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Abstract

Almost periodic functions with values in Banach spaces, and even more generally in
Fréchet spaces and p-Fréchet spaces, have been investigated by many authors. The
purpose of this paper is to investigate the extent to which some results of these authors
also hold in the setting of topological vector spaces, not necessarily locally convex or
p-locally convex. In fact, most of our results (Theorems 3.3, 3.5–3.8) do not require
even completeness or metrizability of the range space. We thus extend and unify
several known results.
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1 Introduction

The theory of almost periodic functions was mainly created and published during 1924-
1926 by the Danish mathematician Harold Bohr; Bohr’s work was preceded by the im-
portant investigations of P. Bohl and E. Esclangon (see references in [4, 8]). The theory
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attracted the interest of a number of researchers because it has been effectively applied to
solutions of diverse problems, initially in the theory of harmonic analysis and differential
equations. In 1933, S. Bochner [2] published an important article devoted to extension of
the theory of almost periodic functions on the real line R with values in a Banach space
E. His results were further developed by several mathematicians (see the monographs by
L. Amerio and G. Prouse [1], C. Corduneanu [4], B.M. Levitan and V.V. Zhikov [8], and
S. Zaidman [15]). The theory of almost periodic functions taking values in a complete
metrizable locally convex space E has been initiated by G.M. N’Guérékata [9] and further
developed in [3, 5, 10, 11]. A survey paper by A. I. Shtern [14] also considers almost
periodic functions and representations in locally convex spaces.

In this paper, we have considered the concept of almost periodicity of functions hav-
ing values in a topological vector space E, not necessarily locally convex. We are mainly
concerned with studying the topological properties of almost periodic functions and demon-
strate the validity of several known results, including some from [3, 5, 9, 10], to this general
setting.

2 Preliminaries

Definition 2.1. Let (E, τ) be a Hausdorff topological vector space (in short, TVS) over the
field K (= R or C) with a baseW =WE of balanced neighbourhoods of 0. A subset A of E
is called:

(1) totally bounded if, for each W ∈W, there exists a finite set {x1, x2, ...., xn} ⊆ A such
that

A ⊆ ∪n
i=1(xi+W);

(2) sequentially complete if every Cauchy sequence in A converges to a point in A;
(3) sequentially compact if every sequence in A has a convergent subsequence with limit

in A.

Remark 2.2. [6, 13] Clearly, A is compact⇒ A is relatively compct⇒ A is totally bounded
⇒ A is bounded; also, A is complete⇒ A is sequentially complete. Further:

(a) A subset A of a TVS E is compact iff it is totally bounded and complete.
(b) If E is complete, then every totally bounded subset of E is relatively compact.
(c) If E is metrizable, then a subset A of E is:
(i) compact iff it is sequentially compact,
(ii) complete iff it is sequentially complete.

Definition 2.3. A complete metrizable TVS is called an F-space. A locally convex F-space
is called a Fréchet space.

Definition 2.4. ([6, 7]). For any Hausdorff topological space X, let C(X,E) (resp. Cb(X,E))
be the set of all continuous (resp. continuous and bounded) functions f : X→ E. Clearly,
Cb(X,E) ⊆ C(X,E) and both C(X,E), Cb(X,E) are vector spaces over K with the pointwise
operations of addition and scalar multiplication. The uniform topology u on Cb(X,E) is
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defined as the linear topology which has a base of neighbourhoods of 0 consisting of all
sets of the form

N(X,W) = { f ∈Cb(X,E) : f (X) ⊆W},

where W varies over W. A sequence { fn} ⊆ Cb(X,E) is said to be u-Cauchy if, for any
W ∈W, there exists no ∈ N such that

fn− fm ∈ N(X,W) for all n,m ≥ no.

If E is metrizable with metric d, then (Cb(X,E),u) is also metrizable with respect to the
metric ρ given by:

ρ( f ,g) = sup
x∈X

d( f (x),g(x)), f ,g ∈Cb(X,E).

The pointwise topology p on C(X,E) is defined as the linear topology which has a base of
neighbourhoods of 0 consisting of all sets of the form

N(D,W) = { f ∈C(X,E) : f (D) ⊆W},

where D varies over finite subsets of X and W varies overW.Clearly, p ≤ u on Cb(X,E).

We state the following known result for reference purpose.

Theorem 2.5. ([6], p. 71-73) Let X be a Hausdorff topological space and E a Hausdorff
TVS.

(a) If a sequence { fn} ⊆ Cb(X,E) is u-convergent to a function f : X → E, then f ∈
Cb(X,E).

(b) If { fn} is a u-Cauchy sequence in Cb(X,E) and if there is a function f : X→ E such
that fn(x)→ f (x) for each x ∈ X, then fn

u
−→ f and f ∈Cb(X,E).

(c) If E is an F-space, then so is (Cb(X,E),u).

3 Main Results

In this section, we consider the concept of almost periodicity in the non-locally convex
setting. In fact, we demonstrate the validity of several known results, including some from
[9, 3, 5] to this general setting. We include complete proofs of results for the benefit of
readers and further investigations.

Definition 3.1. A subset P of R is called relatively dense in R if there exists a number ` > 0
such that every interval of length ` in R contains at least one point of P.

Definition 3.2. Let (E, τ) be TVS with a base W =WE of balanced neighbourhoods of
0. A function f : R→ E is called almost periodic if it is continuous and, for each W ∈W,
there exists a number `W > 0 such that each interval of length `W in R contains a point τW
such that

f (t+τW)− f (t) ∈W for all t ∈ R. (∗)

A number τW ∈ R for which (∗) holds is called W-translation number of f . The above
property says that, for each W ∈W, the function f has a set of W-translation numbers PW, f
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which is relatively dense in R. The set of all almost periodic functions f : R→ E is denoted
by AP(R,E). For any f : R→ E and a fixed h ∈ R, the h-translate of f is defined as the
function fh : R→ E defined by

fh(t) = f (t+h), t ∈ R.

We shall denote H( f ) = { fh : h ∈ R}, the set of all translates of f .

Theorem 3.3. Let E be a TVS. Let f ∈ AP(R,E). Then:

(a) f has totally bounded range f (R); hence f is bounded.
(b) f is uniformly continuous on R.

Proof. (a) Let W ∈W. Choose a balanced V ∈W such that V +V ⊆W. Since f is almost
periodic, there exists a number ` = `V > 0 such that each interval of length ` in R contains a
point τV such that

f (t+τV )− f (t) ∈ V for all t ∈ R. (1)

By continuity of f , the set f [0, `] is compact in E and hence totally bounded. So there exists
a finite set {x1, ..., xn} ⊆ f [0, `] such that

f [0, `] ⊆ ∪n
i=1(xi+V). (2)

We claim that f (R) ⊆ ∪n
i=1(xi+W). [Take an arbitrary t ∈ R. By (1), there exists τ ∈ [−t,−t+

`] such that f (t+τ)− f (t) ∈ V. By (2), choose xk ∈ {x1, ..., xn} such that f (t+τ)− xk ∈ V. Then

f (t)− xk = [ f (t)− f (t+τ)]+ [ f (t+τ)− xk] ∈ −V +V ⊆W,

and therefore f (t) ∈ xk +W.] Thus f (R) is totally bounded in E.
(b) Let W ∈ W. Choose a balanced V ∈ W such that V +V +V ⊆ W. There exists a

number ` = `V > 0 such that each interval of length ` in R contains a point τV such that

f (t+τV )− f (t) ∈ V for all t ∈ R. (3)

Now f , being almost periodic, is continuous on R. Then f is uniformly continuous on the
compact set [−1,1+ `V ], so there exists δ = δV > 0 (we may assume 0 < δ < 1 without loss
of generality) such that

f (s)− f (t) ∈ V for all s, t ∈ [−1,1+ `V ] with |s− t| < δ. (4)

Let a,b ∈ R with |a− b| < δ and assume a < b. We claim that f (a)− f (b) ∈ W. [We may
assume that a < b. Choose a τV ∈ [−a,−a+ `V ] satisfying (3). Then

a+τV ∈ a+ [−a,−a+ `V ] = [0,0+ `V ] ⊆ [−1,1+ `V ];

since 0 < b−a < δ < 1,

b+τV ∈ b+ [−a,−a+ `V ] = [b−a,b−a+ `V ] = [0,1+ `V ] ⊆ [−1,1+ `V ].

Also, |(a+τV )− (b+τV )| = |a−b| < δ, so by (4),

f (a+τV )− f (b+τV ) ∈ V. (5)
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Therefore, by (3) and (5),

f (a)− f (b) = [ f (a)− f (a+τV )]+ [ f (a+τV )− f (b+τV )]

+[ f (b+τV )− f (b)]

∈ −V +V +V ⊆W.]

Thus f is uniformly continuous on R. �

Remark 3.4. Clearly, by Theorem 3.3(a), AP(R,E) ⊆Cb(R,E).

Theorem 3.5. Let E be a TVS. If { fn} is a sequence in AP(R,E) such that fn
u
−→ f , then

f ∈ AP(R,E).

Proof. Clearly, by Theorem 2.5, f is continuous on R. Let W ∈ W. Choose a balanced
V ∈W such that V +V +V ⊆W. Since fn

u
−→ f , there exists an integer N ≥ 1 such that

fn(t)− f (t) ∈ V for all t ∈ R and n ≥ N. (6)

Since fN is almost periodic, there exists a number ` = `V > 0 such that each interval of
length ` in R contains a point τ = τV such that

fN(t+τ)− fN(t) ∈ V for all t ∈ R. (7)

Then, by (6) and (7), for any t ∈ R

f (t+τ)− f (t) = [ f (t+τ)− fN(t+τ)]+ [ fN(t+τ)− fN(t)]+ [ fN(t)− f (t)]

∈ −V +V +V ⊆W.

Since the set PV, fN of almost periods of fN is relatively dense, we take PV, f = PV, fN . Hence
f is also almost periodic. �

Theorem 3.6. Let E be a TVS. If f : R→ E is almost periodic, then the functions (i) λ f
(λ ∈ K), (ii) f (t) ≡ f (−t) and (iii) fh(t) = f (t+h) (h ∈ R) are also almost periodic.

Proof. (i) This is trivial if λ = 0. Suppose λ , 0. Let W ∈W be balanced. Then V = λ−1W ∈
W. Since f is almost periodic, there exists a number ` = `V > 0 such that each interval of
length ` in R contains a point τV such that

f (t+τV )− f (t) ∈ V for all t ∈ R.

Then
(λ f )(t+τV )− (λ f )(t) = λ[ f (t+τV )− f (t)] ∈ λV =W for all t ∈ R.

Hence λ f is almost periodic.
(ii) Let W ∈W be balanced. There exists a number ` = `W > 0 such that each interval

of length ` in R contains a point τ such that

f (t+τ)− f (t) ∈W for all t ∈ R.
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Put s = −t; we get:

f (s−τ)− f (s) = f (−s+τ)− f (−s) = f (t+τ)− f (t) ∈W.

Therefore f (s−τ)− f (s) ∈W for every s ∈ R. This shows that f is almost periodic with −τ
as a W-translation number.

(iii) Let W ∈W be balanced, and let h ∈ R. There exists a number ` = `W > 0 such that
each interval of length ` in R contains a point τ such that

f (t+τ)− f (t) ∈W for all t ∈ R.

Replacing t by t+h, we have

f (t+h+τ)− f (t+h) ∈W for all t ∈ R,

or
fh(t+τ)− fh(t) ∈W for all t ∈ R.

�

Theorem 3.7. Let E and F be a TVSs, and let f ∈ AP(R,E). If g : f (R)→F is any continuous
function, then the composed function g◦ f ∈ AP(R,F).

Proof. Let U ∈WF be balanced. Since f (R) is compact, g is uniformly continuous on f (R)
and so there exists a W ∈WE such that

g(x)−g(y) ∈ U for all x,y ∈ f (R) with x− y ∈W.

Since f is almost periodic, there exists a number ` = `W > 0 such that each interval of length
` in R contains a point τ such that

f (t+τ)− f (t) ∈W for all t ∈ R.

Consequently,
g[ f (t+τ)]−g[ f (t)] ∈ U for all t ∈ R.

Thus g◦ f ∈ AP(R,F). �

We now proceed to establish the Bochner’s criteria for almost periodicity. As a first
step, we obtain:

Theorem 3.8. Let E be a TVS and f : R→ E a continuous function. If the set of translates
H( f ) = { fh : h ∈ R} is u-sequentially compact in Cb(R,E), then f is almost periodic.

Proof. Suppose f is not almost periodic Then there exists a W ∈ W such that for every
` > 0, there exists an interval of length `, [−a,−a+`] (say) which contains no W-translation
number of f . Consequently, for every h ∈ [−a,−a+ `], there exists th ∈ R such that

f (th+h)− f (th) <W.
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Let us consider h1 ∈ R and an interval (a1,b1) with b1 − a1 > 2 |h1| which contains no W-
translation number of f . Now let h2 =

a1+b1
2 . Since

−
b1−a1

2
< h1 <

b1−a1

2
,

h2 −h1 ∈ (a1,b1) and therefore h2 −h1 cannot be a W-translation number of f . Let us con-
sider another interval (a2,b2) with b2 − a2 > 2(|h1|+ |h2|), which contains no W-translation
number of f . Let h3 =

a2+b2
2 ; then h3−h1, h3−h2 ∈ (a2,b2) and therefore h3−h1and h3−h2

cannot be W-translation number of f . We proceed and get a sequence {hn} such that no
hm−hn (m > n) is a W-translation number of f ; that is, there exists tmn ∈ R with

f (tmn+hm−hn)− f (tmn) <W. (8)

Put smn = tmn−hn. Then (8) becomes:

f (smn+hm)− f (smn+hn) <W. (9)

Since H( f ) is sequentially compact in Cb(R,E), there exists a subsequence {kn} of {hn} such
that { f {t+ kn)} is u-convergent on R. Then, for W ∈W, there exists an N = NW ≥ 1 such
that if m, n > N (we may take m > n), we have:

f (t+ km)− f (t+ kn) ∈W for every t ∈ R. (10)

Taking t = smn in (10), we get a contradiction to (9). Thus f is almost periodic. �

As a converse of the above theorem, we obtain:

Theorem 3.9. Let E be an F-space and f : R→ E an almost periodic function. Then the
set of translates H( f ) = { fh : h ∈ R} is u-compact in Cb(R,E).

Proof. Since E is an F-space, by Theorem 2.5, (Cb(R,E),u) is also an F-space. Therefore,
it suffices to show that any sequence { fhn} in H( f ) has a u-Cauchy subsequence.

Let S = {an} be a dense sequence in R. Since f (R) is totally bounded and hence rela-
tively compact in the F-space E, we can extract from { fhn(a1)} a convergent subsequence.
Let { fh1,n} be the subsequence of { fhn} which converges at a1. We apply the same argument
as above to the sequence { fh1,n} to choose a subsequence { fh2,n} which converges at a2. We
continue the process and consider the diagonal sequence { fhn,n} which converges at each an

in S . Call this last sequence by { fkn}. We claim that this sequence is u-Cauchy on R.
Let t0 ∈ R, and let W ∈W. Choose a balanced V ∈W such that V +V +V +V +V ⊂W.

By almost periodicity of f , let ` = `(V) > 0 be such that each interval of length ` in R
contains a point τ = τV such that

f (t+τ)− f (t) ∈ V for all t ∈ R. (11)

By uniform continuity of f over R, there exists δ = δV > 0 such that

f (t)− f (t′) ∈ V for every t, t′ ∈ R with
∣∣∣t− t′

∣∣∣ < δ. (12)
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We divide the interval [0, `] into subintervals I1, ..., Ir, each of length smaller than δ. Since
S is dense in R, for each 1 ≤ j ≤ r, I j contains a point b j of S and set S 0 = {b1, ...,br}. Since
{ fkn} is p-convergent on S , it follows that { fkn} is u-convergent on the finite set S 0. Then
there exists an interger N = NV ≥ 1 such that

f (bi+ kn)− f (bi+ km) ∈ V for every i = 1, ..., J and n,m > N. (13)

Now, choose τ0 ∈ [−t0,−t0 + `] satisfying (11). Then t0 + τ ∈ [0, `], so choose b j ∈ S 0 such
that
∣∣∣t0+τ0−b j

∣∣∣ < δ. So, by (12),

f (t0+τ0+ kn)− f (b j+ kn) ∈ V for every n ≥ 1. (14)

Therefore, if n,m > N, by applying (11), (13), (14) we get

fkn(t0)− fkm(t0) = f (t0+ kn)− f (t0+ km)

= [ f (t0+ kn)− f (t0+ kn+τ0)]

+[ f (t0+ kn+τ0)− f (b j+ kn)]

+[ f (b j+ kn)− f (b j+ km)]

+[ f (b j+ km)− f (t0+τ0+ km)]

+[ f (t0+ km+τ0)− f (t0+ km)]

∈ V +V +V +V +V ⊂W.

Therefore the subsequence { fkn} of { fhn} is u-Cauchy onR. Consequently, { fkn} is u-convergent
on R. �

Combining Theorems 3.8 and 3.9, we have:

Corollary 3.10. (Bochner’s Criterion) Let E be an F-space. Then a continuous function
f :R→ E is almost periodic function iff the set H( f ) = { fh : h ∈R} is u-compact in Cb(R,E).

Theorem 3.11. Let E be an F-space, and let f1, ..., fm ∈ AP(R,E). Define F : R→ Em by

F(t) = ( f1(t), ..., fm(t)), t ∈ R.

Then F ∈ AP(R,Em). In particular, for any W ∈W, f1, ..., fm have common W-translation
numbers.

Proof. Let {hn} be a sequence in R. Consider the sequence { f1,hn} of translates of function
f1 corresponding to {hn}. Since f1 is almost periodic, by using Bochner’s criteria, we can
extract from { f1,hn} a uniformly convergent subsequence, denoting again by { f1,hn}. Con-
tinuing this process, we extract from { fm,hn} a uniformly convergent subsequence, denoted
also by { fm,hn}. Then the sequence {( f1,hn ..., fm,hn)} has a subsequence which is easily seen
to be u-convergent on R. Hence F is almost periodic. Next, for any W ∈W, there exists a
number ` = `W > 0 such that each interval of length ` in R contains a point τW such that

F(t+τW)−F(t) ∈Wm for all t ∈ R.

Consequently,
fi(t+τW)− fi(t) ∈W for all t ∈ R and i = 1, ...,m.

�
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Theorem 3.12. Let E be a F-space, and let f ,g ∈ AP(R,E). Then f +g ∈ AP(R,E).

Proof. In view of the Bochner’s criteria, we need to show that H( f + g) = { fh + gh : h ∈ R}
is u-compact in Cb(R,E). Define F : R→ E2 by

F(t) = ( f (t),g(t)), t ∈ R.

By Theorem 3.11, F ∈ AP(R,E2) and hence, by Bochner’s criteria, H(F) = {( fh,gh) : h ∈ R}
is u-compact in Cb(R,E2). Now define S : Cb(R,E)×Cb(R,E)→Cb(R,E) by

S (u,v) = u+ v, u,v ∈Cb(R,E).

This is a continuous function, hence S (H(F)) = H( f +g)) is u-compact in Cb(R,E). �

We next consider completeness of the space (AP(R,E),u).

Theorem 3.13. Let E be an F-space. Then the vector space AP(R,E) is u-complete.

Proof. By Theorems 3.6 and 3.12, AP(R,E) is a vector space. Further, since each f ∈
AP(R,E) is bounded, AP(R,E) is a vector subspace of Cb(R,E). Since E is complete, by
Theorem 2.5, Cb(R,E) is u-complete. So we need only to see that AP(R,E) is u-closed in
Cb(R,E).

Let f ∈Cb(R,E) with f ∈ u-cl[AP(R,E)]. Then there exists a sequence { fn} ⊆ AP(R,E)
such that fn

u
−→ f . Since each fn is almost periodic and fn

u
−→ f , by Theorem 3.5, f is

almost periodic. Hence f ∈ AP(R,E). Thus AP(R,E) is u-closed in Cb(R,E). �

Remark 3.14. Our results include extensions of following results:

(a) Theorems 1-6 and Corollary 1 of [9], where E is a Fréchet space.
(b) Theorem 3.1 and Propositin 3.3. of [3], where E is again a Fréchet space
(c) Theorems 3.2-3.8 of [5], where E is a p-Fréchet space, 0 < p < 1.
(d) The corresponding results in the monographs [1, 4, 8, 15], where E is a Banach

space.

Remark 3.15. We mention that a continuous functions f : [a;b]→ E need not be integrable
in the Riemann sense, if E is not locally convex ([12], p. 123). However, if E is a lo-
cally pseudoconvex F-space, then all analytic functions f : [a;b]→ E are integrable in the
Bochner-Lebesgue sense ([12], Theorem 3.5.2). Using a similar approach, almost periodic-
ity of functions with values in p-Fréchet spaces, 0 < p < 1, has been considered in [5]. This
paper also contains some applications to differential equations and to dynamical systems.
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