given by

$$
W: \mathcal{A}_{\lambda(L)}^{2} \longrightarrow \mathcal{H}_{(L)}^{+}=L^{2}\left(\mathbb{R}^{n-1}\right) \otimes H_{L^{\prime}-e} \otimes L^{2}\left(\mathbb{R}_{+}\right) \otimes \mathcal{L}_{l_{n}-1}
$$

is an isomorphisms.
Proof of Theorem 5.1. Let $\mathcal{A}_{1, \lambda L}=U_{1}\left(\mathcal{A}_{0, \lambda L}(\mathcal{D})\right)$. The operator U_{1} is the Fourier transform with respect to the variable $u_{n}=\operatorname{Re} w_{n}$. Then $\phi\left(w^{\prime}, \xi_{n}+i v_{n}\right)=\left(U_{1} \varphi\right)\left(w^{\prime}, \xi_{n}+i v_{n}\right)$ belongs to $\mathcal{A}_{1, \lambda L}$ if and only if

$$
\begin{aligned}
\left(\frac{\partial}{\partial \bar{w}_{k}}+\xi_{n} w_{k}\right)^{l_{k}} \phi & =0, \quad k=1, \ldots, n-1 \\
\frac{i^{l_{n}}}{2^{l_{n}}}\left(\xi_{n}+\frac{\partial}{\partial v_{n}}\right)^{l_{n}} \phi & =0
\end{aligned}
$$

We now take the Fourier transform with respect to the variables $u_{k}=\operatorname{Re} w_{k}$. Define $\mathcal{A}_{2, \lambda L}=$ $U_{2}\left(\mathcal{A}_{1, \lambda L}\right)$. Then $\psi\left(\xi^{\prime}+i v^{\prime}, \xi_{n}+i v_{n}\right)=\left(U_{2} \phi\right)\left(\xi^{\prime}+i v^{\prime}, \xi_{n}+i v_{n}\right)$ belongs to $\mathcal{A}_{2, \lambda L}$ if and only if

$$
\begin{align*}
{\left[\frac{i}{2}\left(\xi_{k}+\frac{\partial}{\partial v_{k}}\right)+i \xi_{n}\left(\frac{\partial}{\partial \xi_{k}}+v_{k}\right)\right]^{l_{k}} \psi } & =0, \quad k=1, \ldots, n-1 \\
\frac{i^{l_{n}}}{2^{l_{n}}}\left(\xi_{n}+\frac{\partial}{\partial v_{n}}\right)^{l_{n}} \psi & =0 \tag{5.3}
\end{align*}
$$

Let $\mathcal{A}_{1, \lambda L}^{\prime}$ denote the image space $V_{1}\left(\mathcal{A}_{2, \lambda L}\right)$. Then $\Psi\left(\zeta^{\prime}, x_{n}+i y_{n}\right)=\left(V_{1} \psi\right)\left(\zeta^{\prime}, x_{n}+i y_{n}\right)$ belongs to $\mathcal{A}_{1, \lambda L}^{\prime}$ if and only if

$$
\begin{align*}
& {\left[\frac{i}{2}\left(\xi_{k}+\frac{\partial}{\partial v_{k}}\right)+i x_{n}\left(\frac{\partial}{\partial \xi_{k}}+v_{k}\right)\right]^{l_{k}} \Psi=0, \quad k=1, \ldots, n-1,} \\
& \frac{i^{l n} \mid x_{n} l_{n}}{2^{l_{n}}}\left(\operatorname{sign}\left(x_{n}\right)+2 \frac{\partial}{\partial y_{n}}\right)^{l_{n}} \Psi \quad=0 . \tag{5.4}
\end{align*}
$$

Take $\mathcal{A}_{2, \lambda L}^{\prime}=V_{2}\left(\mathcal{A}_{1, \lambda L}^{\prime}\right)$. Then $\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)=\left(V_{2} \Psi\right)\left(z^{\prime}, x_{n}+i y_{n}\right)$ belongs to $\mathcal{A}_{2, \lambda L}^{\prime}$ if and only if

$$
\begin{align*}
{\left[i \sqrt{\left|x_{n}\right|}\left(\frac{1-\operatorname{sign}\left(x_{n}\right)}{2}\left(x_{k}-\frac{\partial}{\partial x_{k}}\right)+\frac{1+\operatorname{sign}\left(x_{n}\right)}{2}\left(y_{k}+\frac{\partial}{\partial y_{k}}\right)\right)\right]^{l_{k}} \Phi } & =0, \\
\frac{i^{l_{n}}\left|x_{n}\right|^{l_{n}}}{2^{l_{n}}}\left(\operatorname{sign}\left(x_{n}\right)+2 \frac{\partial}{\partial y_{n}}\right)^{l_{n}} \Phi & =0 . \tag{5.5}
\end{align*}
$$

The general solution of the last equation in (5.5) is given by

$$
\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)=\sum_{j_{n}=0}^{l_{n}-1} \phi_{j_{n}}\left(z^{\prime}, x_{n}\right) y_{n}^{j_{n}} e^{-\left(\operatorname{sgn} x_{n}\right) y_{n} / 2}
$$

Since $\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)$ has to be in $L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)$, we must take only positive values of x_{n}. Morever, by rearranging polynomial terms we can express $\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)$ as

$$
\begin{equation*}
\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)=\chi_{+}\left(x_{n}\right) \sum_{j_{n}=0}^{l_{n}-1} \Phi_{j_{n}}\left(z^{\prime}, x_{n}\right) \ell_{j_{n}}^{\lambda}\left(y_{n}\right) \tag{5.6}
\end{equation*}
$$

where $\ell_{j_{n}}^{\lambda}(y)$ is the Laguerre function in $L^{2}\left(\mathbb{R}_{+}\right)$of degree j_{n}. Further, the function $\chi_{+}\left(x_{n}\right) \Phi_{j_{n}}\left(z^{\prime}, x_{n}\right) \ell_{j_{n}}^{\lambda}\left(y_{n}\right)$ belongs to $\mathcal{A}_{3, \lambda L}$ if and only if

$$
\left[i \sqrt{\left|x_{n}\right|}\left(\frac{\partial}{\partial y_{k}}+y_{k}\right)\right]^{l_{k}} \Phi_{j_{n}}\left(z^{\prime}, x_{n}\right)=0, \quad x_{n}>0
$$

for each $k=1, \ldots, n-1$. Then, the general solution of this system of equations has the form

$$
\Phi_{j_{n}}\left(z^{\prime}, x_{n}\right)=\sum_{0 \leq J^{\prime} \leq L^{\prime}-e} \tilde{\Phi}_{J^{\prime}, j_{n}}\left(x^{\prime}, x_{n}\right)\left(y^{\prime}\right)^{J^{\prime}} e^{-\left|y^{\prime}\right|^{2} / 2}, \quad x_{n}>0
$$

We rewrite the general solution as

$$
\begin{equation*}
\Phi_{j_{n}}\left(z^{\prime}, x_{n}\right)=\sum_{0 \leq J^{\prime} \leq L^{\prime}-e} \Phi_{J}\left(x^{\prime}, x_{n}\right) h_{J^{\prime}}\left(y^{\prime}\right), \quad x_{n}>0 \tag{5.7}
\end{equation*}
$$

where $J=\left(J^{\prime}, j_{n}\right)$, and $h_{J^{\prime}}\left(y^{\prime}\right)$ is the Hermite function given in (4.1). Therefore

$$
\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)=\sum_{j_{n}=1}^{l_{n}-1}\left\{\sum_{0 \leq J^{\prime} \leq L^{\prime}-e} \chi_{+}\left(x_{n}\right) \Phi_{J}\left(x^{\prime}, x_{n}\right) h_{J^{\prime}}\left(y^{\prime}\right)\right\} \ell_{j_{n}}^{\lambda}\left(y_{n}\right)
$$

This completes the proof.

6 Anti-Poly-Bergman Type Spaces

Anti-polyanalytic functions are just the complex conjugation of polyanalytic functions, but the spaces of polyanalytic and anti-polyanalytic functions are mutually orthogonal. For $L=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}^{n}$, we define the anti-poly-Bergman type space $\tilde{\mathcal{A}}_{\lambda L}^{2}$ as the subspace of $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ consisting of all functions f satisfying the equations

$$
\begin{aligned}
\left(\frac{\partial}{\partial z_{k}}+2 i \overline{z_{k}} \frac{\partial}{\partial z_{n}}\right)^{l_{k}} f & =0, \quad k=1, \ldots, n-1, \\
\left(\frac{\partial}{\partial z_{n}}\right)^{l_{n}} f & =0
\end{aligned}
$$

We define the space of true- L-anti-analytic functions as

$$
\tilde{\mathcal{A}}_{\lambda(L)}^{2}=\tilde{\mathcal{A}}_{\lambda L}^{2} \ominus\left(\sum_{j=1}^{n} \tilde{\mathcal{A}}_{\lambda, L-e_{j}}^{2}\right),
$$

where $\tilde{\mathcal{A}}_{\lambda S}^{2}=\{0\}$ if $S \notin \mathbb{N}^{n}$.
Theorem 6.1. The Hilbert space $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ admits the decomposition

$$
L^{2}\left(D_{n}, d \mu_{\lambda}\right)=\left(\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{A}_{\lambda(L)}^{2}\right) \bigoplus\left(\bigoplus_{L \in \mathbb{N}^{n}} \tilde{\mathcal{A}}_{\lambda(L)}^{2}\right)
$$

Proof. We have

$$
\begin{aligned}
\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{H}_{(L)}^{+} & =L^{2}\left(\mathbb{R}^{n-1}\right) \otimes\left(\bigoplus_{L^{\prime} \in \mathbb{N}^{n-1}} H_{L^{\prime}-e}\right) \otimes L^{2}\left(\mathbb{R}_{+}\right) \otimes\left(\bigoplus_{l_{n} \in \mathbb{N}} \mathcal{L}_{l_{n}-1}\right) \\
& =L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}_{+}\right) \otimes L^{2}\left(\mathbb{R}_{+}\right) .
\end{aligned}
$$

Similarly, we have

$$
\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{H}_{(L)}^{-}=L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}_{-}\right) \otimes L^{2}\left(\mathbb{R}_{+}\right)
$$

It is obvious that the direct sum of all the spaces $\mathcal{H}_{(L)}^{+}$and $\mathcal{H}_{(L)}^{-}$is equal to $L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)$. Using the fact that W is unitary and corollaries 5.2 and 6.3 we obtain

$$
\begin{aligned}
L^{2}\left(D_{n}, d \mu_{\lambda}\right) & =W^{*}\left(L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)\right) \\
& =W^{*}\left(\left(\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{H}_{(L)}^{+}\right) \bigoplus\left(\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{H}_{(L)}^{-}\right)\right) \\
& =\left(\bigoplus_{L \in \mathbb{N}^{n}} W^{*}\left(\mathcal{H}_{(L)}^{+}\right)\right) \bigoplus\left(\bigoplus_{L \in \mathbb{N}^{n}} W^{*}\left(\mathcal{H}_{(L)}^{-}\right)\right) \\
& =\left(\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{A}_{\lambda(L)}^{2}\right) \bigoplus\left(\bigoplus_{L \in \mathbb{N}^{n}} \tilde{\mathcal{A}}_{\lambda(L)}^{2}\right) .
\end{aligned}
$$

Theorem 6.2. Under the unitary operator W, the anti-poly-Bergman type space $\tilde{\mathcal{A}}_{\lambda L}^{2}$ is isomorphic to the subspace

$$
\mathcal{H}_{L}^{-}=\left(\bigoplus_{0 \leq J^{\prime} \leq L^{\prime}-e} H_{J^{\prime}}\right) \otimes L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}_{-}\right) \otimes\left(\bigoplus_{j_{n}=0}^{l_{n}-1} \mathcal{L}_{j_{n}}\right),
$$

where

$$
H_{J^{\prime}}=\operatorname{gen}\left\{h_{J^{\prime}}\left(x^{\prime}\right)\right\} \subset L^{2}\left(\mathbb{R}^{n-1}, d x^{\prime}\right) .
$$

Corollary 6.3. The restriction of W to the space $\tilde{\mathcal{A}}_{\lambda(L)}^{2}$

$$
W: \tilde{\mathcal{A}}_{\lambda(L)}^{2} \longrightarrow \mathcal{H}_{(L)}^{-}=H_{L^{\prime}-e} \otimes L^{2}\left(\mathbb{R}^{n-1}\right) \otimes L^{2}\left(\mathbb{R}_{-}\right) \otimes \mathcal{L}_{l_{n}-1}
$$

is an isomorphisms.
Proof of Theorem 6.2. This proof is similar to that of Theorem 5.1. Let $\tilde{\mathcal{A}}_{0, \lambda L}(\mathcal{D})=$ $U_{0}\left(\tilde{\mathcal{A}}_{\lambda L}^{2}\right) \subset L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)$. For $\varphi(w)=\left(U_{0} f\right)(w) \in \tilde{\mathcal{A}}_{0, \lambda L}(\mathcal{D})$ we have

$$
\begin{aligned}
U_{0}\left(\Lambda_{k}\right)^{l_{k}} U_{0}^{-1} \varphi & =\left(\frac{\partial}{\partial w_{k}}+i \overline{w_{k}} \frac{\partial}{\partial u_{n}}\right)^{l_{k}} \varphi=0, \quad k=1, \ldots, n-1, \\
U_{0}\left(\frac{\partial}{\partial z_{n}}\right)^{l_{n}} U_{0}^{-1} \varphi & =\frac{1}{2^{l_{n}}}\left(\frac{\partial}{\partial u_{n}}-i \frac{\partial}{\partial v_{n}}\right)^{l_{n}} \varphi=0 .
\end{aligned}
$$

We take now the Fourier transform with respect to all the variables $u_{k}=\operatorname{Re} w_{k}$. Define $\tilde{\mathcal{A}}_{2, \lambda L}=U_{2} U_{1}\left(\tilde{\mathcal{A}}_{0, \lambda L}\right)$. Then $\psi\left(\xi^{\prime}+i v^{\prime}, \xi_{n}+i v_{n}\right)=\left(U_{2} U_{1} \varphi\right)\left(\xi^{\prime}+i v^{\prime}, \xi_{n}+i v_{n}\right)$ belongs to $\tilde{\mathcal{A}}_{2, \lambda L}$ if and only if

$$
\begin{aligned}
{\left[\frac{i}{2}\left(\xi_{k}-\frac{\partial}{\partial v_{k}}\right)-i \xi_{n}\left(\frac{\partial}{\partial \xi_{k}}-v_{k}\right)\right]^{l_{k}} \psi } & =0, \quad k=1, \ldots, n-1, \\
\frac{i^{l_{n}}}{2^{l_{n}}}\left(\xi_{n}-\frac{\partial}{\partial v_{n}}\right)^{l_{n}} \psi & =0
\end{aligned}
$$

Take $\tilde{\mathcal{A}}_{3, \lambda L}=V_{2} V_{1}\left(\tilde{\mathcal{A}}_{2, \lambda L}\right)$. Then $\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)=\left(V_{2} V_{1} \psi\right)\left(z^{\prime}, x_{n}+i y_{n}\right)$ belongs to $\tilde{\mathcal{A}}_{3, \lambda L}$ if and only if

$$
\begin{align*}
{\left[i \sqrt{\left|x_{n}\right|}\left(\frac{1-\operatorname{sign}\left(x_{n}\right)}{2}\left(x_{k}+\frac{\partial}{\partial x_{k}}\right)+\frac{1+\operatorname{sign}\left(x_{n}\right)}{2}\left(y_{k}-\frac{\partial}{\partial y_{k}}\right)\right)\right]^{l_{k}} \Phi } & =0, \tag{6.1}\\
\frac{i^{l n} \mid x_{l^{\prime}} l_{n}}{2^{l_{n}}}\left(\operatorname{sign}\left(x_{n}\right)-2 \frac{\partial}{\partial y_{n}}\right)^{l_{n}} \Phi & =0 .
\end{align*}
$$

The general solution of the last equation in (6.1) is given by

$$
\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)=\sum_{j_{n}=0}^{l_{n}-1} \phi_{j_{n}}\left(z^{\prime}, x_{n}\right) y_{n}^{j_{n}} e^{\left(s g n x_{n}\right) y_{n} / 2}
$$

Since $\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)$ has to be in $L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)$, we must take only negative values of x_{n}. Moreover, by rearranging polynomial terms we can express $\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)$ as

$$
\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)=\chi_{-}\left(x_{n}\right) \sum_{j_{n}=0}^{l_{n}-1} \Phi_{j_{n}}\left(z^{\prime}, x_{n}\right) \ell_{j_{n}}^{\lambda}\left(y_{n}\right)
$$

where $\ell_{j_{n}}^{\lambda}(y)$ is the Laguerre function in $L^{2}\left(\mathbb{R}_{+}\right)$of degree j_{n}. Further, the function $\chi_{-}\left(x_{n}\right) \Phi_{j_{n}}\left(z^{\prime}, x_{n}\right) \ell_{j_{n}}^{\lambda}\left(y_{n}\right)$ belongs to $\tilde{\mathcal{A}}_{3, \lambda L}$ if and only if

$$
\left[i \sqrt{\left|x_{n}\right|}\left(\frac{\partial}{\partial x_{k}}+x_{k}\right)\right]^{l_{k}} \Phi_{j_{n}}\left(z^{\prime}, x_{n}\right)=0, \quad x_{n}<0
$$

for each $k=1, \ldots, n-1$. Then, the general solution of this system of equations has the form

$$
\Phi_{j_{n}}\left(z^{\prime}, x_{n}\right)=\sum_{0 \leq J^{\prime} \leq L^{\prime}-e} \tilde{\Phi}_{J^{\prime}, j_{n}}\left(y^{\prime}, x_{n}\right)\left(x^{\prime}\right)^{J^{\prime}} e^{-\left|x^{\prime}\right|^{2} / 2}, \quad x_{n}<0
$$

We rewrite the general solution as

$$
\Phi_{j_{n}}\left(z^{\prime}, x_{n}\right)=\sum_{0 \leq J^{\prime} \leq L^{\prime}-e} \Phi_{J}\left(y^{\prime}, x_{n}\right) h_{J^{\prime}}\left(x^{\prime}\right), \quad x_{n}<0
$$

where $J=\left(J^{\prime}, j_{n}\right)$, and $h_{J^{\prime}}\left(x^{\prime}\right)$ is the Hermite function given in (4.1). Therefore

$$
\Phi\left(z^{\prime}, x_{n}+i y_{n}\right)=\sum_{j_{n}=1}^{l_{n}-1}\left\{\sum_{0 \leq J^{\prime} \leq L^{\prime}-e} \chi_{-}\left(x_{n}\right) \Phi_{J}\left(y^{\prime}, x_{n}\right) h_{J^{\prime}}\left(x^{\prime}\right)\right\} \ell_{j_{n}}^{\lambda}\left(y_{n}\right) .
$$

This completes the proof.

7 Mixed Poly-Bergman Type Spaces

Let us introduce the following notation:

$$
\Lambda_{k \pm 1}^{ \pm 1}:=\Lambda_{k \pm}^{ \pm}, \quad D_{k}^{-1}:=\partial / \partial z_{k}, \quad D_{k}^{+1}:=\partial / \partial \bar{z}_{k}, \quad M_{k}^{-1}:=\bar{z}_{k} I, \quad M_{k}^{+1}:=z_{k} I .
$$

Certain choices of the operators $\Lambda_{k \pm}^{ \pm}$will be taken to define mixed poly-Bergman type spaces. For each n-tuple $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in\{ \pm 1\}^{n}$, introduce the operators

$$
\Lambda_{k \sigma_{k}}^{\sigma_{n}}=D_{k}^{\sigma_{k}}-2 i \sigma_{n} M_{k}^{\sigma_{k}} D_{n}^{\sigma_{n}}
$$

For $L=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}^{n}$ we define the (L, σ)-poly-Bergman type space $\mathcal{A}_{\lambda L \sigma}^{2}$ as the subspace of $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ consisting of all functions f satisfying the equations

$$
\begin{align*}
\left(\Lambda_{k \sigma_{k}}^{\sigma_{n}}\right)^{l_{k}} f & =0, \quad k=1, \ldots, n-1 \tag{7.1}\\
\left(D_{n}^{\sigma_{n}}\right)^{l_{n}} f & =0
\end{align*}
$$

We will refer to $\mathcal{A}_{\lambda L \sigma}^{2}$ as the σ-poly-Bergman type space or the mixed poly-Bergman type space. We define the space of true- (L, σ)-analytic functions as

$$
\mathcal{A}_{\lambda(L) \sigma}^{2}=\mathcal{A}_{\lambda L \sigma}^{2} \ominus\left(\sum_{j=1}^{n} \mathcal{A}_{\lambda, L-e_{j}, \sigma}^{2}\right),
$$

where $\mathcal{A}_{\lambda S \sigma}^{2}=\{0\}$ if $S \notin \mathbb{N}^{n}$. Of course, for $\sigma=e=(1, \ldots, 1), \mathcal{A}_{\lambda L \sigma}^{2}$ is just the poly-Bergman type space, and $\mathcal{A}_{\lambda L,-e}^{2}$ is the anti-poly-Bergman type space $\tilde{\mathcal{A}}_{\lambda L}$.

For $\sigma \in\{ \pm 1\}^{n}$ consider the following bijective mappings on D_{n} and \mathcal{D}, respectively:

$$
\begin{gathered}
C_{\sigma}:\left(z_{1}, \ldots, z_{n-1}, z_{n}\right) \mapsto\left(x_{1}+\sigma_{1} i y_{1}, \ldots, x_{n-1}+\sigma_{n-1} i y_{n-1}, \sigma_{n} x_{n}+i y_{n}\right) \\
\tilde{C}_{\sigma}:\left(w_{1}, \ldots, w_{n-1}, u_{n}+i v_{n}\right) \mapsto\left(u_{1}+\sigma_{1} i v_{1}, \ldots, u_{n-1}+\sigma_{n-1} i v_{n-1}, \sigma_{n} u_{n}+i v_{n}\right)
\end{gathered}
$$

i.e., we make complex conjugation in the variables $z_{k}=x_{k}+i y_{k}$ and $w_{k}=u_{k}+i v_{k}$ whenever $\sigma_{k}=-1$ for $k=1, \ldots, n-1$.

Consider now the following unitary self-adjoint operators on $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ and $L^{2}\left(\mathcal{D}, d \eta_{\lambda}\right)$, respectively:

$$
\begin{aligned}
& T_{\sigma}: f \mapsto f \circ C_{\sigma}, \\
& \tilde{T}_{\sigma}: f \mapsto f \circ \tilde{C}_{\sigma}
\end{aligned}
$$

It is easy to see that $\tilde{T}_{\sigma}=U_{0} T_{\sigma} U_{0}^{*}$. Mixed poly-Bergman type spaces can be realised as spaces of polyanalytic functions under T_{σ}.

Lemma 7.1. The operator T_{σ} maps the σ-poly-Bergman type space onto the poly-Bergman type space:

$$
\begin{equation*}
T_{\sigma}\left(\mathcal{A}_{\lambda L \sigma}\right)=\mathcal{A}_{\lambda L} \tag{7.2}
\end{equation*}
$$

Proof. Suppose that $\sigma_{n}=1$. It is easy to see that $T_{\sigma}^{*} \overline{\Lambda_{k}} T_{\sigma}=\overline{\Lambda_{k}}$ if $\sigma_{k}=1$, and $T_{\sigma}^{*} \overline{\Lambda_{k}} T_{\sigma}=\Lambda_{k-}^{+}$ if $\sigma_{k}=-1$. That is, $T_{\sigma} \Lambda_{k \sigma_{k}}^{+} T_{\sigma}^{*}=\overline{\Lambda_{k}}$. Analogously, we have $T_{\sigma} \Lambda_{k \sigma_{k}}^{-} T_{\sigma}^{*}=\overline{\Lambda_{k}}$ for $\sigma_{n}=-1$. Therefore

$$
T_{\sigma} \Lambda_{k \sigma_{k}}^{\sigma_{n}} T_{\sigma}^{*}=\overline{\Lambda_{k}}
$$

no matters if $\sigma_{n}=1$ or $\sigma_{n}=-1$. We have also $T_{\sigma} D_{n}^{\sigma_{n}} T_{\sigma}^{*}=D_{n}^{+1}$. Finally, a function $f \in$ $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ satisfy equations (7.1) if and only if $T_{\sigma} f$ belongs to $\mathcal{A}_{\lambda L}^{2}$.

The set $\{1,-1\}^{n}$ is a group under the multiplication $\sigma \tau:=\left(\sigma_{1} \tau_{1}, \ldots, \sigma_{n} \tau_{n}\right)$, where $\sigma=$ $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$. Of course $e=(1, \ldots, 1)$ is the identity in this group.

Lemma 7.2. The operator T_{σ} maps the $-\sigma$-poly-Bergman type space onto the anti-polyBergman type space:

$$
T_{\sigma}\left(\mathcal{A}_{\lambda L,-\sigma}\right)=\tilde{\mathcal{A}}_{\lambda L} .
$$

Moreover

$$
T_{\sigma}\left(\mathcal{A}_{\lambda L, \tau}\right)=\mathcal{A}_{\lambda L, \sigma \tau} .
$$

Proof. The set of operators T_{σ} is a group and $T_{\sigma} T_{\tau}=T_{\sigma \tau}$. Thus

$$
T_{\sigma}\left(\mathcal{A}_{\lambda L, \tau}\right)=T_{\sigma} T_{\tau} T_{\tau}\left(\mathcal{A}_{\lambda L, \tau}\right)=T_{\sigma} T_{\tau}\left(\mathcal{A}_{\lambda L}\right)=T_{\sigma \tau}\left(\mathcal{A}_{\lambda L}\right)=\mathcal{A}_{\lambda L, \sigma \tau} .
$$

Since $\overline{\Lambda_{k \sigma_{k}}^{\sigma_{n}}}=\Lambda_{k,-\sigma_{k}}^{-\sigma_{n}}$, the mixed poly-Bergman type space $\mathcal{A}_{\lambda L,-\sigma}^{2}$ consists of all conjugation functions of $\mathcal{A}_{\lambda L, \sigma^{*}}^{2}$. We define

$$
\begin{aligned}
\tilde{\mathcal{A}}_{\lambda L \sigma}^{2} & :=\mathcal{A}_{\lambda L,-\sigma}^{2}, \\
\tilde{\mathcal{A}}_{\lambda(L) \sigma}^{2} & :=\mathcal{A}_{\lambda(L),-\sigma}^{2} .
\end{aligned}
$$

Theorem 7.3. The Hilbert space $L^{2}\left(D_{n}, d \mu_{\lambda}\right)$ admits the decomposition

$$
L^{2}\left(D_{n}, d \mu_{\lambda}\right)=\left(\bigoplus_{L \in \mathbb{N}^{n}} \mathcal{A}_{\lambda(L) \sigma}^{2}\right) \bigoplus\left(\bigoplus_{L \in \mathbb{N}^{n}} \tilde{\mathcal{A}}_{\lambda(L) \sigma}^{2}\right)
$$

Proof. Follows from lemmas 7.1, 7.2 and Theorem 6.1.

Let us see how mixed poly-Bergman type spaces are mapped by the unitary operator W. Consider the unitary self-adjoint operator

$$
S_{\sigma}=W T_{\sigma} W^{*}
$$

We have $S_{\sigma}=\sigma_{n} V_{2} \tilde{T}_{\sigma} V_{2}^{*}$ because of $U_{1} \tilde{T}_{\sigma}=\sigma_{n} \tilde{T}_{\sigma} U_{1}, V_{1} \tilde{T}_{\sigma}=\tilde{T}_{\sigma} V_{1}$, and $U_{2} \tilde{T}_{\sigma}=\tilde{T}_{\sigma} U_{2}$. It is easy to see that

$$
S_{\sigma} \Phi=\sigma_{n} \Phi \circ h
$$

where

$$
h: \mathcal{D} \ni\left(z_{1}, \ldots, z_{n-1}, x_{n}+i y_{n}\right) \mapsto\left(w_{1}, \ldots, w_{n-1}, \sigma_{n} x_{n}+i x_{n}\right) \in \mathcal{D}
$$

and

$$
\binom{u_{k}}{v_{k}}=\left(\begin{array}{cc}
\frac{1+\sigma_{k}}{2} & \frac{1-\sigma_{k}}{2} \\
\frac{1-\sigma_{k}}{2} & \frac{1+\sigma_{k}}{2}
\end{array}\right)\binom{x_{k}}{y_{k}}, \quad k=1, \ldots, n-1 .
$$

Obviously $w_{k}=z_{k}$ if $\sigma_{k}=1$; otherwise this mapping interchange the real and imaginary parts of $z_{k}=x_{k}+i y_{k}: w_{k}=i \overline{z_{k}}$. On the other hand,

$$
W\left(\mathcal{A}_{\lambda(L) \sigma}\right)=S_{\sigma}^{*} W T_{\sigma}\left(\mathcal{A}_{\lambda(L) \sigma}\right)=S_{\sigma} \mathcal{H}_{(L)}^{+} .
$$

Theorem 7.4. The true- (L, σ)-poly-Bergman type space $\mathcal{A}_{\lambda(L) \sigma}^{2}$ is isomorphic to the subspace

$$
\mathcal{H}_{(L)}^{\sigma}=\left(H_{L-e}^{\sigma} \otimes L_{\sigma}^{2}\left(\mathbb{R}^{n-1}\right)\right) \otimes L^{2}\left(\mathbb{R}_{\sigma_{n}}\right) \otimes \mathcal{L}_{l_{n}-1}
$$

where H_{L-e}^{σ} is the one-dimensional space generated by the Hermite function h_{L-e} in the variables $\operatorname{Im} h(z)^{\prime}$, and $L_{\sigma}^{2}\left(\mathbb{R}^{n-1}\right)$ is the space of L^{2}-functions in the variable $\operatorname{Re} h(z)^{\prime}$.

Acknowledgments

The authors thanks the referees for their careful reading of the manuscript and insightful comments.

References

[1] M. B. Balk, Polyanalytic functions and their generalizations. Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr. 85 (1991), pp 187-246.
[2] M. B. Balk and M. F. Zuev, On polyanalytic functions. Russ. Math. Surveys 25, no. 5 (1970), pp 201-223.
[3] A. Boggess, CR Manifolds and the Tangencial Cauchy-Riemann Complex. Studies in Advanced Mathematics, CRC Press, London, 1991.
[4] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach Sciences Publishers, New York, London, 1978.
[5] A. Dzhuraev, Multikernel functions of a domain, kernel operators, singular integral operators. Soviet Math. Dokl. 32, no. 1 (1985), pp 251-253.
[6] A. Dzhuraev, Methods of Singular Integral Equations, Longman Scientific \& Technical. New York, 1992.
[7] N. N. Lebedev, Special Functions and Their Applications, Dover Publications, New York, 1972.
[8] R. Quiroga-Barranco and N. L. Vasilevski, Commutative C^{*}-algebras of Toeplitz operators on the unit ball, I. Bargmann-type transforms and spectral representations of Toeplitz operators. Integr. Equ. Oper. Theory. 59, no. 3 (2007), pp 379-419.
[9] N. L. Vasilevski, Toeplitz operators on the Bergman spaces: Inside-the-domain effects. Contemp. Math. 289 (2001), pp. 79-146.
[10] N. L. Vasilevski, On the structure of Bergman and poly-Bergman spaces. Integr. Equ. Oper. Theory. 33, no. 4 (1999), pp 471-488.

[^0]: *E-mail address: jro3001@gmail.com
 ${ }^{\dagger}$ E-mail address: sancheznungaray@gmail.com

