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Abstract

We consider nonlinear relativistic wave equations in one space dimension and prove the spreading rate estimates for
a general class of potentials. Such estimates play an important role in studying the asymptotic stability of solitons.
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1 Introduction

Since pioneering works of Buslaev and Perelman [1] the questions of the stability of solitons for nonlin@alirgr
equations attracts a broad attention. However, an extension to relativistic wave equations remained an open questi
until 2011 when the problem was solved in [5, 6] for the kink solutions of relativistic Ginzburg-Landau equations. Next
step would be the study of soliton solutions for the relativistic wave equations. Here we obtain some useful estimate
similar to those used in [1, 2] and [5, 6]. We prove the estimates for a new class of relativistic nonlinear wave equation:
with potentials different from those in [5, 6].

We consider the nonlinear wave equations

Pt =0 () +FW(xt), XxeR, (1.1)

where(x,t) is a complex-valued solution. We identify a complex numbes Y1 + iy, with the real two-dimensional
vectory = (Y1, ) € R? and assume that the?- versionF of the forceF admits a real-valued potential,

F(W)=-0U(w), weR? UeC(R?. (1.2)

Then (1.1) is formally a Hamilton system with Hamilton functional

2 ! 2
(g = [ [R5 WOy (g (L.3)

wherettis the momentum canonically conjugatealioThe functional is conserved for sufficiently regular finite energy
solutions.
We assume thad () = u(||?). Then by (1.2),

Fp)=a(yP)y, weC, acC(R), (1.4)

wherea(||?) is real. Thereforef (€°) = €°F (), 6 € [0,2m] andF(0) = 0. The symmetry implies that i(x,t) is
a solution to (1.1) thed®y(x,t) is also a solution. Hence the equatiotJi€l)-invariant in the sense of [3].
We are interested in the solitary wave solutions of the form

W(x,t) =@ ¢, (x), 8¢ ]0,2m,
whered, is the positive solution of the equation
w(X) + (*)2¢w(x) —U’(¢0(x)) = 0. (1.5)

We formulate our basic conditions on the poteritlély) = u(||?) (see Figure 1):

Condition U1. u(s) is a real smooth function and the following conditions hold with some@®n

u(0)=0, U (0)=n?/2. (1.6)
Condition U2. There exists a number > 0 such that
u(s) >as, s>0. @.7)
Further assumption is made in terms of
Ual) = 242 10(0), e (1.8)
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Condition U3. For some|uy| < m and for allw from an interval{wy — 6, uX + 8] with & < m— |wy|, the mapping
® — Uy(9) has a positive root and the smallest positive rpgis simple, i.e. (¢o) #O.
Under these assumptions there exists a unique, positive even sdiytionof the equation

60— Ug(Pe) =0 (1.9)

decreasing lik&€(w)e V™~ @X asx — +oo.

Figure 1. Potentidl

Let us illustrate the existence of the soliton solution graphically (see Figure 2).
Multiplying (1.9) by ¢;,(x) and taking a primitive of the result, we obtain

(94,(x))%/2 = Ug(d(X)) = C, (1.10)

whereC € R is a constant. It is easy to see tkat O gives the soliton solution under the conditidss - U3.

Soliton-like solutions are of special importance not only because they are simple and sometimes explicit solution:
of evolution equations, but also because of the distinguished role they appear to play in the long time asymptotics of th
solution of initial value problem. Numerical experiments [4] have shown that solutions, in general, eventually resolved
themselves into an approximate superposition of weakly interacting solitary waves and decaying dispersive waves.

We split the solution to (1.1) as

(lIJ(Xat)vn(Xat)) = eiy(t) [(pw(t) (X) + (LP(th)v r (th))]v

where

P(X) = (9o (X),10he(X))-
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¢
Figure 2. Phase diagram of the soliton
Our main result is the bound
/(1+ yxy)20[|w(x,t)\2+ W (x,1)[7+ N (x,1)]?|dx < C(1+1)**, t>0 (1.11)

for any 0< o < gp, where the constants andagp depend on the initial conditions. This bound characterizes the rate
of spreading of the initial wave packet. Similar bounds play an important role in the study of asymptotic stability of
soliton solutions in [1, 2] and kink solutions in [5, 6].

2 Existence of Dynamics

In the vector form, equation (1.1) reads

B(xt) =T(xt),
_ (2.1)
T(x,t) = @' (x,t) + F(W(x1)),
wherex;t € R. We consider the Cauchy problem for the Hamilton system (2.1) which we write as
Y(t)=F(Y(t), teR: Y(0) =Y. (2.2)

HereY (t) = (Y(t),1(t)), Yo = (Wo, Th), and all derivatives are understood in the sense of distributions. Now the soliton
solutions become '
Yoo(t) = € ¥q,(x), [0—wp| <8, 8¢ 0,2r. (2.3)

The states,, 6 := Yu,0(0) form the solitary manifold

S:={Spe: |w—wp| <3, 6¢€][0,2m}. (2.4)
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To formulate our results precisely, let us introduce a suitable phase space for the Cauchy problem (2 @x Ror
let us denote b5 = H3(RR) the weighted Sobolev spaces with the finite norms

IWllks = 100° (D) Wllz <0, () = (1+ X2
Denotel? := HQ.
Definition 2.1. E4 := HY @ L3 is the space of the stat¥s= (s, M) with finite norm
[Y]lee = [Wllnz + lITlz < co. (2.5)

DenoteE = Ep. Obviously, the Hamilton functional (1.3) is continuous on the phase dpadde existence and
uniqueness of the solutions to the Cauchy problem (2.2) follows by methods [7, 8, 9]:

Proposition 2.2. i) For any initial data ¥ € E there exists the unique solutioritY € C(R, E) to the problem (2.2).
(i) For every te R, the map Ut) : Yo — Y(t) is continuous in E.
(iii) The energy is conserved, i.e.

HY (1) =H(Y), teR. (2.6)

3 Main Results

Definition 3.1. A soliton state isS(w,y) := €Y(de(X),iwde(X)), Wherey € R and|w— wyo| < 8.
Obviously, the soliton solution (2.3) admits the representa®on(t), y(t)), where
yit) =wt+06, wt)=uow (3.1)

Let us consider a solution to (2.1) with initial data

Yo = Sp,680 + X0, (3.2)
whereXg € Eg, with somegg > O:
[Xolleg, = do < . (3.3)
Each solutiorY (t) € C(R,E) can be splitted as the sum
Y(t) = Sot), y(t)) + X(t) (34)

whereX(t) € E andw(t) andy(t) are arbitrary real smooth functionstofuch that
j(t) — x| < 8. (3.5)

In detail, forY = (@, ) andX = &YV (W, M) representation (3.4) means that

P(x,t) = €9 [ () + WX 1)), 6
Ti(x,t) = &YW [ie(t) dey) () + M (%, 1)].
We now formulate the main result of our paper.

Theorem 3.2. Let the potential U satisfy conditiori$l - U3, and let Y(t) = ((t), 11(t)) be the solution t¢2.2) with
initial data Y satisfying(3.2)+3.3). Let condition(3.5) holds for splitting(3.6). Then the following bounds hold (cf.
(1.11))

IX(t)|e <C(3), t>0, (3.7)

IX(t)][e, <CE)(A+1)°"?, t>0, 0<a<ap (3.8)
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4 Energy Propagation
We will deduce the theorem from the following two lemmas. Denote

2 / 2
e t) = TSV WO G ey,

Lemma 4.1. For the solutiony(x,t) to equation(1.1)the local energy estimate holds

ap ap+t
/e(x,t) dx < /e(x,O) dx, ar<ap, t>0. (4.2)
a1 a;—t

Proof. We identify a complex numbep = Yy + iy, with the real two-dimensional vectay = ({1, I2) € R? and
consider a vector version of equation (1.1). Derdte (a3 —t,0), B= (as,t), C = (ap,t), D = (a +t,0). Taking the
scalar product of the vector version of (1.1) and vedt@nd integrating over the trapeziudBCDwe get:
112
/ [EM —w”-¢+%u<w) dxdt=0.

dt 2
ABCD

/12
Using the identity-y” - ¢ = — (¢ - Q)" + % NJ2’ , and applying Green’s theorem, we obtain

a, a, D X

Figure 3. Trapezium ABCD

+UW)]dx + / W Qdt =0,
ABUCD ABUCD

which implies (4.1) sincéy’ - | < %(|l]J|2+ \W'[%) andU (g) > 0. O
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Lemma 4.2. For anyv > 0O,

/ (1+ X)) e(x,t)dx < C(v)(1+1)"*1 / (1+ |x))’e(x, 0)dx 4.2)

Proof. By (4.1),
y+t

/1+Iy\ /yext dx dy</(1+|y|)"( / e(x,0)dx) dy.
1

y— y—1-t
Hence,
x+1 X414+t
Jeoxt)( [ ariyyay)axs [exo)( [ @+lyay)dx (4.3)
X X—t
Applying the mean value theorem, we obtain
x+1
[ @ yhrdy= e+ x)” (4.4

X
with somec(v) > 0. On the other hand, far> 0

X+1+t

[ @iy @+t < Ca+n LX) (45)
X—t
since
(T+t+x)” < (1+1)"(1+]x))".
Finally, (4.3) - (4.5) imply (4.2). O

5 Spreading Rate

Here we prove Theorem 3.2.
Step i)First, we verify that

Uo = [ (L+x)*U ($o(x))dx < C(0).  $o(x) = $(x.0), 0<0 < am (5.1)

Indeed,Po(X) = €% [y, (X) + Wo(X)] € HL(R) C Co(R) by (3.2) - (3.3). Hence

sup|Wo(x)| < Ko < o,
xeR

and (1.6) implies that

U (Wo())| = u(%o(x)/?)| < C(Ko)lpan () + Wo()I? < Ca(Ko) (|an (W[ + [W(x) ) .

Then (5.1) follows by (3.3).

Step ii)Bound (3.7) follows now from energy conservation (2.6) and splitting (3.6) since

alw(x,t)> <U(W(xt)) < e(xt) (5.2)

101
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by conditionU2.
Step iii) Let us prove bound (3.8). First, (3.6), (4.2) and (5.1) imply

WO+ INOIZ < 4 [ @+ ))Pextdxe 2100 17 +CO)low I

IN

C(14+1)20%1 / (1+ |X|)e(x, 0)dx+Cx(3)
< Co(d,Ko)(1+1)%0+L,

Similarly, (3.6), (4.2), (5.1) and (5.2) imply
IWOIZ, < 2 [ (1 k)2Iw0et) Pax+ 2o I

2
= [ @+ 1X)%ex )dx+ 2o I < O3 Ko) (1+0%7L

IN

Hence, bound (3.8) follows. Theorem 3.2 is proved.
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