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Abstract

In this work the Hyers–Ulam type stability of the functional equation f (x+ y+ xy) =
f (x)+ f (y+ xy) is proved.
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1 Introduction

The functional equation (ξ) is stable if any function g satisfying the equation (ξ) approxi-
mately is near to true solution of (ξ). The stability of functional equations was first intro-
duced by S. M. Ulam [8] in 1940. More precisely, Ulam proposed the following problem:
Given a group G1, a metric group (G2,d) and a positive number ε, does there exist a δ > 0
such that if a function f : G1 → G2 satisfies the inequality d( f (xy), f (x) f (y)) < δ for all
x,y ∈ G1, then there exists a homomorphism T : G1 → G2 such that d( f (x),T (x)) < ε for
all x ∈ G1? As it is mentioned above, when this problem has a solution, we say that the
homomorphisms from G1 to G2 are stable. In 1941, D. H. Hyers [3] gave a partial solution
of Ulam’s problem for the case of approximate additive mappings under the assumption
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that G1 and G2 are Banach spaces. T. Aoki [1] and Th.M. Rassias [6] provided a general-
ization of the Hyers’ theorem for additive and linear mappings, respectively, by allowing
the Cauchy difference to be unbounded. During the last decades several stability problems
of functional equations have been investigated by several mathematicians. A large list of
references concerning the stability of functional equations can be found in [2, 4, 5, 7].

In this paper, we deal with the functional equation

f (x+ y+ xy) = f (x)+ f (y+ xy). (1.1)

2 Solution of functional equation (1.1)

Theorem 2.1. Let X be a vector space. A function f : R→ X satisfies (1.1) if and only if f
is additive.

Proof. Let f satisfy (1.1) and a,b ∈ R with a , −1. Let x,y ∈ R such that x = a and y = b
1+a .

Since f satisfies (1.1), we get
f (a+b) = f (a)+ f (b) (2.1)

for all a,b ∈ R with a , −1. It is clear that f (0) = 0. Letting a = 1 and b = −1 in (2.1), we
get f (−1) = − f (1). Letting a = 1 in (2.1), we get

f (1+b) = f (1)+ f (b) (2.2)

for all b ∈ R. Replacing b by b− 1 in (2.2), we get f (b) = f (1)+ f (b− 1) for all b ∈ R. So
(2.1) holds for all a,b ∈ R. Therefore f is additive.

Conversely, if f is additive, it is easy to check that f satisfies (1.1). �

3 Hyers–Ulam stability of functional equation (1.1)

In this section, we investigate the Hyers–Ulam stability problem for the functional equation
(1.1). In this section X is a Banach space.

Theorem 3.1. Let ε > 0 be fixed and let f : R→ X be a mapping satisfying

‖ f (x+ y+ xy)− f (x)− f (y+ xy)‖ 6 ε (3.1)

for all x,y ∈ R. Then there exists a unique additive mapping A : R→ X satisfying

‖ f (x)−A(x)‖ 6 3ε (3.2)

for all x,y ∈ R.

Proof. Let a,b ∈ R with a , −1. Setting x = a and y = b
1+a in (3.1), we get

‖ f (a+b)− f (a)− f (b)‖ 6 ε (3.3)

for all a,b ∈ R with a , −1. Putting a = 1 and b = −1 in (3.3), yields

‖ f (0)− f (1)− f (−1)‖ 6 ε. (3.4)



20 A. Najati and Th.M. Rassais

Letting a = 1 in (3.3), we get

‖ f (1+b)− f (1)− f (b)‖ 6 ε (3.5)

for all b ∈ R. Replacing b by b−1 in (3.5) and using (3.4), we get

‖ f (b−1)− f (b)− f (−1)+ f (0)‖ 6 2ε (3.6)

for all b ∈ R. Since ‖ f (0)‖ 6 ε, it follows from (3.3) and (3.6) that

‖ f (a+b)− f (a)− f (b)‖ 6 3ε (3.7)

for all a,b ∈ R. By the Hyers’ theorem the limit A(x) = limn→∞ 2−n f (2nx) exists for each
x ∈ R and A is the unique additive mapping satisfying (3.2). �

Proposition 3.2. Let φ : R→ R be defined by

φ(x) :=
{

x for |x| < 1;
1 for |x| > 1.

Consider the function f : R→ R by the formula

f (x) :=
∞∑

n=0

2−nφ(2nx).

Then f satisfies
| f (x+ y+ xy)− f (x)− f (y+ xy)| 6 12(|x|+ |y|) (3.8)

for all x,y ∈ R, and the range of | f (x)−A(x)|/|x| for x , 0 is unbounded for each additive
mapping A : R→ R.

Proof. It is clear that f is bounded by 2 on R. If |x|+ |y| = 0 or |x|+ |y| > 1
2 , then

| f (x+ y+ xy)− f (x)− f (y+ xy)| 6 6 6 12(|x|+ |y|).

Now suppose that 0 < |x|+ |y| < 1
2 . Then there exists an integer k > 1 such that

1
2k+1 6 |x|+ |y| <

1
2k . (3.9)

Therefore
2m|x+ y+ xy|,2m|x|,2m|y+ xy| < 1

for all m = 0,1, ...,k−1. From the definition of f and (3.9), we have

| f (x+ y+ xy)− f (x)− f (y+ xy)|

6
∞∑

n=k

2−n
[
|φ(2n(x+ y+ xy))|+ |φ(2n(x))|+ |φ(2n(y+ xy))|

]
6

6
2k 6 12(|x|+ |y|).
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Therefore f satisfies (3.8). Let A : R→ R be an additive function such that

| f (x)−A(x)| 6 β|x|

for all x ∈R, where β > 0 is a constant. Then there exists a constant c ∈R such that A(x)= cx
for all rational numbers x. So we have

| f (x)| 6 (β+ |c|)|x| (3.10)

for all rational numbers x. Let m ∈ N with m > β+ |c|. If x is a rational number in (0,21−m),
then 2nx ∈ (0,1) for all n = 0,1, ...,m−1. So

f (x) >
m−1∑
n=0

2−nφ(2nx) = mx > (β+ |c|)x

which contradicts (3.10). �

4 Stability of functional equation (1.1) in topological vector spaces

In this section E is a sequentially complete Hausdorff topological vector space over the field
Q of rational numbers.

Theorem 4.1. Let V be a nonempty bounded convex subset of E containing the origin.
Suppose that f : R→ E satisfies

f (x+ y+ xy)− f (x)− f (y+ xy) ∈ V (4.1)

for all x,y ∈ R. Then there exists a unique additive mapping A : R→ E such that

A(x)− f (x) ∈ 2V −V (4.2)

for all x ∈ R, where 2V −V denotes the sequential closure of 2V −V.

Proof. Using the proof of Theorem 3.1, we get

f (a+b)− f (a)− f (b) ∈ V (4.3)

for all a,b ∈ R with a , −1. Putting a = 1 and b = −1 in (4.3), yields

f (0)− f (1)− f (−1) ∈ V. (4.4)

Letting a = 1 in (4.3), we get

f (1+b)− f (1)− f (b) ∈ V (4.5)

for all b ∈ R. Replacing b by b−1 in (4.5) and using (4.4), we get

f (b−1)− f (b)− f (−1)+ f (0) ∈ V −V (4.6)
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for all b ∈ R. Since − f (0) ∈ V , V is convex and contains the origin, it follows from (4.3)
and (4.6) that

f (a+b)− f (a)− f (b) ∈ 2V −V (4.7)

for all a,b ∈ R. It is easy to prove that

f (2n+1a)
2n+1 −

f (2na)
2n ∈

1
2n+1 W ⊆W, (4.8)

f (2na)
2n − f (a) ∈

n∑
k=1

1
2k W ⊆W (4.9)

for all a ∈ R and all integers n > 1, where W = 2V −V . Since V is a nonempty bounded
convex subset of E containing the origin, W is a nonempty bounded convex subset of E
containing the origin. It follows from (4.8) that

f (2na)
2n −

f (2ma)
2m =

n−1∑
k=m

[ f (2k+1a)
2k+1 −

f (2ka)
2k

]
∈

n−1∑
k=m

1
2k+1 W ⊆

1
2m W (4.10)

for all a ∈ R and all integers n > m > 0. Let U be an arbitrary neighborhood of the origin
in E. Since W is bounded, there exists a rational number t > 0 such that tW ⊆ U. Choose
n0 ∈ N such that 2n0 t > 1. Let a ∈ R and m,n ∈ N with n > m > n0. Then (4.10) implies that

f (2na)
2n −

f (2ma)
2m ∈ U. (4.11)

Thus, the sequence {2−n f (2na)} form a Cauchy sequence in E. By the sequential complete-
ness of E, the limit A(a) = limn→∞ 2−n f (2na) exists for each a ∈ R. So (4.2) follows from
(4.9).

To show that A :R→ E is additive, replace a and b by 2na and 2nb, respectively, in (4.7)
and then divide by 2n to obtain

f (2n(a+b))
2n −

f (2na)
2n −

f (2nb)
2n ∈

1
2n W

for all a ∈ R and all integers n > 0. Since W is bounded, on taking the limit as n→∞, we
get that A is additive.

To prove the uniqueness of A, assume on the contrary that there is another additive
mapping T : R→ E satisfying (4.2) and there is a a ∈ R such that x = T (a)−A(a) , 0. So
there is a neighborhood U of the origin in E such that x < U, since E is Hausdorff. Since A
and T satisfy (4.2), we get T (b)−A(b) ∈W −W for all b ∈ R. Since W is bounded, W −W
is bounded. Hence there exists a positive integer m such that W −W ⊆mU. Therefore mx =
T (ma)−A(ma) ∈ mU which is a contradiction with x < U. This completes the proof. �
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