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Abstract

Exotic heat equations that allow to prove the Poincaré conjecture, some related prob-

lems and suitable generalizations too are considered. The methodology used is the

PDE’s algebraic topology, introduced by A. Prástaro in the geometry of PDE’s, in

order to characterize global solutions.1
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1 Introduction

”In a category C of manifolds

every homotopy sphere is homeomorphic to a sphere.”

Figure 1. Smale’s paradox: turning a sphere S2 ⊂ R3 inside out.

The famous Poincaré’s conjecture is about n-dimensional manifolds, with n = 3, (R.

S. Hamilton [24, 25, 26, 27, 28], G. Perelman [37, 38], A. Prástaro [53, 1]), but there
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1See also [55].
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are also generalizations of this conjecture for higher dimension manifolds. For n = 4 the

Poincaré conjecture has been proved by M. Freedman [19, 20]) and for n ≥ 5, by S. Smale

[60, 61]. More recently has been given a generalization for quantum supermanifolds by

A. Prástaro, that has also proved it in [51]). Nowadays, one can state that a generalized

Poincaré conjecture can be proved, or disproved, depending on the particular category C in

which it is formulated. This problem aroses in the framework of the geometric topology,

but in order to be solved it was necessary to go outside that framework and recast the

problem in a theory of PDE’s. But the more recent results by A. Prástaro [51, 53, 1]), have

proved that it was necessary to return inside the algebraic topology framework, applied to

the PDE’s geometric theory. Really, it was soon evident that remaining in a pure algebraic

topologic approach it was not enough to solve this conjecture. In fact, a fundamental idea

to solve this problem is to ask whether it is possible find a smooth manifold, V , that without

singular points bords a 3-dimensional compact, closed, smooth, simply connected manifold

N with S3, when N is homotopy equivalent to S3. The bordism theory is able to state that a

smooth manifold V such that ∂V = N
S

S3, there exists, since the nonoriented and oriented

3-dimensional bordism groups Ω3 and +Ω3 respectively, are both trivial: Ω3 = +Ω3 = 0.

However, by simply looking to the above bordism groups it is impossible to state if V has

singular points (i.e., has holes) or it is a cylinder. By the way, more informations can be

obtained by the h-cobordism theory. More precisely the h-cobordism theorem in a category

C of manifolds, states that if the compact manifold V has ∂V = N0 t N1, such that the

inclusion maps Ni ↪→V , i = 0,1, are homotopy equivalences, (i.e., V is a h-cobordism), and

π1(Ni) = 0, then V ∼=C N0 × [0,1]. This theorem holds for n ≥ 5 in the category of smooth

manifolds (S. Smale) and for n = 4 in the category of topological manifolds (M. Freedman).

But it does not work for n = 3!

A very important angular stone, in the long history about the solution of the Poincaré

conjecture, has been the introduction, by R. S. Hamilton, of a new approach recasting the

problem in to solving a PDE, the Ricci flow equation, and asking for nonsingular solutions

there, that starting from a Riemannian manifold (N,γ) arrive to the 3-dimensional sphere S3,

respectively identified with initial and final Cauchy manifolds in the Ricci flow equation.

In that occasion the Mathematical Analysis, or more precisely the Functional Analysis,

entered in the Poincaré conjecture problem. This approach has had many improvements

until the papers by G. Perelman. More recently, A. Prástaro, by using his algebraic topologic

theory of PDE’s was able to give a pure geometric proof of the Poincaré conjecture. Let

us emphasize that the usual geometric methods for PDE’s (Spencer, Cartan), were able to

formulate for nonlinear PDE’s, local existence theorems only, until the introduction, by A.

Prástaro, of the algebraic topologic methods in the PDE’s geometric theory. These give

suitable tools to calculate integral bordism groups in PDE’s, and to characterize global

solutions. Then, on the ground of integral bordism groups, a new geometric theory of

stability for PDE’s and solutions of PDE’s has been built. These general methodologies

allowed to A. Prástaro to solve fundamental mathematical problems too, other than the

Poincaré conjecture and some of its generalizations, like characterization of global smooth

solutions for the Navier-Stokes equation and global smooth solutions with mass-gap for the

quantum Yang-Mills superequation. (See [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54].2)

2See also Refs. [1, 2, 56], where interesting related applications of the PDE’s Algebraic Topology are given.
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The main purpose of this paper is to emphasize some problems related to exotic heat

PDE’s recently focused.3

Let us conclude this Introduction with a theorem, direct issue from results contained in

[53].

Theorem 1.1. Any 3-dimensional compact, closed simply connected smooth manifold, M,

homotopy equivalent to S3, is diffeomorphic to S3.4

Proof. In fact, the method followed by A. Prástaro to prove the Poincaré conjecture [53, 1],

allows us to conclude that in dimension n = 3, under the hypotheses of the theorem, one can

state that the manifold V , smooth solution of the Ricci flow equation, (∂t.gi j)−κRi j = 0,

such that ∂V = MtS3, has the following structure V ∼= M × [0,1], hence must necessarily

be M ∼= S3, (in the category of smooth manifolds). In other words the algebraic topology

of PDE’s, introduced by A. Prástaro, allows us to complete h-cobordism theorem in the

category of 3 dimensional smooth manifolds.

2 RICCI FLOW EQUATION IN NON-COMPACT CASE

In this section we consider the problem of existence and uniqueness of smooth complete

solutions of the Ricci flow equation, in the noncompact case. In particular we answer to a

recent question put for the n-dimensional Euclidean case in [11]. Let us consider the Ricci

flow equation, written in the form

(∂t.gi j)(x, t) = −2Ri j(x, t), (x, t) ∈ M×R (2.1)

when M is a n-dimensional smooth, noncompact and complete Riemannian manifold,

(M,γ). In particular the assumption that M is not compact and complete, is a substantial

difference with respect to the usual way in which such equation has been considered. In

fact, the Ricci flow equation has been principally introduced by R. S. Hamilton, to prove the

Poincaré conjecture on compact closed 3-dimensional manifolds homotopic equivalent to

S3. (See [12, 13, 24, 25, 26, 27, 28, 37, 38] to follows the proof of the Poincaré conjecture

in the approach by Hamilton-Perelmann. Furthermore, in [53, 1] the Poincaré conjecture

has been proved by using a method different by the Hamilton-Perelmann’s one.)

The main motivations to write this section are some recent works where the Ricci flow

equation is implemented on a noncompact complete Riemannian manifold, and solutions

3The Ricci flow equation can be considered a generalization of the classical Fourier’s heat equation ut −
κuxx = 0. In this paper we call exotic heat equations, PDE’s that, like the Ricci flow equation, are of the type

F j ≡ u
j
t − f j(ui

k
) = 0, 1≤ i, j ≤m, with the length |k| of the multi-index k ∈{1, · · · ,n}, given by 0≤ |k| ≤ s ≤ r,

where F j : Jr(W) → R are analytic functions of order r ≥ 0 on a fiber bundle π : W ≡ R×E(M) → R×M,

where E(M) is a vector bundle over M, with M an analytic manifold of dimension n. Let us emphasize that the

structure of exotic heat equation is the more suitable to use in order to prove (generalized) Poincaré conjectures.

In fact, the idea to use PDE’s to solve the Poincaré’s conjecture, was the initial motivation to introduce and study

the well-known Yamabe equation [68]. But that road did not turn out a lucky choice to prove the conjecture,

even if the Yambe equation is a very important equation to study conformal problems in Riemannian geometry.

(See, e.g., [1].)
4This last result agrees with the Hauptvermuntung conjecture that was proved for (n = 2,3)-dimensional

manifolds and disproved for (n ≥ 4)-dimensional manifolds. (See [8, 32, 33, 34, 57, 62, 66].)
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are request to identify complete metrics on the sectional noncompact manifolds. (See,

e.g., [11, 59].) More specifically, it was very intriguing the recent paper by B.-L. Chen

[11], where it is emphasized the uniqueness of such solutions in the dimensional 3, and the

following question: ”Does the strong uniqueness of the Ricci flow hold on the Euclidean

space Rn, for n ≥ 4 ? ”.

In fact we have the following theorem.

Theorem 2.1. Let us consider the Ricci flow equation (2.1) on the Euclidean space (Rn,γ).

Then, the unique solution of (2.1) for complete metrics is just γ.

Proof. Let us also underline that the restriction to consider noncompact complete metrics

does not permit flows with contractions, and neither simple homeomorphic ones. Isometric

diffeomorphisms are instead permitted. Therefore, let us add to the equation (2.1) the condi-

tion that g(x, t) is realized by means of a one parameter set of diffeomorphisms φt : M → M,

by means of pull-back, i.e, put g(x, t) = φ∗
t γ. One has for the Ricci tensor Ri j(x) of γ(x), the

following induced deformation R(x, t) = R(g(x, t))= φ∗
t R(γ(x)). In fact, for the natural co-

variance of the Riemannian metric and its Ricci tensor, one has the following commutative

diagram

M

R(g(x,t))

))
D2g(x,t) **

g(x,t) ))

φλ

��

S0
2Moo JD2(S0

2M)oo
R

// S0
2M

M

R(γ(x))

55

D2γ(x)
44γ 55 S

0
2M

S0
2(φλ)

OO

oo JD2(S0
2M)

JD2(φλ)

OO

oo R // S0
2M

S0
2(φλ)

OO
(2.2)

Taking into account that in coordinates (xi)1≤i≤n on M, one has





gi j(x, t) = (∂xi.φ
a
t )(∂x j.φ

b
t )γab(φt(x)) ≡ (φt)

a
i (x)(φt)

b
j(x)γab(φt(x))

(∂t.gi j)(x, t) = (φ̇t)
a
i (x)(φt)

b
j(x)γab(φt(x))+(φt)

a
i (x)(φ̇t)

b
j(x)γab(φt(x))

+(φt)
a
i (x)(φt)

b
j(x)(φ̇t)

α(x)(∂xα.γab)(φt(x))

Ri j(x, t) = (φt)
a
i (x)(φt)

b
j(x)Rab(φt(x))

(2.3)

we get that equation (2.1) can be written as follows

•(RF)⊂ JD(W) :





(φ̇t)
a
i (x)(φt)

b
j(x)γab(φt(x))+(φt)

a
i (x)(φ̇t)

b
j(x)γab(φt(x))

+(φt)
a
i (x)(φt)

b
j(x)(φ̇t)

α(x)(∂xα.γab)(φt(x))

= −2(φt)
a
i (x)(φt)

b
j(x)Rab(φt(x))

(2.4)

where π : W ≡ R×M2 → R×M, (t,xi,y j) 7→ (t,xi).

Let us first introduce an equivalence relation in the set S ∞
ol(•(RF)) of smooth solutions

of •(RF).
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Definition 2.2. Let (M,γ) be a Riemannian manifold of dimension n. We say that a diffeo-

morphism f : M → M, is rigid if f ∗γ = γ, and det( j( f )) = 1, where j( f ) is the Jacobian

matrix of f . In other words ( j( f )k
i ) ∈ SO(n). We say that a flow, φt(x), solution of •(RF),

is rigid, if φ∗
t , is a rigid diffeomorphism, ∀t. Then we say, also, that φt(x) is a rigid solution

of •(RF).

Definition 2.3. We say that two flows φt(x) and ψt(x), smooth solutions of •(RF), are rigid

equivalent, if there exists a rigid solution ft of •(RF) such that φt = ψt ◦ ft .

Proposition 2.4. The rigid equivalence is an equivalence relation in S ∞
ol(•(RF)), that we

denote with ∼R. Then for any representative ψt ∈ [φt]R ∈ S ∞
ol(•(RF))/ ∼R≡ [S ∞

ol(•(RF))]R,

one has (ψt)
∗γ = (φt)

∗γ, and ψ∗
t η = φ∗

t η, where η is the canonical form associated to the

metric γ.5

Proof. In fact, if φt(x) ∈ •(RF) it follows that φt(x) ∼R φt(x), since φt = φt ◦ (idM)t . If

φt,ψt ∈ •(RF) and φt ∼R ψt it follow that there exists a rigid solution ft ∈ •(RF) such that

φt = ψt ◦ ft . Since we can also write φt ◦ f−1 = ψt , and of course also f−1 ∈ •(RF), it

follows that ψt ∼R φt . Finally, if one has φt,ψt ,ϕt ∈ •(RF) with φt ∼R ψt ∼R ϕt , it follows

that φt = ψt ◦ ( ft)1, ψt = ϕt ◦ ( ft)2, for some rigid solutions ( ft)i, i = 1,2. Then we get

also φt = ϕt ◦ ( ft)2 ◦ ( ft)1 = ϕt ◦ ft , where ft = ( ft)2 ◦ ( ft)1 is also a rigid solution of •(RF).

Therefore, φt ∼R ϕt .

Let us find solutions of equations(2.4) of the type

φa
t = eωtha(x). Then one has that ω and ha(x) must satisfy the following equations:

ha
i (x)hb

j(x)
{

ω
[
2γab(φt(x))+eωthα(x)(∂xα.γab)(φt(x))

]
+2Rab(φt(x))

}
= 0. (2.5)

In the case that (M,γ) = (Rn,γE), then Rab = 0 and above equations (2.5) reduce to the

following ones

ha
i (x)hb

j(x)ω
[
2γab(φt(x))+eωthα(x)(∂xα.γab)(φt(x))

]
= 0. (2.6)

Let us add the condition φ0 = idM, then we get that necessarily ha(x) = xa, for a = 1, . . .,n.

Therefore, equations (2.6) reduce to the following ones:

ω
[
2γi j(φt(x))+eωtxα(∂xα.γi j)(φt(x))

]
= 0. (2.7)

Of course we can take a cartesian coordinate system, so that γi j = δi j . Therefore, equa-

tions (2.7) reduce to the following equations 2ωδi j = 0. Thus we get the unique trivial

solution for ω, i.e., ω = 0 and the unique solution for φt(x), i.e., φa
t = xa, that gives the

unique solution g(x, t) = γE(x).

5The deformation in Fig.1 cannot be rigid since it changes the orientation of the sphere S2. In fact, this

deformation can be realized by contracting the Est hemisphere, (resp. West hemisphere), endowed of a normal

unitary vector E (resp. W ), on the middle of its equatorial-line, on the oriented disk (D2,E), (resp. (D2,W )),

with ∂D2 passing for the poles N and S. Then, continuing to deform the two oriented disks in the same opposite

directions. During this deformation the boundary ∂D2 remains fixed, and both hemispheres conserve their

orientations, but the resulting sphere has reversed orientation.
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Above result does not depend on the particular assumption made on the type of so-

lutions. In fact, if consider equation (2.4) in the case M = Rn, with γ = δi j, we get the

following equations

{
Ars

abi j(∂t∂xr.φ
a
t )(∂xs.φ

b
t ) = 0

Ars
abi j ≡ δab(δrs

i j +δrs
ji).

(2.8)

Then, one can easily see that the unique smooth solution of (2.8) that satisfies the initial

condition φa
0 = xa is just φa

t = xa, for all t ∈ R. (Of course this is up to rigid flows that do

not produce any deformation.) In fact, let us write above equation for 1≤ i = j ≤ n. We get

the following equations:





2δab f a
t1 f b

1 = 0

· · ·
2δab f a

tn f b
n = 0

(2.9)

Here, for simplicity, we have put f ≡ φt . Then we can also write:




∂t.
(
(∂x1. f 1)2 + · · ·+(∂x1. f n)2

)
= 0

· · ·
∂t.

(
(∂xn. f 1)2 + · · ·+(∂xn. f n)2

)
= 0

(2.10)

Therefore, we get the following first integrals:




(∂x1. f 1)2 + · · ·+(∂x1. f n)2 = c1(x1, · · · ,xn)
· · ·
(∂xn. f 1)2 + · · ·+(∂xn. f n)2 = cn(x1, · · · ,xn)

(2.11)

This means that the jacobian matrix (∂xi.(φt)
j) = ( j

j
i (x1, · · · ,xn)) is made by functions

that depend only on the coordinates xi.

(∂xi.(φt)
j) = j

j
i (x1, · · · ,xn), i, j = 1, · · · ,n. (2.12)

Let us integrate (2.12):

(φt)
j =

Z

j
j
i (x1, · · · ,xn)dxi +c j(t,x1, · · · , x̂i, · · · ,xn), (2.13)

where c j(t,x1, · · · , x̂i, · · · ,xn) is any function that does not depend on xi. Taking into account

the initial condition φ
j
0 = x j , we get

x j =

Z

j
j
i (x1, · · · ,xn)dxi +c j(0,x1, · · · , x̂i, · · · ,xn). (2.14)

Let us again derive (2.14) with respect to xi, we get δ
j
i = j

j
i . So we have (φt)

j = x j +

c j(t,x1, · · · , x̂i, · · · ,xn). Since this holds for any 1 ≤ i ≤ n, we conclude that the arbitrary

functions c j can depend only on t. So we have the following functions:

(φt)
j = x j +c j(t). (2.15)

The flows given in (2.15) are rigid flows, therefore do not produce any deformation. Since,

of course, we aim find solutions up to rigid ones, we get that in the case of the n-dimensional

Euclidean manifold (Rn,γ), the unique complete noncompact solution of Ricci flow equa-

tion is just g(t,x) = γ.
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3 PINCHING PROBLEMS IN RICCI FLOW EQUATION

In the pinching problems connected to the Ricci flow equation one aims to characterize

solutions of this equation on a connected compact Riemannian manifold (M,γ) with respect

to the so-called pinching constant λ = min sec/max sec, i.e., by adding an upper as well

as a lower bound on the sectional curvature (denoted sec). With respect to this scalar-

characterization of Riemannian manifolds, there are some interesting informations on their

global structure. Let us recall some ones.6 (S. Brendle and R. Schoens [6]) If M is a compact

n-dimensional Riemannian manifold with λ ∈ ( 1
4
,1) (strict pinching), M is diffeomorphic

to a spherical space form. If λ ∈ [ 1
4 ,1] M is diffeomorphic to a spherical space form or

isometric to a locally symmetric space. (M. Berger [5] and W. Klingenberg [30]) If M

is a compact simply connected manifold with λ ≥ 1
4 then M is either homeomorphic to

Sn or isometric to CPn, HPn or CaP2, with their standard Fubini metric. [(J. L. Synge

[63]) A manifold with positive curvature does not necessitate be simply connected. In fact

if dimM = n = 2k, one has π1(M) = 0 if orientable and π1(M) = Z2 if non-orentable. If

dimM = n = 2k+1 and positively curved M is orientable.] (J. Cheeger [9]) Given a constant

ε > 0, there are only finitely many diffeomorphism types of compact simply connected 2n-

dimensional manifolds M with λ ≥ ε. (F. Fang and X. Rong [18], A. Petrunin and W.

Tuschmann [39, 66]) Given a constant ε > 0, there are only finitely many diffeomorphism

types of compact (2n+1)-dimensional manifolds M with π1(M) = π2(M) = 0 and λ ≥ ε.

Let us consider four-dimensional manifolds with λ-pinched flag curvature, (0 ≤ λ < 1),

i.e., Ru(v,v) ≥ λ(x)Ru(w,w), where Ru(., .) = R(u, .,u, .) is the symmetric bilinear form,

identified by the curvature tensor R and any nonzero vector u ∈ TxM. Here v,w ∈ T⊥
x <

Ru >, |v| = |w|. In [3] B. Andrwes and H. Nguyen proved that the class of positively

curved compact connected 4-dimensional manifolds, with λ-pinched flag curvature, λ ≥ 1
4
,

is invariant under Ricci-flow. Moreover, any such manifold is either diffeomorphic to a

spherical space form or isometric to CP2 with Fubini-study metric (up to scaling). In that

interesting paper, authors refer to a uniqueness existence theorem for local solutions of

the Cauchy problem for the Ricci-flow equation. (A first proof has been given by R. S.

Hamilton [24, 25]. Different proofs were obtained also by D. T. De Turk [15] and B.

Chow and D. Knopp [10].) However, it is important to underline that such uniqueness is

strictly related to the class of regular solutions considered there. In fact, by recasting the

Cauchy problem in the geometric theory of PDE’s, one can see that the Ricci-flow equation

identifies an analytic submanifold (RF) ⊂ JD2(W) of the second jet-derivative space for

sections of the following fiber bundle π : W ≡ R× S̃0
2(M)→ R×M, where S̃0

2(M)⊂ S0
2(M)

is the open subbundle of non-degenerate symmetric tensors of type (0,2) on M. (See [53]

to understand in which sense must be interpreted the statement about uniqueness of smooth

solutions for the Ricci flow equation.) However, in order to describe singularities in the

flow, it is useful to consider the embeddings (RF)⊂ JD2(W)⊂ J2
n+1(W), where J2

n+1(W) is

the 2-jet-space for (n+1)-dimensional submanifolds of W , dimM = n. Since the Ricci-flow

equation is formally integrable and completely integrable, with non-trivial symbol g2, there

6These results are usually referred as sphere theorems, or quarter-pinched sphere theorems. In fact, they

are generalizations of the sphere theorem for 3-manifolds that states that if M is an orientable 3-manifold with

π2(M) 6= 0, then there exists a non-zero element of π2(M) having a representative that is an embedding S2 →M.
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are also singular solutions satisfying smooth Cauchy problems.7 Then the characterization

of global solutions is obtained by means of the singular integral bordism groups of (RF).

(For details on the geometry of PDE’s see [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53].)

For example, in the particular case of 4-dimensional closed, compact, simply connected,

smooth Riemannian manifolds M, one obtains Ω
(RF)
4 /K

(RF)
4

∼= Z2 ⊕Z2
∼= Ω4, where K

(RF)
4

is the kernel of the canonical projection p : Ω
(RF)
4 → Ω4

∼= Z2

L

Z2. With this respect, and

taking into account the well-known theorems by A. Dold [16] and C. T. C. Wall [67] on the

(oriented) cobordism ring (+Ω•) Ω•, we can get from the results of this paper the following

interesting theorem.

Theorem 3.1. The 4-dimensional Riemannian manifolds preserving λ-pinched flag curva-

ture, λ ≥ 1
4 , in a Ricci-flow, belong to the cobordism classes in the image p−1(r(+Ω4

∼=
Z)) ⊂ Ω

(RF)
4 , where r : +Ω• → Ω• is the forgetting orientation natural mapping, i.e. one

has the exact sequences (3.1).

+Ω4
∼= Z

2

��
+Ω4

∼= Z

r

��

0 // K
(RF)
4

// Ω
(RF)
4 p

// Ω4
∼= Z2

L

Z2
// 0

. (3.1)

4 NECKPINCHING PROBLEMS IN SINGULAR EXOTIC HEAT

PDE

In a recent paper Z. Gang and I. M. Sigal [22] considered some particular solutions for

the Ricci flow equation encoding the mean curvature flow of an initial hypersurface M0 ⊂
Rd+1, that is of revolution around the axis x = xd+1. There u(x, t) represents, at fixed t, the

”distance function” of the revolution hypersurface from the revolution axis at x ∈ R. More

precisely they considered the following boundary value problem:

(mean curvature flow equation): ut =
u2

xx

1+(ux)2 − d−1
u

(boundary conditions):





u(x,0) = u0(x) > 0, ∀x ∈ R

liminf|x|→∞ u0(x) > 0

|| 1
u(x,t) ||∞ < ∞, t < t∗

|| 1
u(x,t)

||∞ → ∞, t → t∗

(4.1)

7It is well known that every compact smooth manifold, (or compactifiable C∞ manifold), can be considered

analytic too. This is exentially the meaning of the famous results by J. Nash [36] and some relative improve-

ments by A. Tognoli [65] and T. Kawakami [29].
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They proved, by using classic method of functional analysis, existence of solutions that

in finite time collapse on the revolution axis. They called such solutions collapsing (or

neckpinching) at the time t∗.
It is interesting to emphasize that translating above problem in the framework of the

geometry of PDE’s, the mean curvature flow equation in (4.1), identifies a real analytic

7-dimensional submanifold E2 of the 2-jet-derivative space

JD2(W) ∼= R8, (t,x,u,ut,ux,utt ,utx,uxx),

over the trivial vector bundle π : W ≡ R3 → R2, (t,x,u) 7→ (t,x). One has E2 ∩ S2 = /0,

where S2 ⊂ JD2(W) is the analytic submanifold identified by the constraint u = 0. So, a

solution V• ⊂ E2, such that u(x, t∗) = 0, for some time t∗, cannot exist. However, this does

not exclude that by considering the singular equation •E2 ≡ E2

S

S2 ⊂ JD2(W), we can

find asymptotic solutions of the above problem. This is in fact the case when S2 is endowed

with the distribution obtained from the Cartan distribution of JD2(W), just restricted on

S2. Then one can see that one can find solutions of E2 that approach integral manifolds

of S2, when u → 0. The tangent space to such solutions have zero time component in the

soldering points. This just means that such solutions stop (or collapse), in a finite time t∗,

to the revolution axis. (For informations on this geometric approach to singular PDE’s see

[42, 53, 54, 2].)

The Cartan distribution E2 ⊂ T E2 of E2, is given by the following vector fields

ζ = X t(∂t +ut∂u+utt ∂ut +utx∂ux)
+Xx(∂x+ux∂u+uxt ∂ut +uxx∂ux)

+Zxx∂uxx +Ztt ∂utt +Ztx∂utx

(4.2)

such that




X t
[
ut(ut(1+u2

x)−u2
xx)+utt (u(1+u2

x))+utx(2uutux +2ux(d−1))
]

+Xx
[
ux(ut(1+u2

x)−u2
xx)+uutx(1+u2

x)+uxx(2uutux +2ux(d−1))
]

+2Zxxuuxx = 0



 (4.3)

with

ut =
uu2

xx − (1+u2
x)(d−1)

u(1+u2
x)

. (4.4)

For u→ 0 equation (4.3) becomes 0 = X t [(1+u2
x)(d−1)]2, hence we get X t = 0. Therefore,

for u → 0 we can write (4.2) in the form given in (4.5).

ζ = Xx(∂x+ux∂u+uxt ∂ut +uxx∂ux)+Zxx∂uxx +Ztt ∂utt +Ztx∂utx. (4.5)

The Cartan distribution on S2, (i.e., vector fields (4.2) satisfying the condition ζ.u = 0), is

given in (4.6).
{

ζ = Xx
[
−ux

ut
∂t +∂x+(utx − ux

ut
utt)∂ut +(uxx − ux

ut
utx)∂ux

]

+Zxx∂uxx +Ztt ∂utt +Ztx∂utx.
(4.6)

Therefore, when q∈ S2 approaches equation E2, i.e., when ut approaches the function given

in (4.4), one has limq→E2
E2(S2)q =< ζ >, where ζ are given by the vector fields in (4.7)

ζ = Xx [∂x+utx∂ut +uxx∂ux]+Zxx∂uxx +Ztt ∂utt +Ztx∂utx. (4.7)
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This means that limq→E2
E2(S2)q ⊂ E2. This proves that solutions of E2 can be prolonged to

an integral manifold of S2. Since, in the asymptotic limit, both distributions have not time

components, then the solutions of E2 approach S2 to a fixed t∗ and stop on the revolution

axis.

By resuming, we get the following theorem, proved by using geometric methods only.

Theorem 4.1. The singular boundary value problem (4.1) admits smooth solutions, i.e.,

smooth solutions of the regular equation E2 ⊂ JD2(W) that collapse in a finite time ap-

proaching the set S2 ⊂ JD2(W) of singular points.

5 EXOTIC HEAT-SCRÖDINGER EQUATION

In [35] it is studied the following so-called cubic nonlinear Schrödinger equation (NLS):

{
ut + γu+ i(uxx ∓|u|2u) = f

u(t,x)∈ C, ∀(t,x) ∈ Ω ≡ R+×T, T ≡ R/2πZ
(5.1)

where γ > 0 (damping parameter) and f ∈ L2(T) (time-independent-forcing term).

There the main result is that the nonlinear group S(·), associated to (5.1), i.e., S(t)(u0) =

u(t), t ∈ R, where u is the solution of (5.1), for to the initial condition u0, provides an

infinite-dimensional dynamic system in L2(T) that has a global attractor A ⊂ H2(T), that

is a connected and compact set of H2(T), invariant (positively and negatively) by S(·) that

attracts for the L2(T)-metric all positive orbits uniformly with respect to bounded sets of

initial data in L2(T).

In the framework of the algebraic topology of PDE’s, the interesting problem considered

in that paper, has an intriguing issue. With this respect, let us recast equation (5.1) into a

real analytic PDE of second order over the following trivial vector fiber bundle π : W ≡
M×R2 → M ≡ R+×T, (t,x,v,w) 7→ (t,x):

E2 ⊂ JD2(W) :

{
vt + γv−wxx ∓w(v2 +w2) = φ

wt + γw+vxx ∓v(v2 +w2) = ψ
(5.2)

where u = v + iw and f = φ + iψ. Here we assume that φ and ψ are analytic functions.

Then one can prove that E2 is an involutive, formally integrable and completely integrable

PDE. In fact, one has

dim(E2)+1 = 16 = dimE2 = 12 + dim(g2)+1 = 4 . (5.3)

The relation (5.3) proves that the canonical mapping (E2)+1 → E2 is surjective. Further-

more, since dim(g2)+1 = 4 = dimg2, we get that g2 is an involutive symbol. This facts

are enough to state that E2 is formally integrable, and since it is analytic it is completely

integrable too. This means that in the neighborhood of any point q ∈ E2, (initial condi-

tion), passes a regular solution (analytic solution). Furthermore, since E2 satisfies some

conditions of regularity, we can solve Cauchy problems for 1-dimensional integral man-

ifolds N ⊂ E2, diffeomorphically projected in W , by means of the canonical projection

π2,0 : E2 → W . We call admissible such Cauchy manifolds. Note that solutions passing
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through admissible Cauchy manifolds do not necessitate to be smooth, in fact, in general,

are singular ones with respect to the embeddings E2 ⊂ JD2(W) ⊂ J2
2 (W), where J2

2 (W)
denotes the 2-jet-space for 2-dimensional submanifolds of W .

Furthermore, one can see that the 1-dimensional integral singular bordism group of

E2 ⊂ J2
2 (W) is ΩE2

1,s
∼= Z2. Then for any two space-like smooth (or analytic) 1-dimensional

closed admissible Cauchy hypersurfaces N1 ⊂ (E2)t1 and N2 ⊂ (E2)t2 , t1 6= t2, where (E2)t ≡
π̄−1

2 (t), with π̄ the natural projection E2 → R+, exists a singular solution V ⊂ E2, such that

∂V = N1 tN2, iff [N1 tN2] = [0] ∈ ΩE2

1,s. In order that this condition should be satisfied,

it is enough that N1 and N2 have the same integral characteristic numbers of second order.

(The solution V bording N1 and N2 is a smooth solution iff above condition holds for all the

orders, i.e. for all the conservation laws of E2.) So, in general, there is not solution unicity

for any admissible, 1-dimensional closed smooth space-like Cauchy manifold, N ⊂ E2, but

all such solutions bord ones belonging to the same 0-class in ΩE2

1,s
∼= Z2. This agrees with

the main result in [35]. By resuming we get the following theorem.8

Theorem 5.1. Equation (5.2), considered in the analytic case, has a global attractor, in the

sense that all its (singular) solutions bord with a same integral bordism class.

6 EXOTIC SINGULAR VECTOR HEAT EQUATION

In [14] it is studied the PDE reported in (6.1).

(∂t.Fk)+κνk = 0 (6.1)

where Fk = Fk(t,ua) ≡ Fk
t , is a family of parametric equations for embeddings Ft :

Σ2 →R3 of 2-dimensional, convex, star-shaped, compact surface Σ2 into R3, with (ua)1≤a≤2

local coordinates on Σ2 and (xk)1≤k≤3, coordinates in R3. κ = κ(t,ua) denotes the so-called

harmonic mean curvature of Σt ≡ Ft(Σ2) ⊂ R3, i.e., κ = Gauss curvature/mean curvature .

ν = νk∂xk is the unitary normal vector field on Σt . In [14] it is assumed the mean curvature

positive. The main result there concerns an existence of solutions Σε
t for short time starting

from a Σ2 of class C2,1 and a maximal time Tε of existence of a smooth solution such that

the mean curvature goes to zero as t → Tε at some point of Σε
t , or Σε

t shrinks to a point as

t → Tε. In the particular case where Σ2 is a surface of revolution, the flow always exists up

to the time when the surface shrinks to a point. It is interesting to recast this problem in

the framework for geometric theory of PDE’s, i.e., to implement this problem on a trivial

vector fiber-bundle π : W ≡ R6 → R3, (t,ua,xk) 7→ (t,ua). Then the problem is encoded by

the PDE reported in (6.2).

E3 ⊂ JD3(W) :





A(xi,xi
a,xi

ab)xk
t +Bk(xi,xi

a,xi
ab) = 0 (HMCF)

bab;c−bac;b = 0 (Gauss-Codazzi equation)

bab = [εi jkxi
abx

j
āxk

b̄
δā

1δb̄
2]/

√
EG−F 2.

(6.2)

In (6.2) A and Bk are known analytic functions of their arguments, bab are the com-

ponents of the second fundamental form and E,F,G, are the usual Gauss symbols of the

8Here we have explicitly considered only the analytic case. However, it is also possible to extend such result

to singular PDE’s, similarly to what made in the previous Section 4.
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surface Σt . The semi-colon, in the Gauss-Codazzi equation denotes tensor derivative with

respect to uc. In general the PDE in (6.2) is a singular equation, however in the case consid-

ered in [14], i.e., positive mean curvature, one has A 6= 0. Then, in order to characterize local

solutions, it is important to study the formal properties of such equation, and, by means the

determination of its integral bordism groups, characterize global solutions also. In this way

one could generalize the following well known result of differential geometry: Given sym-

metric functions γab = γab(uc) and bab = bab(uc), a,b,c = 1,2, such that the Gauss-Codazzi

equations are satisfied, there exists a surface xi = xi(uc), uniquely determined up to rigid

motions, such that γ and b are respectively the first fundamental form and the second fun-

damental form of such a surface. (See, e.g. L. P. Eisenhart [17].) Of course this agrees with

the structure of equation in (6.2), since there coordinates with time derivatives are deter-

mined by the other ones containing coordinates with space derivatives only. It is important

to emphasize that equation (6.2) is not formally integrable, since there is not surjectivity

between the first prolongation (E3)+1 and E3. In fact,

dim((E3)+1) = 88 < dim(E3) = 58 + dim((g3)+1) = 41 . (6.3)

However, by using the geometric theory of PDE’s, it is possible to identify a subequation

(̂E3)⊂ E3 that is formally integrable and completely integrable. For this it is enough to add

to the equations in (6.2) also the first prolongations of (HMCF). More precisely, we shall

use equation (6.4).

Ê3 ⊂ JD3(W) :





Axk
t +Bk = 0

Axk
tt +[(∂xa

i .A)xi
at +(∂xab

i .A)xi
abt]x

k
t

+(∂xa
i .B

k)xi
at +(∂xab

i .Bk)xi
abt = 0

Axk
tc +[(∂xa

i .A)xi
ac +(∂xab

i .A)xi
abc]x

k
t

+(∂xa
i .B

k)xi
ac +(∂xab

i .Bk)xi
abc = 0

bab;c−bac;b = 0

[bab;c−bac;b],t = 0

[bab;c−bac;b],d = 0

bab = [εi jkxi
abx

j
āxk

b̄
δā

1δb̄
2]/

√
EG−F 2.

(6.4)

Then Ê3+1 → Ê3 is surjective as proved in (6.5).

dim((Ê3)+1) = 70 = dim Ê3 = 49 + dim((ĝ3)+1) = 21 . (6.5)

Furthermore, the symbol ĝ3 is involutive, since one has dim(ĝ3+1) = 21 = dim(ĝ3).

Therefore Ê3 is formally integrable and completely integrable.

Then the characterization of Cauchy problems and global solutions, weak, singular and

smooth, can be directly obtained by using the algebraic topologic methods in PDE’s intro-

duced by A. Prástaro. The asymptotic behaviour of solutions as mean curvature approaches

the zero value, can be obtained by considering the singular PDE in (6.6)

(̂E3)
(S)

≡ (̂E3)
S

S3 ⊂ JD3(W) :

{
(̂E3) (6.4)

S3 ≡ { 1
2γabbab = 0} (6.6)
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i.e., adding to equation (6.4) the submanifold S3 of JD3(W), identified by the condition

of zero mean-curvature. (See, e.g. Section 4 where similar problems are considered.)

7 COMPLEX RICCI FLOW EQUATION AS A QUANTUM

EQUATION AND POINCARÉ CONJECTURE

In (7.1) it is reported the so-called normalized Kähler-Ricci flow equation





(normalized Kähler-Ricci flow equation) : ∂t .g(t) = −Ric(g(t))+g(t)
g(t) is a Kähler metric for each t;

ω(t) = ωg(t), the Kähler form associated to g(t), satisfies the condition

[ω(t) = i
2πg(t)αβ̄dzα ∧dz̄β] = c1(M) = [ i

2πRαβ̄(g(t))dzα∧dz̄β = ρ(t)] > 0.

(7.1)

Here M is a compact Kähler manifold, with the first Chern class c1(M) > 0. (Positivity

of the first Chern class is in the sense of K. Kodaira [31].) ω(t) denotes the Kähler form

associated to g(t) and ρ(t) is the Ricci form that represents also the first Chern class of M.

Some authors study solutions of (7.1) by adding also the global constraint in (7.2).

Z

M
|Rm(g(t))|n/2dvt ≤ C, dimC M = n ≥ 3, C ∈ R (7.2)

There Rm(g(t))denotes the curvature operator. (See, e.g., the work by P. Daskalopoulos

and M. Sesum [14], and papers quoted there.) The main result in [14] is an improvement of a

previous result by Sesum, where was also made the hypothesis of bounded Ricci curvature:

|R(g(t)|≤C. More precisely if g(t), t ∈ [0,∞) is a solution of the problem (7.2) that at t = 0

has curvature operator uniformly bounded in Ln-norm, the curvature operator will also be

uniformly bounded along the flow. This is enough to state that the flow will converge along

a subsequence to a Kähler-Ricci soliton, i.e., a compact Kähler manifold (N,h), such that

its Kähler form ωh satisfies the following equation: Ric(ωh)−ωh = Lζωh, where ζ is a

holomorphic vector field on N, and Lζ denotes Lie derivative with respect to ζ. It follows

that the first Chern class c1(N) of N is positive and represented by ωh. Since there are

no Kähler-Einstein metrics on N if N admits a Kähler-Ricci soliton, (this is a result by A.

Futaki [21]), it follows that the existence of Kähler-Ricci soliton is an obstruction to the

existence of Kähler-Einstein metrics on compact Kähler manifolds with positive first Chern

class. The condition c1(M) > 0 is important, after the result by S.-T. Yau [69], on the

existence of Kähler-Einstein metrics on Kähler manifolds with c1(M)≤ 0, and by T. Aubin

[4] for Kähler manifolds with c1(M) < 0. (This was first conjectured by E. Calabi [7]. For

complementary problems on complex manifolds see, e.g., [70].)

It is interesting to emphasize that the problem considered in ([14]) can be recast in the

geometric theory of PDE, directly working in the category of complex manifolds. This can

be made, by using the geometric theory of quantum PDE’s formulated by A. Prástaro. In

fact the category of complex manifolds can be considered a little subcategory of the one

for quantum manifolds, (in the sense introduced by A. Prástaro), where the quantum alge-

bra coincides with the algebra of complex numbers and quantum differentiable functions

are identified with holomorphic functions. Then the system (7.1) can be encoded with the
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following second order PDE Ẽ2 in the category of complex manifolds (like quantum mani-

folds):

Ẽ2 ⊂ JD̃2(W̃)⊂ J̃2
n+1(W̃) :





(1(a)) : (∂t .g)αβ̄(t) = −Ric(g(t))αβ̄ +g(t)αβ̄

(1(b)) : Rαβ̄ = −(∂zα∂z̄β. lndet(gδε̄))

(2(a)) : gαβ̄ = gβ̄α

(2(b)) : ḡαβ̄ = gᾱβ

(3(a)) : (∂zγ.gαβ̄)− (∂zα.gγβ̄) = 0

(3(b)) : (∂z̄γ.gαβ̄)− (∂z̄β.gαγ̄) = 0

(4) : gαβ̄ −Rαβ̄ − (∂zα∂z̄β. f ) = 0

(7.3)

In (7.3) W̃ is the following fiber bundle π̃ : W̃ ≡R× S̃0
2M×C →R×M, (t, zα, z̄α,uαβ̄,λ) 7→

(t, zα, z̄α). (Local) sections of π̃ are identified with the following (local) functions

{gαβ̄(t, zα, z̄α), f (t, zα, z̄α)}.

The ”tilde” over the jet(-derivative) spaces denotes ”holomorphic class of differentiabil-

ity”. Our geometric theory of quantum PDE’s allows us to obtain solutions as (n + 1)-

dimensional complex integral submanifolds of Ẽ2. Then the characterization of global so-

lutions is made by means of the integral bordism group ΩẼ2
n . With this respect one can

generalize the Poincaré conjecture in this category of complex manifolds. (For details see

[51] where a generalized version of the Poincaré conjecture is formulated, and proved too,

in the category of quantum (super)manifolds.)
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[39] A. Petrunin and W. Tuschmann, Diffeomorphism finiteness, positive pinching and

second homotopy. Geom. Funct. Anal. 9(4)(1999), pp 736-774.
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