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A. I. K OMECH ‡

Faculty of Mathematics, Vienna University,
Nordbergstrasse 15, 1090 Vienna, Austria

and Institute for Information Transmission Problems RAS,
Bolshoy Karetny per. 19, Moscow, 127994, Russia

A. E. M ERZON§

Instituto de F́ısica y Mateḿaticas,
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Abstract

We consider nonlinear relativistic wave equations in one space dimension and prove the spreading rate estimates for
a general class of potentials. Such estimates play an important role in studying the asymptotic stability of solitons.
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1 Introduction

Since pioneering works of Buslaev and Perelman [1] the questions of the stability of solitons for nonlinear Schrödinger
equations attracts a broad attention. However, an extension to relativistic wave equations remained an open question
until 2011 when the problem was solved in [5, 6] for the kink solutions of relativistic Ginzburg-Landau equations. Next
step would be the study of soliton solutions for the relativistic wave equations. Here we obtain some useful estimates
similar to those used in [1, 2] and [5, 6]. We prove the estimates for a new class of relativistic nonlinear wave equations
with potentials different from those in [5, 6].

We consider the nonlinear wave equations

ψ̈(x, t) = ψ′′(x, t)+F(ψ(x, t)), x∈ R, (1.1)

whereψ(x, t) is a complex-valued solution. We identify a complex numberψ = ψ1+ iψ2 with the real two-dimensional
vectorψ = (ψ1,ψ2) ∈ R2 and assume that theR2- versionF of the forceF admits a real-valued potential,

F(ψ) = −∇U(ψ), ψ ∈ R2, U ∈C∞(R2). (1.2)

Then (1.1) is formally a Hamilton system with Hamilton functional

H (ψ,π) =
∫ [ |π(x)|2

2
+

|ψ′(x)|2

2
+U(ψ(x))

]
dx, (1.3)

whereπ is the momentum canonically conjugate toψ. The functional is conserved for sufficiently regular finite energy
solutions.

We assume thatU(ψ) = u(|ψ|2). Then by (1.2),

F(ψ) = a(|ψ|2)ψ, ψ ∈ C, a∈C∞(R), (1.4)

wherea(|ψ|2) is real. Therefore,F(eiθψ) = eiθF(ψ), θ ∈ [0,2π] andF(0) = 0. The symmetry implies that ifψ(x, t) is
a solution to (1.1) theneiθψ(x, t) is also a solution. Hence the equation isU(1)-invariant in the sense of [3].

We are interested in the solitary wave solutions of the form

ψ(x, t) = ei(ωt+θ)ϕω(x), θ ∈ [0,2π],

whereϕω is the positive solution of the equation

ϕ′′
ω(x)+ω2ϕω(x)−U ′(ϕω(x)) = 0. (1.5)

We formulate our basic conditions on the potentialU(ψ) = u(|ψ|2) (see Figure 1):

Condition U1. u(s) is a real smooth function and the following conditions hold with some m> 0

u(0) = 0, u′(0) = m2/2. (1.6)

Condition U2. There exists a numberα > 0 such that

u(s) ≥ αs, s≥ 0. (1.7)

Further assumption is made in terms of

Uω(ϕ) = −
ω2

2
ϕ2 +U(ϕ), ϕ ∈ R. (1.8)
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Condition U3. For some|ω0| < m and for allω from an interval[ω0 − δ,ω0 + δ] with δ < m− |ω0|, the mapping
ϕ →Uω(ϕ) has a positive root and the smallest positive rootϕ0 is simple, i.e. U′ω(ϕ0) 6= 0.

Under these assumptions there exists a unique, positive even solutionϕω(x) of the equation

ϕ′′
ω −U ′

ω(ϕω) = 0 (1.9)

decreasing likeC(ω)e−
√

m2−ω2|x| asx→±∞.

0 ϕ

U( )ϕ

ω
2

ϕ
2

2

Figure 1. PotentialU

Let us illustrate the existence of the soliton solution graphically (see Figure 2).
Multiplying (1.9) byϕ′

ω(x) and taking a primitive of the result, we obtain

(ϕ′
ω(x))2/2−Uω(ϕω(x)) = C, (1.10)

whereC∈ R is a constant. It is easy to see thatC = 0 gives the soliton solution under the conditionsU1 - U3.
Soliton-like solutions are of special importance not only because they are simple and sometimes explicit solutions

of evolution equations, but also because of the distinguished role they appear to play in the long time asymptotics of the
solution of initial value problem. Numerical experiments [4] have shown that solutions, in general, eventually resolved
themselves into an approximate superposition of weakly interacting solitary waves and decaying dispersive waves.

We split the solution to (1.1) as

(ψ(x, t),π(x, t)) = eiγ(t)[φω(t)(x)+(Ψ(x, t),Π(x, t))],

where
φω(x) = (ϕω(x), iωϕω(x)).
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Figure 2. Phase diagram of the soliton

Our main result is the bound
∫

(1+ |x|)2σ
[
|Ψ(x, t)|2 + |Ψ′(x, t)|2 + |Π(x, t)|2

]
dx≤C(1+ t)2σ+1, t > 0 (1.11)

for any 0< σ ≤ σ0, where the constantsC andσ0 depend on the initial conditions. This bound characterizes the rate
of spreading of the initial wave packet. Similar bounds play an important role in the study of asymptotic stability of
soliton solutions in [1, 2] and kink solutions in [5, 6].

2 Existence of Dynamics

In the vector form, equation (1.1) reads





ψ̇(x, t) = π(x, t),

π̇(x, t) = ψ′′(x, t)+F(ψ(x, t)),
(2.1)

wherex, t ∈ R. We consider the Cauchy problem for the Hamilton system (2.1) which we write as

Ẏ(t) = F (Y(t)), t ∈ R : Y(0) = Y0. (2.2)

HereY(t) = (ψ(t),π(t)), Y0 = (ψ0,π0), and all derivatives are understood in the sense of distributions. Now the soliton
solutions become

Yω,θ(t) = ei(ωt+θ)φω(x), |ω−ω0| ≤ δ, θ ∈ [0,2π]. (2.3)

The statesSω,θ := Yω,θ(0) form the solitary manifold

S := {Sω,θ : |ω−ω0| ≤ δ, θ ∈ [0,2π]}. (2.4)



On the spreading rate of the soliton perturbation for relativistic nonlinear wave equations 99

To formulate our results precisely, let us introduce a suitable phase space for the Cauchy problem (2.2). Fors,σ∈R,
let us denote byHs

σ = Hs
σ(R) the weighted Sobolev spaces with the finite norms

‖ψ‖Hs
σ = ‖〈x〉σ〈∇〉sψ‖L2 < ∞, 〈x〉 = (1+ |x|2)1/2.

DenoteL2
α := H0

α.

Definition 2.1. Eα := H1
α ⊕L2

α is the space of the statesY = (ψ,π) with finite norm

‖Y‖Eα = ‖ψ‖H1
α
+‖π‖L2

α
< ∞. (2.5)

DenoteE = E0. Obviously, the Hamilton functional (1.3) is continuous on the phase spaceE. The existence and
uniqueness of the solutions to the Cauchy problem (2.2) follows by methods [7, 8, 9]:

Proposition 2.2. i) For any initial data Y0 ∈ E there exists the unique solution Y(t) ∈C(R,E) to the problem (2.2).
(ii) For every t∈ R, the map U(t) : Y0 7→Y(t) is continuous in E.
(iii) The energy is conserved, i.e.

H (Y(t)) = H (Y0), t ∈ R. (2.6)

3 Main Results

Definition 3.1. A soliton state isS(ω,γ) := eiγ(ϕω(x), iωϕω(x)), whereγ ∈ R and|ω−ω0| ≤ δ.

Obviously, the soliton solution (2.3) admits the representationS(ω(t),γ(t)), where

γ(t) = ωt +θ, ω(t) = ω. (3.1)

Let us consider a solution to (2.1) with initial data

Y0 = Sω0,θ0 +X0, (3.2)

whereX0 ∈ Eσ0 with someσ0 > 0:
‖X0‖Eσ0

= d0 < ∞. (3.3)

Each solutionY(t) ∈C(R,E) can be splitted as the sum

Y(t) = S(ω(t),γ(t))+X(t) (3.4)

whereX(t) ∈ E andω(t) andγ(t) are arbitrary real smooth functions oft such that

|ω(t)−ω0| ≤ δ. (3.5)

In detail, forY = (ψ,π) andX = eiγ(t)(Ψ,Π) representation (3.4) means that





ψ(x, t) = eiγ(t)[ϕω(t)(x)+Ψ(x, t)],

π(x, t) = eiγ(t)[iω(t)ϕω(t)(x)+Π(x, t)].
(3.6)

We now formulate the main result of our paper.

Theorem 3.2. Let the potential U satisfy conditionsU1 - U3, and let Y(t) = (ψ(t),π(t)) be the solution to(2.2) with
initial data Y0 satisfying(3.2)–(3.3). Let condition(3.5) holds for splitting(3.6). Then the following bounds hold (cf.
(1.11))

‖X(t)‖E ≤C(δ), t > 0, (3.7)

‖X(t)‖Eσ ≤C(δ)(1+ t)σ+1/2, t > 0, 0 < σ ≤ σ0. (3.8)
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4 Energy Propagation

We will deduce the theorem from the following two lemmas. Denote

e(x, t) =
|π(x, t)|2

2
+

|ψ′(x, t)|2

2
+U(ψ(x, t)).

Lemma 4.1. For the solutionψ(x, t) to equation(1.1) the local energy estimate holds

a2∫

a1

e(x, t) dx≤

a2+t∫

a1−t

e(x,0) dx, a1 < a2, t > 0. (4.1)

Proof. We identify a complex numberψ = ψ1 + iψ2 with the real two-dimensional vectorψ = (ψ1,ψ2) ∈ R2 and
consider a vector version of equation (1.1). DenoteA = (a1− t,0), B = (a1, t), C = (a2, t), D = (a2 + t,0). Taking the
scalar product of the vector version of (1.1) and vectorψ̇ and integrating over the trapeziumABCDwe get:

∫

ABCD

[ d
dt

|ψ̇|2

2
−ψ′′ ∙ ψ̇+

d
dt

U(ψ)
]
dxdt= 0.

Using the identity−ψ′′ ∙ ψ̇ = −(ψ′ ∙ ψ̇)′ +
d
dt

|ψ′|2

2
, and applying Green’s theorem, we obtain

t

xa a21

t

0 A

B C

D

Figure 3. Trapezium ABCD

∫

BC

[ |ψ̇|2

2
+

|ψ′|2

2
+U(ψ)

]
dx −

∫

AD

[ |ψ̇|2

2
+

|ψ′|2

2
+U(ψ)

]
dx

+
∫

AB∪CD

[ |ψ̇|2

2
+

|ψ′|2

2
+U(ψ)

]
dx +

∫

AB∪CD

ψ′ ∙ ψ̇dt = 0,

which implies (4.1) since|ψ′ ∙ ψ̇| ≤
1
2
(|ψ̇|2 + |ψ′|2) andU(ψ) ≥ 0.
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Lemma 4.2. For anyν > 0,
∫

(1+ |x|)νe(x, t)dx≤C(ν)(1+ t)ν+1
∫

(1+ |x|)νe(x,0)dx. (4.2)

Proof. By (4.1),
∫

(1+ |y|)ν
( y∫

y−1

e(x, t)dx
)

dy≤
∫

(1+ |y|)ν
( y+t∫

y−1−t

e(x,0)dx
)

dy.

Hence,
∫

e(x, t)
( x+1∫

x

(1+ |y|)νdy
)

dx≤
∫

e(x,0)
( x+1+t∫

x−t

(1+ |y|)νdy
)

dx. (4.3)

Applying the mean value theorem, we obtain

x+1∫

x

(1+ |y|)νdy≥ c(ν)(1+ |x|)ν (4.4)

with somec(ν) > 0. On the other hand, forν > 0

x+1+t∫

x−t

(1+ |y|)νdy≤ (2t +1)(1+ t + |x|)ν ≤C(1+ t)ν+1(1+ |x|)ν (4.5)

since
(1+ t + |x|)ν ≤ (1+ t)ν(1+ |x|)ν.

Finally, (4.3) - (4.5) imply (4.2).

5 Spreading Rate

Here we prove Theorem 3.2.
Step i)First, we verify that

U0 =
∫

(1+ |x|)2σU(ψ0(x))dx< C(σ), ψ0(x) = ψ(x,0), 0≤ σ ≤ σ0. (5.1)

Indeed,ψ0(x) = eiθ0[ϕω0(x)+Ψ0(x)] ∈ H1(R) ⊂Cb(R) by (3.2) - (3.3). Hence

sup
x∈R

|ψ0(x)| ≤ K0 < ∞,

and (1.6) implies that

|U(ψ0(x))| = |u(|ψ0(x)|
2)| ≤C(K0)|ϕω0(x)+Ψ0(x)|

2 ≤C1(K0)
(
|ϕω0(x)|

2 + |Ψ0(x)|
2
)
.

Then (5.1) follows by (3.3).

Step ii)Bound (3.7) follows now from energy conservation (2.6) and splitting (3.6) since

α|ψ(x, t)|2 ≤U(ψ(x, t)) ≤ e(x, t) (5.2)
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by conditionU2.

Step iii)Let us prove bound (3.8). First, (3.6), (4.2) and (5.1) imply

‖Ψ′(t)‖2
L2

σ
+‖Π(t)‖2

L2
σ

≤ 4
∫

(1+ |x|)2σe(x, t)dx+2‖ϕ′
ω(t)‖

2
L2

σ
+C(δ)‖ϕω(t)‖

2
L2

σ

≤ C(1+ t)2σ+1
∫

(1+ |x|)2σe(x,0)dx+C1(δ)

≤ C2(δ,K0)(1+ t)2σ+1.

Similarly, (3.6), (4.2), (5.1) and (5.2) imply

‖Ψ(t)‖2
L2

σ
≤ 2

∫
(1+ |x|)2σ|ψ(x, t)|2dx+2‖ϕω(t)‖

2
L2

σ

≤
2
α

∫
(1+ |x|)2σe(x, t)dx+2‖ϕω(t)‖

2
L2

σ
≤C(δ,K0)(1+ t)2σ+1.

Hence, bound (3.8) follows. Theorem 3.2 is proved.
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