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Abstract

Some recent Jensen’s type inequalities for log-convex functions of selfadjoint opera-
tors in Hilbert spaces under suitable assumptions for the involved operators are sur-
veyed. Applications in relation with some celebrated results due to Holder-McCarthy
and Ky Fan are provided as well.
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1 Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space (H;<.,.)). The Gelfand map
establishes a x-isometrically isomorphism @ between the set C (S p(A)) of all continuous
functions defined on the spectrum of A, denoted S p (A), and the C*-algebra C* (A) generated
by A and the identity operator 15 on H as follows (see for instance [13, p. 3]):

For any f,g € C(S p(A)) and any «, € C we have

() @(af+Bg)=ad(f)+BD(g):

(i) ®(fg)=D()P(g) and ®(F) = D(f)":

(iii) 119 (A = 11 1= Supyes piay LF O

(iv) @ (fo) =1y and O(f}) = A, where fo(t)=1and f, (1) =t,fort e Sp(A).

With this notation we define

F(A):=D(f) forall feC(Sp(A))
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and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on S p(A), then
f(®) =0 for any ¢ € S p(A) implies that f(A) >0, i.e. f(A) is a positive operator on H.
Moreover, if both f and g are real valued functions on S p (A) then the following important
property holds:

f(t) =g for any r € S p(A) implies that f(A) > g(A) P

in the operator order of B(H).

For a recent monograph devoted to various inequalities for functions of selfadjoint op-
erators, see [13] and the references therein. For other results, see [19], [15], [18] and [16].
For recent results, see [2]-[12].

2 Some Jensen’s Type Inequalities for Log-convex Functions

2.1 Preliminary Results

The following result that provides an operator version for the Jensen inequality for convex
functions is due to Mond and Pecari¢ [17] (see also [13, p. 5]):

Let A be a selfadjoint operator on the Hilbert space H and assume that S p(A) C [m, M]
for some scalars m, M with m < M. If f is a convex function on [m, M], then

J(Ax, x)) <(f(A)x,x) (MP)

for each x € H with |[|x|]| = 1.

Taking into account the above result and its applications for various concrete examples
of convex functions, it is therefore natural to investigate the corresponding results for the
case of log-convex functions, namely functions f : I — (0, c0) for which In f is convex.

We observe that such functions satisfy the elementary inequality

f(A=pa+) <[f@] " [fB)] @2.1)

for any a,b € I and ¢ € [0,1]. Also, due to the fact that the weighted geometric mean is
less than the weighted arithmetic mean, it follows that any log-convex function is a convex
functions. However, obviously, there are functions that are convex but not log-convex.

As an imediate consequence of the Mond-Pecari¢ inequality above we can provide the
following result:

Theorem 2.1 (Dragomir, 2010, [11]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p (A) C [m, M| for some scalars m, M withm < M. If g : [m, M] — (0, co)
is log-convex, then

g ((Ax, x)) < exp(Ing(A)x,x) < (g(A)x, x) (2.2)

for each x € H with ||x|| = 1.
Proof. Consider the function f :=Ing, which is convex on [m, M]. Writing (MP) for f

we get In[g({(Ax,x))] < (Ing(A)x,x), for each x € H with ||x|]| = 1, which, by taking the
exponential, produces the first inequality in (2.2).
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If we also use (MP) for the exponential function, we get

exp(Ing(A)x,x) < {(exp[Ing(A)] x,x) = (g (A) x, x)
for each x € H with ||x]| = 1 and the proof is complete. O

The case of sequences of operators may be of interest and is embodied in the following
corollary:

Corollary 2.2 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A;

are selfadjoint operators with Sp(Aj) C[m,M], je(l,..,n} and x; € H, j € {1,...,n} with
2

St il =1, then

g[Z <ij,,xj>] < exp< y mg(A,.)xj,xj> g< Y g(A,)x,,x,>. 23)

j=1 j=1 j=1
Proof. Follows from Theorem 2.1and we omit the details. O

In particular we have:

Corollary 2.3 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A; are
selfadjoint operators with Sp(Aj) C[mM]cl je{l,..,n} and p; =0, jell,..,n} with
Z?zl pj=1, then

g[<; DA, x>] < <];[ [2(4;)]" x. x> < <; pig(a j)x,x> 2.4)

for each x € H with ||x|| = 1.

Proof. Follows from Corollary 2.2 by choosing x; = /p;-x, j € {1,...,n} where x € H with
llxl| = 1. m

It is also important to observe that, as a special case of (MP) we have the following
important inequality in Operator Theory that is well known as the Holder-McCarthy in-
equality:

Theorem 2.4 (Holder-McCarthy, 1967, [14]). Let A be a selfadjoint positive operator on a
Hilbert space H. Then

(i) (A"x,x)>{(Ax,x) forall r > 1 and x € H with ||x|| = 1;

(ii) (A"x,x) <{Ax,x) forall0<r<1andxe Hwith ||x|| = 1;

(iii) If A is invertible, then (A™"x,x) > (Ax,x)™" for all r > 0 and x € H with ||x|| = 1.

Since the function g(¢) = t~" for r > 0 is log-convex, we can improve the Holder-
McCarthy inequality as follows:

Proposition 2.5. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible, then
(Ax,x)"" <exp{In(A™") x,x) < (A7 x,x) (2.5)

forall r >0 and x € H with ||x]| = 1.
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The following reverse for the Mond-Pecari¢ inequality that generalizes the scalar Lah-
Ribari¢ inequality for convex functions is well known, see for instance [13, p. 57]:

Theorem 2.6. Let A be a selfadjoint operator on the Hilbert space H and assume that
Sp(A) C [m,M] for some scalars m,M with m < M. If f is a convex function on [m,M],

then
(Faren < ANy BEDZI

for each x € H with ||x|| = 1.

- f (M) (2.6)

This result can be improved for log-convex functions as follows:

Theorem 2.7 (Dragomir, 2010, [11]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p (A) C [m, M] for some scalars m, M withm < M. If g : [m, M] — (0, 00)
is log-convex, then

(A%, < [[gon] 5 g T | x) @7
M —{(Ax,x) (Ax,x)—m
S 8mt———g(M)
and
M—(Ax,x) (Ax,x)—m
g((Ax,x)) < [g(m)] 7= [g(M)] = (2.8)
<([le @) ¥ (g 7 | .x)
for each x € H with ||x|| = 1.
Proof. Observe that, by the log-convexity of g, we have
M—t t—m M-t t-m
8= (37— m+ 2 M) < [ )] 5 [g )] 29)

for any t € [m, M].
Applying the property (P) for the operator A, we have that

(8(A) x,x) < (¥ (A)x,x)

for each x € H with ||x]| = 1, where ¥ (¢) := [g(m)] pET [g(M)]ﬁ , t € [m,M]. This proves
the first inequality in (2.7).
Now, observe that, by the weighted arithmetic mean-geometric mean inequality we have
M:t = t I—m

et w M-
lg(m)]¥= [g (MD]r < = - g (m) + o —- - g (M)

for any t € [m, M].
Applying the property (P) for the operator A we deduce the second inequality in (2.7).
Further on, if we use the inequality (2.9) for ¢t = (Ax, x) € [m, M] then we deduce the
first part of (2.8).
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Now, observe that the function ¥ introduced above can be rearranged to read as

g (M)
(m)

showing that ¥ is a convex function on [m, M].
Applying Mond-Pecari¢’s inequality for ¥ we deduce the second part of (2.8) and the
proof is complete. O

¥() = g(m )[ ]M'",re[m,M]

The case of sequences of operators is as follows:
Corollary 2.8 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A;
are selfadjoint operators with Sp(Aj) C[m,M], je{l,..,n} and x; € H, j € {1,...,n} with
2
2 “x]” =1, then

n

2 {8(A)xjx;) (2.10)

j=1

<Z[g(m> S (g (M) _m’”H]xj’xj>

1
M2 (Ajxj.x;) g(m)+ i (A i) —m
M-m M-m

-g(M)

and

g[ <ij,-,x,->] @.11)
J

=1
<[gm)] 3= [g(M)]
n MlH—A Aj-mly
< 00 Lo H= ) 5 ).
j=1
In particular we have:
Corollary 2.9 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A; are
selfadjoint operators with Sp(A{,-) c[mM]cl je{l,..,n} and p;j >0, jell,..,n} with
Z'}:]Pj =1, then

<Zn: pig(A))x. x> (2.12)

A -mly

<Zp, [g(m)] 7 [g () xx>

j=1
S M- (ZA;j;Liiij,x> olm+ <Z;L1 Zle_Jx x> -m

-g(M)
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and

g[<z PjAjX, x>J (2.13)
Jj=1

M—<Z IPIA xx) <Z" lijjxx> m

<lgm)] = [g(M)]

<Zp, [g(m)] 5 [g(M)] 7 x. x>
J=1

The above result from Theorem 2.7 can be utilized to produce the following reverse
inequality for negative powers of operators:

Proposition 2.10. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible and S p(A) C [m,M](0 <m < M), then

Mig-A  A-mly =7
(A7 x,x) < <[m M-m~ M M=m ] x,x> (2.14)
< M—-{Ax,x) _ N (Ax,x)—m M
T M-m M-m

and

—r (Ax,x) (Ax,x)—m r
(A2 < g m) S5 g () |

Mig-A  A-mly 1T
S<[m M=m N M=m ] x,x>

forall r >0 and x € H with ||x|| = 1.

(2.15)

2.2 Jensen’s Inequality for Differentiable Log-convex Functions
The following result provides a reverse for the Jensen type inequality (MP):

Theorem 2.11 (Dragomir, 2008, [5]). Let J be an interval and f : J — R be a convex and
differentiable function on J (the interior of J) whose derivative f’ is continuous on J. If A is
a selfadjoint operators on the Hilbert space H with S p(A) C [m,M] C J, then

O (fAx,x) = f(Ax, x)) <(f (A)Ax,x) = (Ax, x) (" (A) x, x) (2.16)
for any x € H with ||x]| = 1.
The following result may be stated:

Proposition 2.12 (Dragomir, 2010, [11]). Let J be an interval and g : J — R be a differen-
tiable log-convex function on J whose derivative g’ is continuous on J. If A is a selfadjoint
operator on the Hilbert space H with S p(A) C [m,M] C J°, then

exp{lng(A)x, x)
g((Ax, %))
<exp|(g ([ (A] ™ Ax,x) = (Ax,0)- (¢ () [g ()] %, %)

for each x € H with ||x|| = 1.

(1<) 2.17)
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Proof. 1t follows by the inequality (2.16) written for the convex function f = Ing that

(Ing(A) x,x) <Ing((Ax,x))
+{g @) [gA)] ™ Ax,x) — (Ax, )+ (¢ (A) [ ()] x,x)

for each x € H with ||x|| = 1.
Now, taking the exponential and dividing by g ({(Ax, x)) > 0 for each x € H with ||x|| =1,
we deduce the desired result (2.17). O

Corollary 2.13 (Dragomir, 2010, [11]). Assume that g is as in the Proposition 2.12 and A
are selfadjoint operators with Sp(Aj) C[m,M]cl, je{l,...n}.
Ifand x; € H.j € (1,.on) with 3'_ ||x;|[* = 1, then

exp <Z;?:1 Ing (Aj) xj,xj>
g(Zh 1 (A5.))

(26 e 255
=1
=2 () 3 (e (4) s ()] x}"xfﬂ -
=1
Ifp;=0,jell,..,n} with Z;?:lpj =1, then

(I [s(4))] " x.x)

({251 piAjx.x)

<exp RZ i (1) (0] 4y
_ ,ZQ pi{Ajxx)- jzz;pj <g’ (47)[s(4)] " xﬂ

for each x € H with ||x|| = 1.

(1<)

2.18)

<exp

=1

(1<)

(2.19)

Remark 2.14. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible,
then

(1 <)¢Ax,x)" exp(In(A™") x, x) < exp[r((Ax,x)- (A" x,x) - 1) (2.20)
for all » > 0 and x € H with ||x|| = 1.

The following result that provides both a refinement and a reverse of the multiplicative
version of Jensen’s inequality can be stated as well:
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Theorem 2.15 (Dragomir, 2010, [11]). Let J be an interval and g : J — R be a log-convex
differentiable function on J whose derivative g’ is continuous on J. If A is a selfadjoint
operators on the Hilbert space H with S p(A) C [m,M] C J, then

1< <exp [% (A—(Ax,x)1 H)] X, x> 2.21)
Ax, , )
< % < (exp[g' () [ (A= (Ax,x) 1) x,x)

for each x € H with ||x|| = 1, where 1y denotes the identity operator on H.

Proof. 1t is well known that if & : J — R is a convex differentiable function on J, then the
following gradient inequality holds

h(@®)—h(s)=h (s)(t—s)

for any ¢, s el
Now, if we write this inequality for the convex function /2 = Ing, then we get

Ing(®)~Ing(s)> £ - s) (2.22)
g(s)
which is equivalent with
2() 2 g(s)exp [g - s)] (2.23)
g(s)

for any ¢, s el
Further, if we take s := (Ax,x) € [m,M] C J, for a fixed x € H with ||x]| = 1, in the
inequality (2.23), then we get

¢(0) > g((Ax, x))exp [% (1— (Ax, x>>]

for any ¢ el

Utilising the property (P) for the operator A and the Mond-Pecari¢ inequality for the
exponential function, we can state the following inequality that is of interest in itself as
well:

" ((Ax,
(@A) > g ((Ax,x)) <exp [M (A—(Ax,%) 1H)]y,y> (2.24)
T (Ax,)
¢ (Ax,x)
> g((Ax,x))exp [m ((Ay,y) —(Ax, X))]

for each x,y € H with ||x|| = ||y|| = 1.

Further, if we put y = x in (2.24), then we deduce the first and the second inequality in
(2.21).

Now, if we replace s with 7 in (2.23) we can also write the inequality

(1) exp[‘g; ((f)) (s—t)] < g(s)
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which is equivalent with

g() < g(s)exp [ S)] (2.25)

©)

for any ¢, s ej.
Further, if we take s := (Ax,x) € [m,M] C J, for a fixed x € H with ||x|| = 1, in the
inequality (2.25), then we get

g @
©)

g(n <g((Ax, X>)6Xp[ (r=(Ax, ))]
for any ¢ el.

Utilising the property (P) for the operator A, then we can state the following inequality
that is of interest in itself as well:

(8(A)y,y) < g(Ax, ) (exp[g W [gW] A—(Ax, ) 1)]y.y)  (226)
for each x,y € H with ||x|| = ||y|| = 1.
Finally, if we put y = x in (2.26), then we deduce the last inequality in (2.21). O

The case of operator sequences is embodied in the following corollary:

Corollary 2.16 (Dragomir, 2010, [11]). Assume that g is as in the Proposition 2.12 and A
are selfadjoint operators with Sp( ) C[m,M]cl, je{l,...n}.

Ifand x; € H, j € {1,...,n} with Z;le HxJ” =1, then

1<<]Zn;exp gl(( ’fl‘((ji’;))) [A jZZ;<ijj,x,~)1Hij,x,~> (2.27)
)

NN
- g( H{A5.17))
S<zn:exp g'(Aj)[g(Aj)]_l[Aj— <ijj',xj>1yﬂxj,xj>.

=1
Ifp; 20, je({l,...n} with Z’}:]pj =1, then for each x € H with ||x]| = 1

<33 (o)
1< pje
J= Zj=1 PjAjx, x>)

x[AJ Zp,Axx>1H]xx>
_(Zhipig(a)x)

(-1 P )

O] - (5 o)

J=1

n

=

(2.28)

N

g
(Soes
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Remark 2.17. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible,
then

1< <exp [r(lH —{(Ax, x)_1 A)] X, x> (2.29)
< (AT xx){(Ax, x)" < <exp [r(lH —(Ax,x)A™! )] X, x>
for all » > 0 and x € H with ||x|| = 1.

The following reverse inequality may be proven as well:

Theorem 2.18 (Dragomir, 2010, [11]). Let J be an interval and g : J — R be a log-convex
differentiable function on J whose derivative g’ is continuous on J. If A is a selfadjoint
operators on the Hilbert space H with S p(A) C [m,M] C J, then

<[g(M)]

T [gom)] T )
e )

o] i (- ).

(g(A)x,x)
gM) g(m)

(1<)

(2.30)

1
< exp[— (M—m)(
4
for each x € H with ||x|| = 1.

Proof. Utilising the inequality (2.22) we have successively

g((I=)t+As) g ()
g(s) g(s)

> exp [(1 - (t— s)] 2.31)

and

gd=Dr+ds) [_/lg ®)
g() g()
for any ¢, s € and any A € [0,1].

Now, if we take the power A in the inequality (2.31) and the power 1 — 4 in (2.32) and
multiply the obtained inequalities, we deduce

[g®]' " [g(9)]"
g((L=)1+1s)

g0 g
Sexp[(l_m(mr) - g(s))(’_s)]

(t— s)] (2.32)

(2.33)

for any ¢, s eJ and any 4 € [0,1].
Further on, if we choose in (2.33) r=M,s=m and A = %_‘;‘1 then, from (2.33) we get
the inequality

M-u

[g (M) [g (m)] ¥
g ()
(M —u) (u—m) (g’ M) g (m))]

(2.34)

<exp

M—m gM)  g(m)
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which, together with the inequality

(M —u)(u—m)

1
<—(M-
M-m _4( m)

produce

[ (M)]F75 [ (m)| 375 (2.35)
(M —u) (u—m) (g’ ) g (m))]
M-m gM)  g(m)
g g (m))]
gM) g(m)

< g(u)exp[

1
Sg(u)eXP[Z(M—m)(

for any u € [m, M].

If we apply the property (P) to the inequality (2.35) and for the operator A we deduce
the desired result. o

Corollary 2.19 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.18 and A ; are
selfadjoint operators with Sp(Aj) C[m,M]cJ, jef{l,...,n}.

Ifxje Hj el ) with S, x| = 1. then

Ajmly Mlg-A; >

(L0 Lo

(1<) (2.36)
(8 (4))xx)
< = <g (AJ) exp[(m,,—%)_(z,—mm) (‘Z% B gg,(%)) Xj,xj>
) (8 (4))xx)
1 g M) g (m)

= eXp[Z (M_’")( g(1) ~ g(m) )]

Ifpj 20, jel{l,...nywith ¥'_, p; =1, then for each x € H with ||x|| = 1
<Z?:1 pilg(M)] e [ (m)] o X, x>
(1<) (2.37)

(21 pig(4))xx)
<Z§:1 pig ( A,-) exp[(MIH—z?‘i'[)_(;\j—mlﬂ) (é;'(%) _ é;((ll:)))] X, x>
(51 pig(Ar)xx)

gM g (m))]
gM)  gim) ]|

<exp

1
Z(M_m)(
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Remark 2.20. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible
and S p(A) C [m,M](0 <m < M), then

r(mly—A) r(A-M1g)
(18 015 [g o] " x.x)

1< 2.38
(1<) e (2.38)
A~ ex r(M1y—A)A-mly) X, x _ 2
< < p[ Mm ] > < exp lrM
<A_rx7x> mM

2.3 Applications for Ky Fan’s Inequality

Consider the function g : (0,1) > R, g(¢) = (174)’ ,r > 0. Observe that for the new function
f:(0,1) >R, f(r) =Ing(¢) we have

—r 2r(% —t)

f = =0 and f” (1) = 217 forre(0,1)

showing that the function g is log-convex on the interval (O, %)
If pj>0forief(l,..,n}with 37  p;=1andt; € (0, %) for i € {1,...,n}, then by applying

the Jensen inequality for the convex function f (with r = 1) on the interval (O, %) we get

Z?—l piti 5 t; pi
ST o U 2.39
-3, piti l_[ -1 (2-39)

i=1

which is the weighted version of the celebrated Ky Fan’s inequality, see [1, p. 3].
This inequality is equivalent with

ﬁ(l —l‘i)pi S 1 _Z?:] piti
ti T X piti

i=1

where p; > 0 fori € {1,...,n} with ¥/ p; = 1and #; € (0, 1) for i € {1,...,n}.
By the weighted arithmetic mean - geometric mean inequality we also have that

n n 1 t Pi

-1 —
Zpi(l -t > H(t_z)
1= =

giving the double inequality

n n n n -1
D=t = [ J(a-wg")" 2 Y pa —n)(me) : (2.40)
i=1 i=1 i=1 i=1

The following operator inequalities generalizing (2.40) may be stated:
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Proposition 2.21. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible and S p(A) C (0, %), then

(A -4) x.x) 2 exp(In(A~! (1 - 4)) x.x) (2.41)
> ({1 —A)x,x)Ax,x) ")

for each x € H with ||x|]| =1 and r > 0.
In particular,

(A (g —A)x,x) 2 exp(In(A~ (15— A)) x, x) (2.42)
> (1 —A)x,x)(Ax,x)"!

for each x € H with ||x]| = 1.

The proof follows by Theorem 2.1 applied for the log-convex function g (¢) = (%)r JF>
0,t€ (O, %)

Proposition 2.22. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible and S p(A) C [m,M] C (0, %), then

(g -a)A7") x,x) (2.43)

r(MlH—A) r(A—mlH)

) 5

- M—(Ax,x)‘(l—m)r_i_(Ax,x)—m.(l—M)r

M-m m M—-m M
and

1-(Ax,x)\ (2.44)

(Ax,x) )
r(M—(Ax,x)) r({Ax,x)—m)
(1 —m) o (1 —M)M-m
<|—= -
m M

r(MlH—A) r(A—mlH)
< 1- m M-m 1-M M-m
< - i X, X
for each x € Hwith ||x|]| =1 and r > 0.
The proof follows by Theorem 2.7 applied for the log-convex function g (¢) = (ﬁ)r Jr>

t
0,t€ (O, %)
Finally we have:
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Proposition 2.23. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible and S p(A) C (0, %), then

exp <ln((1H —A)A‘l)rx,x>

(1<) _ (2.45)
((1—(Ax,x)¢Ax,x)")
<exp|r(¢Ax,x)- (A" 1y - A" xx) = ((1u—A) " x,x))]
and
1< {exp[r(1-(Ax,x) ™" (1n —(Ax,x)"' A)] x.x) (2.46)

(((1g—a)A7") x.x)
(1= (Ax, ) (Ax, 07")
< (exp[r(y—A)" ((Ax.x) A" = 1)]x.x)

for each x € Hwith ||x|]|=1and r > 0.

<

The proof follows by Proposition 2.12 and Theorem 2.15 applied for the log-convex
function g (r) = (%)r ,r>0,t€ (0, %) The details are omitted.

2.4 More Inequalities for Differentiable Log-convex Functions

The following results providing companion inequalities for the Jensen inequality for differ-
entiable log-convex functions hold:

Theorem 2.24 (Dragomir, 2010, [12]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p(A) C [m, M] for some scalars m, M withm <M. Ifg:J — (0,00) is a
differentiable log-convex function with the derivative continuous on J and [m,M] c J, then

[(g’ (A)Ax,x) (g(A)Ax,x) (g'(A)x,x) (2.47)
(g@x,x)y  (gA)x,x) (g(A)x,x) '
(8(4) Ing(A)x,x)
"’XP[ (A xx) ] 1
= (cA)AxY) =
8 ( (eAxx) )
for each x € H with ||x|| = 1.
If
"(A)A .
M € J for each x € H with ||x|| =1, ©
(g (A)x,x)
then
) ( (& (A)Axx)
¢ (SGama) (¢ W Axx)  (Ag(A)x.x)
e : - (2.48)
(L0 \ (¢ Dxx)  (g(A)xx)
(g’ (A)x,x)

(&' (A)Ax,x)
8 ( (& Ax,x) )

- (g A)IngAx,x)\ — 7
eXp( (gA)xx) )

for each x € H with ||x|| = 1.
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Proof. By the gradient inequality for the convex function Ing we have

é;((tt)) (1—5)>Ing()—Ing(s) > “';((j))

(t—s) (2.49)

for any ¢,s € J, which by multiplication with g (#) > 0 is equivalent with

8O 1o ()= 55 (1) (2.50)
g(s)

gM(t-s5)=gM)Ing()-g)Ing(s) >

forany 7,5 € J.
Fix s € J and apply the property (P) to get that

(&' (A)Ax,x)—5(g’' (A) x,x) > (g(A)Ing(A) x, x) — (g (A) x, x) In g (s) (2.51)
" ()
> 82 ((Ag(A)x,x) - (g (A) x,x)
g(s)
for any x € H with ||x|| = 1, which is an inequality of interest in itself as well.

Since
(g(A)Ax, x)

(8(A) x,x)

. ._ (8(AAx,x)
then on choosing s := (A

€ [m, M] for any x € H with ||x|| =1

in (2.51) we get

(g Ax.x)
(g(A)x.x)

>(g(A)Ing(A)x,x)— <g(A)x,x>lng(

(g’ (A)Ax,x) (g’ (A)x, x)

(g(A)Ax, X>) 50,
(8(A)x,x)

which, by division with (g (A) x, x) > 0, produces

(' (AAx,x) (g(A)Ax,x) (g'(A)x,x)

gAx,x)  (gAx,x) (g(A)x,x)

S (g(A)Ing(A) x, x) I ((g(A)Ax,x>) 5
(g(A)x,x) (g(A)x,x)

(2.52)

for any x € H with ||x]| = 1.
Taking the exponential in (2.52) we deduce the desired inequality (2.47).

Now, assuming that the condition (C) holds, then by choosing s := <f;ff/3;4xx;)§> in (2.51)
we get

0> (g(4)Ing(4)x, ) (g (A4) %, x)In g(w)

(g’ (A)x,x)
’ <g’(A)Ax,X>)
( (g (A)xx) (g’ (A)Ax,x)
> W ((Ag (A)x, x) = T A)xx) (g(A)x, X))
(g’ (A)x,x)
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which, by dividing with (g (A) x, x) > 0 and rearranging, is equivalent with

(WA

¢ (G )(<g ) et 053)
(L) \ (g (A)xx)  (g(A)xx) '
N (<g' (A)Ax,x>)_ (g(A)Ing(A)x,x) _

@y (g (A)x, %)

for any x € H with ||x]| = 1.
Finally, on taking the exponential in (2.53) we deduce the desired inequality (2.48). O

Remark 2.25. We observe that a sufficient condition for (C) to hold is that either g’ (A) or
—g’ (A) is a positive definite operator on H.

Corollary 2.26 (Dragomir, 2010, [12]). Assume that A and g are as in Theorem 2.24. If the
condition (C) holds, then we have the double inequality
( (g’ (A)Ax, x) ) S (g(A)Ing(A) x, x) o ( (g(A)Ax, x) )
g@xxy )~ (g@xx) (gA)x,x) |
for any x € H with ||x]| = 1.

(2.54)

Remark 2.277. Assume that A is a positive definite operator on H. Since for r > 0 the function
g (1) =1t"is log-convex on (0,c0) and
(g (A)Ax,x)  (A7"x,x)
(g Ax,x) (A" lxx)
for any x € H with ||x|| = 1, then on applying the inequality (2.54) we deduce the following
interesting result

>0

(2.55)

—r —r A—r+l ,
ln( (A7 x,x) )S (A" InAx, x) Sln(< X x>)
(A—1x, x) (A"x,x) (A" x, x)

for any x € H with ||x]| = 1.
The details of the proof are left to the interested reader.

The case of sequences of operators is embodied in the following corollary:
Corollary 2.28 (Dragomir, 2010, [12]). Let A}, j € {1,...,n} be selfadjoint operators on the
Hilbert space H and assume that Sp(Aj) C [m, M] for some scalars m, M with m < M and

each je{l,...n}.If g: J — (0,00) is a differentiable log-convex function with the derivative
continuous on J and [m,M] C J, then

[ (s (A7) Ajegxg)
1 (8 (4)) x5 x)
Eha{e(a) A ) (e (Af)xf’qu
i (s(A) ) 2 (g(Ar) )
[ 21(e(A))Ing(A4))xj.x) ]
il I CENTED I I

(2.56)
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foreach xj€ H, je{l,....n} with Z;!:I HXJ'”2 =1

If
T (8 (45) A7) 2.57)
L (45) % x5)
foreach xje H,je{l,...n} with Z;?:l ||xjH2 =1, then
g (27:1 (8'(Aj)A;xj.x}) )
exp Z?=1<g’(Aj)xj’xj> (2.58)

X[ s (A)Ajx) S (s (Af)xf"x»”

e () v) i (s(a)x)
( X8/ (A))A ) )
(8 (A))xjx)
X1(g(A)) Ing(A))x;.x;)
CXPp ( ' Z§=l<g(A;g)xj’xj> )

> 1,

foreach xj€ H, je{l,...,n} with Z?zl ij”2 =1.
The following particular case for sequences of operators also holds:

Corollary 2.29 (Dragomir, 2010, [12]). With the assumptions of Corollary 2.28 and if
pj =0, je{l,..,n} with Z;?:lpj =1, then

[<Z'}—1 pig (A;)Ajx.x) 2.59)
(Z-1pig(4))xx)
(Zhipig(a)) A x) (S5 pig(4))x X>}
(Siipig(a))nx) (i pig(4))xx)
ex [ (2 pig(A))Ing(4))x.x) ]
P (2, pjg(Aj)xx)
>1
( (2, pig(A))Ax.x) )
(zn pjg(a))xx)
for each x € H, with ||x|]| = 1.
If
ERRNE

(Zhipig’ (4))x.x)
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for each x € H, with ||x|| = 1, then

(2 g (A))A x.x)
<Z?=1 pig’ (A)x.x)

(20, pig’ (4))Ax.x)
(2 pig (A7)x.x)

y [ (i1 pig' (A))Apwx) (S pidjg(4))x.x) H

exp

2.61)

(Zhipig (A))ex) (S pig(4))xx)
( (X pjg’ (A))Axx) )
(2, pjg’(A))xx)

- o ((Z’]-]p_,'g(Aj)lng(Aj)x,x> =
PV e

for each x € H, with ||x]| = 1.

Proof. Follows from Corollary 2.28 by choosing x; = /p;-x, j € {1,...,n} where x € H with
llxl| = 1. m

The following result providing different inequalities also holds:

Theorem 2.30 (Dragomir, 2010, [12]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p (A) C [m, M] for some scalars m,M withm <M. Ifg:J — (0,00) isa
differentiable log-convex function with the derivative continuous on J and [m,M] c J, then

, (g(A)Ax, x)
<CXP [8 (A) (A - m IH)} X, X> (2.62)
8(A)
o <[ g(A) ] N x>
s(e)
7 [ (8(A)Ax,x)
¢ (%) ( (8 (A)Ax, ) ) >
> — = Ag(A)-———¢2(A ,x)>1
(ol - ol
for each x € H with ||x|| = 1.
If the condition (C) from Theorem 2.24 holds, then
7 [ (g (A)Ax,x)
8 ( (g @x0) ) (g' (A)Ax,x)
o { oy igiainsy -8 269
(g (A)Ax,x) L)Y
- <(g ( & A% )[g @] ) x’x>
) (g’ (A)Ax, x)
> <€Xp |:g (A)(mlH—A)]X,X> >1

for each x € H with ||x|| = 1.
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Proof. By taking the exponential in (2.50) we have the following inequality

&)8(1)>e [g/()

exp[g' ()(t—9)] = (g(s) ()

(1g(1)—sg (t))] (2.64)

forany 1,5 € J.
If we fix s € J and apply the property (P) to the inequality (2.64), we deduce

g(A)
(exp[g’ (A)(A—sly)]xx>><( ((A))) x,x> (2.65)

- <eXp iv(( >)

for each x € H with ||x]| = 1, where 1 is the identity operator on H.
By Mond-Pecari¢’s inequality applied for the convex function exp we also have

—sg (A))] X, x>

<exp [g () —sg (A))] X, x> (2.66)
g(s)
> exp(g (5) —s(g(A)x, x)))
g(s)

for each s € J and x € H with [|x|| = 1.

Now, if we choose s := <f§3iﬁ’§> € [m,M] in (2.65) and (2.66) we deduce the desired
result (2.62).

Observe that, the inequality (2.64) is equivalent with

exp[g (())<sg(r>—zg(r>>} (g( il

©)

80
) >explg’ (1) (s—1)] (2.67)

for any t,s € J.
If we fix s € J and apply the property (P) to the inequality (2.67) we deduce

<exp[g (( )) (sg(A)— Ag(A))]X x> <(g(s) [¢(A)]” )g( ) ,x> (2.68)
> (exp[g’ (A)(s1y —A)] x,x)

for each x € H with ||x|| = 1.
By Mond-Pecarié¢’s inequality we also have

(exp[g’ (A) (sly —A)]x,x) > exp[s{g’ (A) x,x) — (g’ (A)Ax,x)] (2.69)

for each s € J and x € H with ||x|| = 1.

Taking into account that the condition (C) is valid, then we can choose in (2.68) and

(2.69) s := <§;Eg}§§§j‘g> to get the desired result (2.63). O




A Survey of Jensen Type Inequalities for Log-Convex Functions 101

Remark 2.31. If we apply, for instance, the inequality (2.62) for the log-convex function
g = =1 ¢ > 0, then, after simple calculations, we get the inequality

< exp[A_z —(4xx)A! ]x,x> > <(<A—1x, x>A‘1)A_I X, x> (2.70)

A2 —(A1x,x)
AT (A x) 1y
<6Xp[ (A~1x,x)? JX, X>

v

1

v

for each x € H with |[|x]| = 1.
Other similar results can be obtained from the inequality (2.63), however the details are
left to the interested reader.

2.5 A Reverse Inequality
The following reverse inequality is also of interest:

Theorem 2.32 (Dragomir, 2010, [12]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p (A) C [m, M] for some scalars m, M withm <M. Ifg:J — (0,00) is a
differentiable log-convex function with the derivative continuous on J and [m,M] C J, then

[gm)] 7 [g ()]
g m M-m g M-m
(1< exp{Ing(A) x, x) 27D
< V((MIH—A)(A—mlﬂ)x,D(g’(M) g'(ﬂ@))}
<exp _
i M-m gM)  g(m)
 oen | M = (Ax, X)) (AX, x) —m) (g’ M) g (m))]
<exp _
M-m gM) g(m)
1 g g'(m
S“?ﬂMﬂm@mn_amﬂ
for each x € H with ||x|| = 1.
Proof. Utilising the inequality (2.49) we have successively
Ing((1-A)1+s)—Ing(s) = (1 -1 51— 5) (2.72)
g(s)
and
1 g @
ng((l—/l)t+/ls)—lng(t)2—/lg(t) (t—19) 2.73)

for any ¢, s € and any A € [0,1].
Now, if we multiply (2.72) by 4 and (2.73) by 1 — A and sum the obtained inequalities,
we deduce

(1-DIng@®+Alng(s)—Ing((1-Dt+As) (2.74)

g w ge)
“lﬂmﬂyn aw%t”]
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for any ¢, s €j and any 4 € [0, 1]
Now, if we choose A :=

M —,s:=mand t:= M in (2.74) then we get the inequality

=M g (M) + % 1 o (m) - Ing (u) (2.75)
-m M-m

[(M—M)(u—m) (g’ W) g (m))]
M—m gM)  g(m)

IA

for any u € [m, M].
If we use the property (P) for the operator A we get

M;‘;’#lng(M)+ML;>I ng(m)—(Ing (A)x, x) (2.76)
< [((MlH—A)(A—mlH)X,X> (8 W) g (m))]
= M—m gM) g(m)

for each x € H with ||x|| = 1.

Taking the exponential in (2.76) we deduce the first inequality in (2.71).

Now, consider the function / : [m,M] —» R, h(t) = (M —t)(t —m). This function is con-
cave in [m, M] and by Mond-Pecari¢’s inequality we have

(Mlg—-A)(A-mlg)x,x) < (M —(Ax,x))((Ax,x)—m)

for each x € H with ||x]| = 1, which proves the second inequality in (2.71).
For the last inequality, we observe that

(M~ (Ax, ) (Ax, 00 ~m) < 5 (M=)

and the proof is complete. O

Corollary 2.33 (Dragomir, 2010, [12]). Assume that g is as in Theorem 2.32 and A are
selfadjoint operators with Sp(Aj) C[m,M]cJ, jef{l,...,n}.

Ifand x; € H,j € {1,...n) with S, |lx,|* = 1, then

[ ( )]M Zj 1<A/‘/"/> , 1<A,x, /> m
(1955 S TP (2.77)
ool )
<ex 2 (M1 -4 )( )xw")(g’(M) _g’(m>)
) p» - gM) g(m)
N [ <Afxf’xf>)(z'}=1 {4jx).x;) =m) (g' M g (m))
_exp» M-m gM) g(@m)
1 g M) g (m)
SexP.‘_‘(M_m)(g(m " glm) )}
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Ifpj 20, je{l,...n}with 3 pj=1, then

_[sn A n A rx)—
M <Zj:l p]ij,X> <Zj:1 pJij,x> m

19 [g(m)]T[g(%ﬂT
(I [ (A)] x.)
S pi{(M1a-4)) (A - mln) 3 x;) (g’ M) g (m))
» M—-m g(M)  g(m)
(M= (S5, pA ) (S, A x) =m) (o (M) g (m)
M—-m (g(M) _g<m>)

1 (g' M) ¢ <m>)}
—my| L e

sexp| g M=mUGn ™ m)

2.78)

<exp

<exp

for each x € H with ||x|| = 1.

Remark 2.34. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible,
then

({Ax,x)-M m—(Ax,x)

m ¥-m M Hem (M1 -A)(A-—mlg)x,x)
(1<) exp{InA~1x, x) = exp | Mm ] @7
[ (M —(Ax,x)) (Ax,x) - m)]
<exp M
(1 (M —m)?
R P v

for all x € H with ||x|| = 1.
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